INJECTIVE MODULES UNDER FAITHFULLY FLAT RING EXTENSIONS

LARS WINTHER CHRISTENSEN AND FATIH KÖKSAL

ABSTRACT. Let R be a commutative ring and S be an R-algebra. It is wellknown that if N is an injective R-module, then $\operatorname{Hom}_R(S, N)$ is an injective S-module. The converse is not true, not even if R is a commutative noetherian local ring and S is its completion, but it is close: It is a special case of our main theorem that in this setting, an R-module N with $\operatorname{Ext}_R^{>0}(S, N) = 0$ is injective if $\operatorname{Hom}_R(S, N)$ is an injective S-module.

INTRODUCTION

Faithfully flat ring extensions play a important role in commutative algebra: Any polynomial ring extension and any completion of a noetherian local ring is a faithfully flat extension. The topic of this paper is transfer of homological properties of modules along such extensions.

In this section, R is a commutative ring and S is a commutative R-algebra. It is well-known that if F is a flat R-module, then $S \otimes_R F$ is a flat S-module, and the converse is true if S is faithfully flat over R. If I is an injective R-module, then $S \otimes_R I$ need not be injective over S, but it is standard that $\operatorname{Hom}_R(S, I)$ is an injective S-module. Here the converse is not true, not even if S is faithfully flat over R: Let (R, \mathfrak{m}) be a regular local ring with \mathfrak{m} -adic completion $S \neq R$. The module $\operatorname{Hom}_R(S, R)$ is then zero—see e.g. Aldrich, Enoch, and Lopez-Ramos [1]—and hence an injective S-module, but R is not an injective R-module, as the assumption $S \neq R$ ensures that R is not artinian. In this paper, we get close to a converse with the following result.

Main Theorem. Let R be noetherian and S be faithfully flat as an R-module; assume that every flat R-module has finite projective dimension. Let N be an R-module; if $\operatorname{Hom}_R(S, N)$ is an injective S-module and $\operatorname{Ext}_R^n(S, N) = 0$ holds for all n > 0, then N is injective.

The result stated above follows from Theorem 1.7. The assumption of finite projective dimension of flat modules is satisfied by a wide selection of rings, including rings of finite Krull dimension and rings of cardinality at most \aleph_n for some natural number n; see Gruson, Jensen et. al. [8, prop. 6], [10, thm. II.(3.2.6)], and [7, thm. 7.10]. The projective dimension of a direct sum of modules is the supremum of the projective dimensions of the summands. A direct sum of flat modules is flat, so

Date: 16 April 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 13C11. Secondary 13D05.

Key words and phrases. Injective module; faithfully flat ring extension; co-base change.

Research partly supported by a Simons Foundation Collaboration Grant for Mathematicians, award no. 281886, and by grant no. H98230-14-0140 from the National Security Agency.

the assumption implies that there is an upper bound d for the projective dimension of a flat module. Notice also that the condition of $\operatorname{Ext}_{R}^{n}(S, N)$ vanishing is finite in the sense that vanishing is trivial for n greater than the projective dimension of S.

* * *

The project we report on here is part of Köksal's dissertation work. While the question that started the project—when does injectivity of $\operatorname{Hom}_R(S, N)$ imply injectivity of N?—is natural, it was a result of Christensen and Sather-Wagstaff [5] that suggested that a non-trivial answer might be attainable. The main result in [5] is essentially the equivalent of our Main Theorem for the relative homological dimension known as *Gorenstein injective dimension*. That the result was obtained for the relative dimension before the absolute is already unusual; it is normally the absolute case that serves as a blueprint for the relative. In the end, our proof of the Main Theorem bears little resemblance with the arguments in [5], and we do not readily see how to employ our arguments in the setting of that paper.

1. Injective modules

In the balance of this paper, R is a commutative noetherian ring and S is a flat R-algebra. By an S-module we always mean a left S-module. For convenience, we recall a few basic facts that will be used throughout without further mention.

1.1. A tensor product of flat *R*-modules is a flat *R*-module. For every flat *R*-module *F* and every injective *R*-module *I*, the *R*-module $\text{Hom}_R(F, I)$ is injective.

For every flat *R*-module *F*, the *S*-module $S \otimes_R F$ is flat, and every flat *S*-module is flat as an *R*-module. For every injective *R*-module *I*, the *S*-module Hom_{*R*}(*S*, *I*) is injective, and every injective *S*-module is injective as an *R*-module.

An *R*-module *C* is called *cotorsion* if one has $\operatorname{Ext}_R^1(F, C) = 0$ (equivalently, $\operatorname{Ext}_R^{>0}(F, C) = 0$) for every flat *R*-module *F*. It follows by Hom-tensor adjointness that $\operatorname{Hom}_R(F, C)$ is cotorsion whenever *C* is cotorsion and *F* is flat.

1.2. Under the sharpened assumption that S is faithfully flat, the exact sequence

$$(1.2.1) 0 \longrightarrow R \longrightarrow S \longrightarrow S/R \longrightarrow 0$$

is pure. Another way to say this is that (1.2.1) is an exact sequence of flat *R*-modules; see [9, Theorems (4.74) and (4.85)].

We work mostly in the derived category D(R) whose objects are complexes of R-modules. The next paragraph fixes the necessary terminology and notation.

1.3. Complexes are indexed homologically, so that the *i*th differential of a complex M is written $\partial_i^M : M_i \to M_{i-1}$. A complex M is called *bounded above* if $M_v = 0$ holds for all $v \gg 0$, *bounded below* if $M_v = 0$ holds for all $v \ll 0$, and *bounded* if it is bounded above and below. Brutal *truncations* of a complex M are denoted $M_{\leq n}$ and $M_{\geq n}$, and good truncations are denoted $M_{\subset n}$ and $M_{\supset n}$; cf. Weibel [11, 1.2.7].

A complex M is *acyclic* if one has H(M) = 0, equivalently $M \cong 0$ in D(R). Finally, $\mathbb{R}\operatorname{Hom}_{R}(-, -)$ denotes the right derived homomorphism functor, and $-\otimes_{R}^{\mathbf{L}}$ - denotes the left derived tensor product functor.

The proof of Theorem 1.7 passes through a couple of reductions; the first one is facilitated by the next lemma.

1.4 Lemma. Let N be an R-module of finite injective dimension. If S is faithfully flat, $\operatorname{Hom}_R(S, N)$ is an injective R-module, and $\operatorname{Ext}_R^n(S, N) = 0$ holds for all n > 0, then N is injective.

Proof. Let *i* be the injective dimension of *N*. There exists then an *R*-module *T* such that $\operatorname{Ext}_{R}^{i}(T, N) \neq 0$. Let *E* be an injective envelope of *T*. The exact sequence $0 \to T \to E \to X \to 0$ induces an exact sequence of cohomology modules:

$$\cdots \longrightarrow \operatorname{Ext}_{R}^{i}(E,N) \longrightarrow \operatorname{Ext}_{R}^{i}(T,N) \longrightarrow \operatorname{Ext}_{R}^{i+1}(X,N) \longrightarrow \cdots$$

Since $\operatorname{Ext}_{R}^{i+1}(X, N) = 0$ while $\operatorname{Ext}_{R}^{i}(T, N) \neq 0$, we conclude that also $\operatorname{Ext}_{R}^{i}(E, N)$ is non-zero. Now apply the functor $-\otimes_{R} E$ to the pure exact sequence (1.2.1) to get the following exact sequence of *R*-modules

$$0 \longrightarrow E \longrightarrow S \otimes_R E \longrightarrow S/R \otimes_R E \longrightarrow 0.$$

As E is injective the sequence splits, whence E is a direct summand of the module $S \otimes_R E$. This implies $\operatorname{Ext}^i_R(S \otimes_R E, N) \neq 0$. On the other hand, for every n > 0 one has

$$\operatorname{Ext}_{R}^{n}(S \otimes_{R} E, N) \cong \operatorname{H}_{-n}(\operatorname{\mathbf{R}Hom}_{R}(S \otimes_{R}^{\mathsf{L}} E, N))$$
$$\cong \operatorname{H}_{-n}(\operatorname{\mathbf{R}Hom}_{R}(E, \operatorname{\mathbf{R}Hom}_{R}(S, N)))$$
$$\cong \operatorname{H}_{-n}(\operatorname{\mathbf{R}Hom}_{R}(E, \operatorname{Hom}_{R}(S, N)))$$
$$\cong \operatorname{Ext}_{R}^{n}(E, \operatorname{Hom}_{R}(S, N)),$$

where the first isomorphism uses that S is flat, the second is Hom-tensor adjointness in the derived category, and the third follows by the vanishing of $\operatorname{Ext}_{R}^{>0}(S, N)$. As $\operatorname{Hom}_{R}(S, N)$ is injective, this forces i = 0; that is, N is injective.

1.5. Let Spec *R* be the set of prime ideals in *R*; for $\mathfrak{p} \in \text{Spec } R$ set $\kappa(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$. To an *R*-complex *X* one associates two subsets of Spec *R*. The (small) *support*, as introduced by Foxby [6], is the set $\text{supp}_R X = \{\mathfrak{p} \in \text{Spec } R \mid H(\kappa(\mathfrak{p}) \otimes_R^{\mathbf{L}} X) \neq 0\}$, and the *cosupport*, as introduced by Benson, Iyengar and Krause [4], is the set $\text{cosupp}_R X = \{\mathfrak{p} \in \text{Spec } R \mid H(\mathbb{R}\text{Hom}_R(\kappa(\mathfrak{p}), X)) \neq 0\}$. A complex *X* is acyclic if and only if $\text{supp}_R X$ is empty if and only if $\text{cosupp}_R X$ is empty; see [6, (proof of) lem.2.6] and [4, thm. 4.13]. The derived category D(R) is stratified by *R* in the sense of [3], see 4.4 *ibid.*, so [4, thm. 9.5] yields for *R*-complexes *X* and *Y*:

$$\operatorname{cosupp}_{R} \mathbf{R}\operatorname{Hom}_{R}(Y, X) = \operatorname{supp}_{R} Y \cap \operatorname{cosupp}_{R} X$$

If S is faithfully flat over R then, evidently, one has $\operatorname{supp}_R S = \operatorname{Spec} R$. In this case an R-complex X is acyclic if $\operatorname{\mathbf{R}Hom}_R(S, X)$ is acyclic.

1.6 Lemma. Let I be an acyclic complex of injective R-modules. Assume that S is faithfully flat and of finite projective dimension over R. If $\operatorname{Hom}_R(S, I)$ is acyclic and $\operatorname{Hom}_R(S, \operatorname{Ker} \partial_n^I)$ is an injective R-module for every $n \in \mathbb{Z}$, then $\operatorname{Hom}_R(M, I)$ is acyclic for every R-module M.

Proof. Let M be an R-module; in view of 1.5 it is sufficient to show that the complex $\mathbb{R}\operatorname{Hom}_R(S, \operatorname{Hom}_R(M, I))$ is acyclic. Set $d = \operatorname{pd}_R S$ and let $\pi \colon P \to S$ be a projective resolution with $P_i = 0$ for all i > d. To see that the homology $\operatorname{H}(\operatorname{R}\operatorname{Hom}_R(S, \operatorname{Hom}_R(M, I))) \cong \operatorname{H}(\operatorname{Hom}_R(P, \operatorname{Hom}_R(M, I)))$ is zero, note first that there is an isomorphism

$$\operatorname{Hom}_R(P, \operatorname{Hom}_R(M, I)) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(P, I)).$$

Fix $m \in \mathbb{Z}$; the truncated complex $J = I_{\leq m+d+1}$ is a bounded above complex of injective *R*-modules, and so is $\operatorname{Hom}_R(P, J)$. It follows that the induced morphism $\operatorname{Hom}_R(\pi, J)$ is a homotopy equivalence; see [11, lem. 10.4.6]. This explains the first isomorphism in the next display. The second isomorphism, like the equality, is immediate from the definition of Hom. The complex $H = \operatorname{Hom}_R(S, I_{\subset m+d+1})$ is acyclic, as $\operatorname{Hom}_R(S, I)$ is acyclic by assumption and $\operatorname{Hom}_R(S, -)$ is left exact. By assumption $\operatorname{Hom}_R(S, \operatorname{Ker} \partial^I_{m+d+1})$ is injective, so H is a complex of injective modules; it is also bounded above, so it splits. It follows that $\operatorname{Hom}_R(M, H)$ is acyclic.

$$\begin{split} \mathrm{H}_{m}(\mathrm{Hom}_{R}(M,\mathrm{Hom}_{R}(P,I))) &= \mathrm{H}_{m}(\mathrm{Hom}_{R}(M,\mathrm{Hom}_{R}(P,I_{\leq m+d+1}))) \\ &\cong \mathrm{H}_{m}(\mathrm{Hom}_{R}(M,\mathrm{Hom}_{R}(S,I_{\leq m+d+1}))) \\ &\cong \mathrm{H}_{m}(\mathrm{Hom}_{R}(M,\mathrm{Hom}_{R}(S,I_{\subset m+d+1}))) \\ &= 0 \;. \\ \end{split}$$

1.7 Theorem. Let R be a commutative noetherian ring over which every flat module has finite projective dimension. Let N be an R-module and S be a faithfully flat R-algebra; the following conditions are equivalent.

(i) N is injective.

(*ii*) Hom_R(S, N) is an injective R-module and $\operatorname{Ext}_{R}^{n}(S, N) = 0$ holds for all n > 0.

(*iii*) Hom_R(S, N) is an injective S-module and $\operatorname{Ext}_{R}^{n}(S, N) = 0$ holds for all n > 0.

Proof. It is well-known that (i) implies (iii) implies (ii), so we need to show that (i) follows from (ii). Let $N \to E$ be an injective resolution, then $\operatorname{Hom}_R(S, E)$ is a complex of injective *R*-modules. By assumption $\operatorname{H}_n(\operatorname{Hom}_R(S, E))$ is zero for n < 0, so $\operatorname{Hom}_R(S, E)$ is an injective resolution of the module $\operatorname{Hom}_R(S, N)$, which is injective by assumption. It follows that the co-syzygies

$$\operatorname{Ker} \partial_n^{\operatorname{Hom}_R(S,E)} = \operatorname{Hom}_R(S, \operatorname{Ker} \partial_n^E)$$

are injective for all $n \leq 0$. As remarked in the Introduction, there is an upper bound d for the projective dimension of a flat R-module. Set $K = \operatorname{Ker} \partial_{-d}^{E}$; by Lemma 1.4 it is sufficient to show that K is injective. The complex $J = \Sigma^{d}(E_{\leq -d})$ is an injective resolution of K, so we need to show that $\operatorname{Ext}^{1}_{R}(M, K) = \operatorname{H}_{-1}(\operatorname{Hom}_{R}(M, J))$ is zero for every R-module M.

For every flat *R*-module *F* and all i > 0 one has $\operatorname{Ext}_{R}^{i}(F, K) \cong \operatorname{Ext}_{R}^{i+d}(F, N) = 0$ by dimension shifting; that is, *K* is cotorsion. For every i > 0 the *i*-fold tensor product $(S/R)^{\otimes i}$ is a flat *R*-module, and we set $(S/R)^{\otimes 0} = R$. Let η denote the pure exact sequence (1.2.1); splicing together the exact sequences of flat modules $\eta \otimes_{R} (S/R)^{\otimes i}$ for $i \ge 0$ one gets an acyclic complex

$$G = 0 \to R \to S \to S \otimes_R S/R \to S \otimes_R (S/R)^{\otimes 2} \to \dots \to S \otimes_R (S/R)^{\otimes i} \to \dots$$

concentrated in non-positive degrees. As K is cotorsion, the functor $\operatorname{Hom}_R(-, K)$ leaves each sequence $\eta \otimes_R (S/R)^{\otimes i}$ exact, so the complex $\operatorname{Hom}_R(G, K)$ is acyclic. For every n > 0, the R-module

$$\operatorname{Hom}_{R}(G,K)_{n} = \operatorname{Hom}_{R}(S \otimes_{R} (S/R)^{\otimes n-1}, K) \cong \operatorname{Hom}_{R}((S/R)^{\otimes n-1}, \operatorname{Hom}_{R}(S,K))$$

is injective; indeed, $\operatorname{Hom}_R(S, K)$ is injective and $(S/R)^{\otimes n-1}$ is flat. Moreover, one has $\operatorname{Hom}_R(G, K)_0 \cong K$, so the complexes $\operatorname{Hom}_R(G, K)_{\geq 1}$ and J splice together to yield an acyclic complex I of injective R-modules.

We argue that Lemma 1.6 applies to I. For n < 0 one has $H_n(\operatorname{Hom}_R(S, I)) = H_n(\operatorname{Hom}_R(S, J)) = H_{n-d}(\operatorname{Hom}_R(S, E)) = 0$, and the module $\operatorname{Hom}_R(S, \operatorname{Ker} \partial_n^I) = \operatorname{Hom}_R(S, \operatorname{Ker} \partial_{n-d}^E)$ is injective. For $n \ge 0$ one has

$$\operatorname{Ker} \partial_n^I = \operatorname{Hom}_R(\operatorname{Im} \partial_{-n}^G, K) = \operatorname{Hom}_R((S/R)^{\otimes n}, K) .$$

Since K is cotorsion and $(S/R)^{\otimes n}$ is flat, the module $\operatorname{Ker} \partial_n^I$ is cotorsion. The truncated complex $I_{\leq n+1}$ is an injective resolution of the module $\operatorname{Ker} \partial_{n+1}^I$, so for all $n \geq 0$ one has $\operatorname{H}_n(\operatorname{Hom}_R(S,I)) = \operatorname{Ext}_R^1(S,\operatorname{Ker} \partial_{n+1}^I) = 0$. Furthermore, the R-module $\operatorname{Hom}_R(S,\operatorname{Ker} \partial_n^I) \cong \operatorname{Hom}_R((S/R)^{\otimes n},\operatorname{Hom}_R(S,K))$ is injective.

Now it follows from Lemma 1.6 that $\operatorname{Hom}_R(M, I)$ is acyclic for every *R*-module M; in particular, one has $\operatorname{H}_{-1}(\operatorname{Hom}_R(M, J)) = \operatorname{H}_{-1}(\operatorname{Hom}_R(M, I)) = 0$. \Box

2. Injective dimension

To draw the immediate consequences of our theorem, we need some terminology.

2.1. An *R*-complex *I* is *semi-injective* if it is a complex of injective *R*-modules and the functor $\text{Hom}_R(-, I)$ preserves acyclicity. A *semi-injective resolution* of an *R*-complex *N* is a semi-injective complex *I* that is isomorphic to *N* in D(R). If *N* is a module, then an injective resolution of *N* is a semi-injective resolution in this sense. The *injective dimension* of an *R*-complex *N* is denoted $\text{id}_R N$ and defined as

$$\operatorname{id}_{R} N = \inf \left\{ i \in \mathbb{Z} \mid \begin{array}{c} \text{There is a semi-injective resolution} \\ I \text{ of } N \text{ with } I_{n} = 0 \text{ for all } n < -i \end{array} \right\} ;$$

see [2, 2.4.I], where "DG-injective" is the same as "semi-injective".

2.2 Theorem. Let R be a commutative noetherian ring over which every flat module has finite projective dimension, and let S be a flat R-algebra. For every R-complex N there are inequalities

 $\operatorname{id}_R N \ge \operatorname{id}_S \operatorname{\mathbf{R}Hom}_R(S, N) \ge \operatorname{id}_R \operatorname{\mathbf{R}Hom}_R(S, N)$,

and equalities hold if S is faithfully flat.

Proof. Let N be an R-complex and let I be a semi-injective resolution of N. In D(S) there is an isomorphism $\mathbf{R}\operatorname{Hom}_R(S, N) \cong \operatorname{Hom}_R(S, I)$. It follows by Hom-tensor adjointness that $\operatorname{Hom}_R(S, I)$ is a semi-injective S-complex, whence the left-hand inequality holds. As S is flat over R, Hom-tensor adjointness also shows that every semi-injective S-complex is semi-injective over R. In particular, any semi-injective resolution of $\mathbf{R}\operatorname{Hom}_R(S,N)$ over S is a semi-injective resolution over R, and the second inequality follows.

Assume now that S is faithfully flat and that $\operatorname{id}_R \operatorname{\mathbf{R}Hom}_R(S,N) \leq i$ holds for some integer *i*. Let I be a semi-injective resolution of N; our first step is to prove that the R-module $K = \operatorname{Ker} \partial^I_{-i}$ is injective. As $\operatorname{Hom}_R(S, -)$ is left exact one has

$$\operatorname{Ker} \partial_{-i}^{\operatorname{Hom}_R(S,I)} \cong \operatorname{Hom}_R(S,K) \,.$$

In D(R) there is an isomorphism $\operatorname{Hom}_R(S, I) \cong \operatorname{\mathbf{R}Hom}_R(S, N)$, and by previous arguments the *R*-complex $\operatorname{Hom}_R(S, I)$ is semi-injective. It now follows from [2, 2.4.I] that the *R*-module $\operatorname{Hom}_R(S, K)$ is injective, and the truncated complex $\operatorname{Hom}_R(S, I)_{\supset -i} = \operatorname{Hom}_R(S, I_{\supset -i})$ is isomorphic to $\operatorname{\mathbf{R}Hom}_R(S, N)$ in D(R). In particular, one has

$$\operatorname{Ext}_{R}^{n}(S,K) = \operatorname{H}_{-n}(\operatorname{Hom}_{R}(S,\Sigma^{i}(I_{\leq -i}))) = \operatorname{H}_{-i-n}(\operatorname{\mathbf{R}Hom}_{R}(S,N)) = 0$$

for all n > 0, so K is injective by Theorem 1.7.

To conclude that N has injective dimension at most i, it is now sufficient to show that $H_n(N) = 0$ holds for all n < -i; see [2, 2.4.I]. Let X be the cokernel of the embedding $\iota: I_{\supset -i} \to I$; the sequence $0 \to I_{\supset -i} \to I \to X \to 0$ is a degree-wise split exact sequence of complexes of injective modules. In the induced exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(S, I_{\supset -d}) \longrightarrow \operatorname{Hom}_{R}(S, I) \longrightarrow \operatorname{Hom}_{R}(S, X) \longrightarrow 0,$$

the embedding is a homology isomorphism, so $\operatorname{Hom}_R(S, X)$ is acyclic. As X is a bounded above complex of injective modules, it is semi-injective. That is, the complex $\operatorname{\mathbf{R}Hom}_R(S, X)$ is acyclic, and then it follows that X is acyclic; see 1.5. Thus ι is a quasi-isomorphism, whence one has $\operatorname{H}_n(N) = \operatorname{H}_n(I) = 0$ for all n < -i. \Box

References

- Stephen T. Aldrich, Edgar E. Enochs, and Juan A. Lopez-Ramos, Derived functors of Hom relative to flat covers, Math. Nachr. 242 (2002), 17–26. MR1916846
- Luchezar L. Avramov and Hans-Bjørn Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129–155. MR1117631
- Dave Benson, Srikanth B. Iyengar, and Henning Krause, Stratifying triangulated categories, J. Topol. 4 (2011), no. 3, 641–666. MR2832572
- David J. Benson, Srikanth B. Iyengar, and Henning Krause, Colocalizing subcategories and cosupport, J. Reine Angew. Math. 673 (2012), 161–207. MR2999131
- Lars Winther Christensen and Sean Sather-Wagstaff, Transfer of Gorenstein dimensions along ring homomorphisms, J. Pure Appl. Algebra 214 (2010), no. 6, 982–989. MR2580673
- Hans-Bjørn Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), no. 2, 149–172. MR0535182
- Laurent Gruson and Christian U. Jensen, Dimensions cohomologiques reliées aux foncteurs <u>lim⁽ⁱ⁾</u>, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980), Lecture Notes in Math., vol. 867, Springer, Berlin, 1981, pp. 234–294. MR0633523
- 8. Christian U. Jensen, On the vanishing of lim⁽ⁱ⁾, J. Algebra 15 (1970), 151–166. MR0260839
- Tsit Yuen Lam, *Lectures on modules and rings*, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR1653294
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math. 13 (1971), 1–89. MR0308104
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR1269324
 E-mail address: lars.w.christensen@ttu.edu URL: http://www.math.ttu.edu/-lchriste

E-mail address: fatih.koksal@ttu.edu

TEXAS TECH UNIVERSITY, LUBBOCK, TX 79409, U.S.A.