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Abstract. We study the Gorenstein weak global dimension of associative

rings and its relation to the Gorenstein global dimension. In particular, we

prove the conjecture that the Gorenstein weak global dimension is a left–right
symmetric invariant—just like the (absolute) weak global dimension.

Introduction

A guiding principle in Gorenstein homological algebra is to seek analogues of results
about absolute homological dimensions. For example, the Gorenstein global dimen-
sion of a ring can equally well be computed in terms of the Gorenstein projective
or Gorenstein injective dimensions of its modules; this was proved by Enochs and
Jenda [13] in the noetherian case and by Bennis and Mahdou [5] in general.

The notion of a weak global dimension has also been considered in Gorenstein
homological algebra, for example by Emmanouil [11]. The weak global dimension
of a ring is a left–right symmetric invariant; that is, a ring has finite weak global
dimension on the left if and only if it enjoys the same property on the right. In
Section 1 we prove the corresponding statement in Gorenstein homological algebra,
thus confirming a widely held conjecture that was formally stated by Bennis [3].

In Section 2 we use this symmetry to investigate the relations between the Goren-
stein global and Gorenstein weak global dimensions. The main result of this section,
Theorem 2.3, shows that finite Gorenstein weak global dimension together with fi-
nite projective dimension of flat modules implies finite Gorenstein global dimension;
under extra assumptions on the ring this was proved by Bennis and Mahdou [4].
The same theorem relates the Gorenstein global dimension to a new invariant: the
Gorenstein flat-cotorsion dimension, which was introduced in [7]. In fact, this new
invariant plays a key role already in the proof of Theorem 1.4, the main result of
the first section. The invariant is built on the theory of Gorenstein flat-cotorsion
modules developed in [8] as well as recent work of Šaroch and Štov́ıček [20].

∗ ∗ ∗
Throughout the paper, A denotes an associative ring. By an A-module we mean a
left A-module, and we treat right A-modules as modules over the opposite ring A◦.
By an A-complex we mean a complex of A-modules. For such a complex M and an
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integer n, the hard truncation of M above at n is denoted M6n while M>n denotes
the hard truncation of M below at n. For v ∈ Z the cycle module in degree v,
i.e. the kernel of ∂M

v is denoted Zv(M), while Cv(M) denotes the cokernel module
in degree v, i.e. the cokernel of ∂M

v+1. We say that M has bounded homology if
Hv(M) = 0 holds for |v| � 0.

The notation and terminology above is all standard; the only non-standard ter-
minology applied in this paper comes from [7, 8]: An acyclic complex T of flat-
cotorsion A-modules is called totally acyclic if HomA(T, F ) is acyclic for every
flat-cotorsion A-module F . A cycle in such a complex is called a Gorenstein flat-
cotorsion module. A semi-flat complex of flat-cotorsion modules is called semi-
flat-cotorsion. In the derived category of A, every complex M is isomorphic to a
semi-flat-cotorsion complex—see for example [7, Cnstr. 2.4]; such a complex is called
a semi-flat-cotorsion replacement of M . The Gorenstein flat-cotorsion dimension of
an A-complex M is denoted GfcdA M ; it is the least n > sup{v ∈ Z | Hv(M) 6= 0}
such that the nth cokernel in a semi-flat-cotorsion replacement of M is Gorenstein
flat-cotorsion.

For the absolute homological dimensions we use two-letter abbreviations—pd,
id, and fd—and we write Gpd, Gid, and Gfd for the corresponding Gorenstein
dimensions. The notation for the invariant

splf(A) = sup{pdA F | F is a flat A-module}

is another acronym, “splf” stands for “supremum of projective lengths of flat mod-
ules.” The invariants sfli, spli, silp, and silf are defined similarly; see [11, §1.2].

1. Symmetry of Gorenstein weak global dimension

Holm proves in [16, Thm. 2.6] that if A is coherent and splf(A◦) is finite, then the
equality GfdA M = fdA M holds for A-modules of finite injective dimension. The
key to our proof of the main result in this section is to show that this equality holds
without the assumptions on A. By the work done in [7] it suffices to prove the
analogous equality for the Gorenstein flat-cotorsion dimension, and since this is a
result of independent interest, we prove it for complexes.

1.1 Theorem. Let M be an A-complex with bounded homology. If M has finite
injective dimension, then the equality GfcdA M = fdA M holds.

Proof. The equality GfcdA M = fdA M holds trivially if M is acyclic, so assume
that M is not acyclic and assume further, without loss of generality, that idA M = 0

holds. Set w = sup{v ∈ Z | Hv(M) 6= 0} and let M
'−−→ I be a semi-injective

resolution with Iv = 0 for v > w and v < 0. There is an exact sequence of complexes
0 → C ′ → F → I → 0 with F semi-flat-cotorsion and C ′ an acyclic complex of
cotorsion modules; this follows from work of Gillespie [14], see also [7, Fact 2.2].
Acyclicity of C ′ yields an exact sequence 0 → Z0(C ′) → Z0(F ) → I0 → 0. Since
both Z0(C ′) and I0 are cotorsion—for the former see Bazzoni, Cortés-Izurdiaga, and
Estrada [1, Thm. 1.3]—so is Z0(F ). There is thus a semi-flat-cotorsion resolution
F ′ → Z0(F ) concentrated in non-negative degrees, constructed by taking successive
flat covers. This complex glued together with F60 is acyclic and semi-flat, see
Christensen and Holm [9, 6.1], so per [9, Thm. 7.3] the module Z0(F ) is flat-
cotorsion, and we may assume that Fv = 0 holds for v < 0.
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Fix n > GfcdA M ; the module Cn(F ) is Gorenstein flat-cotorsion by [7, Lem. 4.3].
We argue next that Ext1A(G,Cn(F )) = 0 holds for every Gorenstein flat-cotorsion
module G. Fix such a module G. By definition, there is an exact sequence of
A-modules, 0 → G → T0 → · · · → T−n+1 → G′ → 0, with each Tv flat-cotorsion
and G′ Gorenstein flat-cotorsion. As Cn(F ) is cotorsion, dimension shifting yields:

Ext1A(G,Cn(F )) ∼= Extn+1
A (G′,Cn(F )) .

Let C be the mapping cone of the quasi-isomorphism F → I; it is concentrated
in non-negative degrees and consists of sums of modules that are flat-cotorsion or
injective. Moreover, one has C0 = I0 as Fv = 0 for v < 0, and because Iv = 0
for v > w and n > w holds, there is an isomorphism Cn+1(C) ∼= Cn(F ). Thus
dimension shifting along

0 −→ Cn+1(C) −→ Cn −→ · · · −→ C1 −→ I0 −→ 0

yields

Extn+1
A (G′,Cn(F )) ∼= Ext1A(G′, I0) = 0 .

Combining the displayed isomorphisms one gets Ext1A(G,Cn(F )) = 0. Now, with
g = GfcdA M and n = g + 1 and G = Cg(F ) one has Ext1A(Cg(F ),Cg+1(F )) = 0.
This means that the exact sequence 0 → Cg+1(F ) → Fg → Cg(F ) → 0 splits,
whence Cg(F ) is flat-cotorsion. Thus one has fdA M 6 g, and the opposite inequal-
ity holds by [7, Lem. 5.11]. �

In particular we now have the desired strengthening of [16, Thm. 2.6].

1.2 Corollary. Let M be an A-complex with bounded homology. If M has finite
injective dimension, then the equality GfdA M = fdA M holds.

Proof. The Gorenstein flat dimension is a refinement of the flat dimension, so if
GfdA M =∞ holds, then the equality is trivial. If GfdA M <∞, then [7, Thm. 5.7]
yields GfcdA M = GfdA M and the asserted equality follows from Theorem 1.1. �

The Gorenstein global dimension of A, denoted Ggldim(A), is the supremum of
the Gorenstein projective dimensions (equivalently, see [5, Thm. 1.1], the Goren-
stein injective dimensions) of all A-modules.

1.3 Definition. The Gorenstein weak global dimension of A is

Gwgldim(A) = sup{GfdA M |M is an A-module} .
This is the invariant that Bennis and Mahdou denote l.wGgldim(A) in [3, 5] and
G-wdim(A) in [4]. When Gwgldim(A) and Gwgldim(A◦) are finite, and only then,
Emmanouil [11] uses the symbol Gw.dimA for their common value.

If Gwgldim(A) is finite then so is sfli(A◦); this is elementary, see [11, Lem. 5.1].
On the other hand, if both sfli(A) and sfli(A◦) are finite, then per [11, Thm. 5.3]
both Gwgldim(A) and Gwgldim(A◦) are finite. Thus, the key to prove symmetry
of the Gorenstein weak global dimension is to see that Gwgldim(A) < ∞ implies
sfli(A) < ∞. In our proof of Theorem 1.4 this follows from Corollary 1.2, which
through [7, Thm. 5.7] relies crucially on the work of Šaroch and Štov́ıček [20].
In Remark 1.6 we sketch how to obtain symmetry directly from [20]. However,
there is more to Theorem 1.4: In the next section it facilitates the comparison of
Gwgldim(A) to Ggldim(A), see for example Corollary 2.6.
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1.4 Theorem. The following conditions are equivalent.

(i) Gwgldim(A) <∞.

(ii) All A-modules have finite Gorenstein flat dimension.

(iii) sfli(A) and sfli(A◦) are finite.

(iv) All A- and A◦-modules have finite Gorenstein flat dimension.

(v) All A- and A◦-modules have finite Gorenstein flat-cotorsion dimension.

Proof. Conditions (i) and (ii) are equivalent as the class of Gorenstein flat modules
is closed under coproducts; see for example Holm [15, Prop. 3.2]. Conditions (iii)
and (iv) are equivalent by [11, Thm. 5.3], and (iv) evidently implies (ii).

(ii)=⇒(iii): It follows from Corollary 1.2 that sfli(A) is finite and from [11,
Lem. 5.1] that sfli(A◦) is finite.

(iv)=⇒(v): The Gorenstein flat-cotorsion dimension of a module is bounded
above by its Gorenstein flat dimension, see [7, Thm. 5.7].

(v)=⇒(iii): It follows from Theorem 1.1 that sfli(A) and sfli(A◦) are finite. �

The next equality was formally conjectured by Bennis [3, Conj. 1.1]. For empha-
sis, we point out that it shows that Emmanouil’s [11] definition can be relaxed: It
suffices to consider finiteness of Gorenstein flat dimensions on one side of the ring.

1.5 Corollary. One has Gwgldim(A) = Gwgldim(A◦).

Proof. The invariants Gwgldim(A) and Gwgldim(A◦) are simultaneously finite by
Theorem 1.4, and when finite they are equal by [11, Thm. 5.3]. �

1.6 Remark. That Gwgldim(A) <∞ implies sfli(A) <∞ can be deduced directly

from [20]: In the notation of that paper, given a module M ∈ PGF⊥, there exists
by [20, Thm. 4.9] an exact sequence, 0 → H → Tn−1 → · · · → T0 → M → 0, with

each Tv a projective A-module and H in PGF⊥. If GfdA M 6 n, then H is also
Gorenstein flat, hence flat per [20, Thm. 4.11].

2. Comparing Gorenstein global dimensions

In this section, we consider relations between finiteness of the Gorenstein global
dimensions. We begin with a key lemma that compares the relevant invariants at
the level of (complexes of) modules.

2.1 Lemma. For every A-complex M with H(M) 6= 0 one has

GpdA M 6 GfdA M + splf(A) .

Proof. Set n = splf(A) and assume that it is finite. Let M be an A-complex
with GfdA M = d for some integer d. Let P → M be a semi-projective resolution;
the module C = Cd(P ) is Gorenstein flat—see Christensen, Köksal, and Liang
[10, Prop. 5.12]1—and it suffices to show that GpdA C 6 n holds, as this implies
that Cd+n(P ) is Gorenstein projective. By assumption there is an acyclic complex,
0→ C → F0 → F−1 → · · · , with each module Fv flat and each cokernel Gorenstein
flat. As in Cartan and Eilenberg’s [6, Chapter XVII, §1], or the proof of [11,

1Every ring is GF-closed by [20, Cor. 4.12].
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Lem. 5.2], construct a projective resolution of this complex in the category of A-
complexes:

...

��

...

��

...

��

0 // Q1
//

��

Q
(0)
1

//

��

Q
(−1)
1

//

��

· · ·

0 // Q0
//

��

Q
(0)
0

//

��

Q
(−1)
0

//

��

· · ·

0 // C //

��

F0
//

��

F−1 //

��

· · ·

0 0 0

This induces an exact sequence

0 −→ Cn(Q) −→ Cn(Q(0)) −→ Cn(Q(−1)) −→ · · · .
The class of Gorenstein flat A-modules is resolving by [20, Cor. 4.12], so the module
Cn(Q) is Gorenstein flat. By assumption, Cn(Q(i)) is projective for i 6 0, and by
construction the cokernels of the exact sequence are Gorenstein flat, so Cn(Q) is
Gorenstein projective by [20, Thm. 4.4]. Thus GpdA C 6 n holds as desired. �

Jiangsheng Hu pointed us to the following easy consequence of Lemma 2.1.

2.2 Proposition. Let n be an integer. The following conditions are equivalent.

(i) splf(A) 6 n.

(ii) Every Gorenstein flat A-module has Gorenstein projective dimension at most
n and every flat Gorenstein projective A-module is projective.

(iii) Every flat A-module has Gorenstein projective dimension at most n and every
flat Gorenstein projective A-module is projective.

Proof. Evidently, (ii) implies (iii).
(i)=⇒(ii): For a Gorenstein flat A-module M , Lemma 2.1 yields GpdA M 6 n.

A flat Gorenstein projective A-module G is projective as GpdA G = pdA G holds
because the Gorenstein projective dimension refines the projective dimension.

(iii)=⇒(i): The nth syzygy of a flat A-module is Gorenstein projective and flat,
hence projective. �

This brings us to the main result of this section; it compares to [4, Thm. 2.1] as
does Corollary 2.5.

2.3 Theorem. There are inequalities

sup{GfcdA M |M is an A-module} 6 Ggldim(A) 6 Gwgldim(A) + splf(A) .

Proof. The second inequality follows immediately from Lemma 2.1. To prove
the first inequality, set n = Ggldim(A); we may assume that it is finite. By [11,
Thm. 4.1] one has spli(A) = n = silp(A), and a result of Emmanouil and Talelli [12,
Prop. 2.1] yields silf(A) = n. We first show that every cotorsion A-module C has
GfcdA C 6 n. To see this, let C → I be an injective resolution. For every i 6 0
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there is an exact sequence 0 → Zi(I) → Ii → Zi−1(I) → 0 of cotorsion modules.
Construct flat resolutions G → C = Z0(I) and G(i) → Zi(I) for i < 0 by taking
successive flat covers. By [13, Lem. 8.2.1] there are flat resolutions F (i) → Ii which
fit into exact sequences 0 → G(i) → F (i) → G(i−1) → 0, such that each module

F
(i)
j is flat-cotorsion, and each syzygy module Cj(F

(i)) is cotorsion. A standard

construction, as in [6, Chap. XVII.§1], yields a commutative diagram

...

��

...

��

...

��

0 // G1
//

��

F
(0)
1

//

��

F
(−1)
1

//

��

· · ·

0 // G0
//

��

F
(0)
0

//

��

F
(−1)
0

//

��

· · ·

0 // C //

��

I0 //

��

I−1 //

��

· · ·

0 0 0

with exact rows and columns. This induces an exact sequence

0 −→ Cn(G) −→ Cn(F (0)) −→ Cn(F (−1)) −→ · · · .

Since sfli(A) 6 spli(A) = n holds, the modules Cn(F (i)) are flat for all i 6 0, and
by construction they are cotorsion. The complex G>n is a resolution of Cn(G) by
flat-cotorsion modules, so Cn(G) is a syzygy module in an acyclic complex of flat-
cotorsion A-modules. As silf(A) is finite, this complex is totally acyclic—indeed, for
an acyclic complex X of flat modules and a cotorsion module Y of finite injective
dimension, a standard dimension shifting argument, as in the proof of Theorem 1.1,
shows that the complex HomA(X,Y ) is acyclic—so the module Cn(G) is Gorenstein
flat-cotorsion. Thus GfcdA C 6 n.

Finally, let M be an A-module and F → M a flat resolution built from flat
covers. Since C1(F ) is cotorsion, the module Cn+1(F ) is Gorenstein flat-cotorsion.
Work of Gillespie [14], see also [7, Fact 2.2], yields an exact sequence,

0 −→ F −→ C −→ P −→ 0 ,

with C degreewise cotorsion and P an acyclic complex of flat modules with flat
cycle modules. It follows that C is a semi-flat-cotorsion replacement of M , see [7,
Fact 1.4]. For i > 1 the exact sequence 0→ Fi → Ci → Pi → 0 shows that Pi is
cotorsion. As all the modules Ci(P ) are flat, [7, Lemma 5.6] applied to P>1 shows
that Cn+1(P ) is flat-cotorsion. It follows that the exact sequence

0 −→ Cn+1(F ) −→ Cn+1(C) −→ Cn+1(P ) −→ 0

splits, whence Cn+1(C) is Gorenstein flat-cotorsion; in particular, GfcdA M is finite.
There is an exact sequence of A-modules, 0 → M → C ′ → F ′ → 0, with C ′

cotorsion and F ′ flat. As we have shown above that GfcdA C ′ 6 n holds, it now
follows from [7, Thm. 4.5] that also GfcdA M 6 n. �
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2.4 Remark. Recall that the invariant

FPD(A) = sup{pdA M |M has finite projective dimension}

is known as the finitistic projective dimension of A. By a result of Jensen [18,
Prop. 6] one has splf(A) 6 FPD(A). By [15, Thm. 2.28] there is an inequality
FPD(A) 6 Ggldim(A), and equality holds if Ggldim(A) is finite.

2.5 Corollary. Assume that A is right coherent. There are inequalities

Gwgldim(A) 6 Ggldim(A) 6 Gwgldim(A) + splf(A) .

Moreover, the following conditions are equivalent.

(i) Gwgldim(A) and splf(A) are finite.

(ii) Ggldim(A) is finite.

Proof. Since A is right coherent, the equality GfcdA M = GfdA M holds for every
A-module M by [7, Cor. 5.8]. Hence, one has

sup{GfcdA M |M is an R-module} = Gwgldim(A) ,

and the asserted inequalities follow from Theorem 2.3.
It is immediate from the second inequality that (i) implies (ii). For the converse,

assume that Ggldim(A) is finite; it follows from the first inequality that Gwgldim(A)
is finite, and splf(A) is finite by Remark 2.4. �

The next corollary applies, in particular, to commutative rings.

2.6 Corollary. If A and A◦ are isomorphic, then the next conditions are equivalent.

(i) Gwgldim(A) and splf(A) are finite.

(ii) Ggldim(A) is finite.

Proof. Immediate from Theorems 1.4 and 2.3, along with Remark 2.4. �

2.7 Corollary. If Gwgldim(A) is finite, then Ggldim(A) = FPD(A) holds, and the
invariants splf(A) and FPD(A) are simultaneously finite.

Proof. By Remark 2.4 the equality holds if Ggldim(A) is finite. Assume that
Gwgldim(A) is finite. If FPD(A) is finite, then splf(A) is finite by Remark 2.4, so
Ggldim(A) is finite by Theorem 2.3. This proves the equality, and the last assertion
follows as finiteness of splf(A) by 2.3 implies finiteness of Ggldim(A). �

Simson [19] shows that a ring A of cardinality ℵn has splf(A) 6 n + 1; for
commutative rings this was shown earlier by Jensen [17, Thm. 5.8]. Thus, the next
corollary yields, in particular, that the Gorenstein global dimension is symmetric
for countable coherent rings.

2.8 Corollary. If A is coherent, then the following conditions are equivalent.

(i) Ggldim(A) and splf(A◦) are finite.

(ii) Ggldim(A◦) and splf(A) are finite.

Proof. The assertion follows from Corollary 2.5 combined with Corollary 1.5. �
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2.9 Remark. For noetherian rings Beligiannis [2, Cor. 6.11] proved that the Goren-
stein global dimension is symmetric. Corollary 2.8 provides us with non-trivial new
examples of rings that exhibit this kind of Gorenstein symmetry; by non-trivial
we here mean rings of infinite global dimension. For instance, let R be a non-
commutative artinian ring and S a commutative coherent, but not noetherian, ring
of cardinality 6 ℵn. By [19] the direct product ring R×S satisfies the assumptions
in Corollary 2.8. Coherent quotients of the product ring Mn(Q)×Q[x0, x1, . . .] are
simple examples of such rings.

One can replace the coherent assumption in Corollary 2.8 with assumptions of
Gorenstein flatness of Gorenstein projective modules.

2.10 Corollary. The next conditions are equivalent.

(i) Ggldim(A) and splf(A◦) are finite and every Gorenstein projective A-module
is Gorenstein flat.

(ii) Ggldim(A◦) and splf(A) are finite and every Gorenstein projective A◦-module
is Gorenstein flat.

Proof. If Ggldim(A) is finite and every Gorenstein projective A-module is Goren-
stein flat, then it follows that Gwgldim(A) is finite. By Corollary 1.5 this implies
that Gwgldim(A◦) is finite. It follows that every cycle in an acyclic complex of flat
A◦-modules is Gorenstein flat; in particular, every Gorenstein projective A◦-module
is Gorenstein flat. Finally, Theorem 2.3 yields Ggldim(A◦) <∞ and splf(A) is finite
by Remark 2.4, �

2.11 Remark. The result of Beligiannis, [2, Cor. 6.11], mentioned in Remark 2.9
shows that a noetherian ring is Iwanaga–Gorenstein—that is, of finite self-injective
dimension on both sides—if it has finite Gorenstein global dimension on one side.
It follows from Theorem 1.4 and [7, Cor. 5.10] that a noetherian ring is Iwanaga–
Gorenstein if it has finite Gorenstein weak global dimension on one side. This
improves [13, Thm. 12.3.1].
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