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Abstract. For a semi-separated noetherian scheme, we show that the cate-

gory of cotorsion Gorenstein flat quasi-coherent sheaves is Frobenius and a nat-
ural non-affine analogue of the category of Gorenstein projective modules over

a noetherian ring. We show that this coheres perfectly with the work of Mur-

fet and Salarian that identifies the pure derived category of F-totally acyclic
complexes of flat quasi-coherent sheaves as the natural non-affine analogue of

the homotopy category of totally acyclic complexes of projective modules.

Introduction

A classic result due to Buchweitz [2] says that the singularity category of a Goren-
stein local ring A is equivalent to the homotopy category Ktac(prj(A)) of totally
acyclic complexes of finitely generated projective A-modules. The latter category is
also equivalent to the stable category of finitely generated maximal Cohen-Macaulay
A-modules or, in a different terminology, to the stable category StGprj(A) of finitely
generated Gorenstein projective A-modules. This second equivalence extends be-
yond the realm of Gorenstein local rings and finitely generated modules: For ev-
ery ring A, the category Ktac(Prj(A)) of totally acyclic complexes of projective
A-modules is equivalent to the stable category StGPrj(A) of Gorenstein projective
A-modules. We obtain this folklore result as a special case of [5, Corollary 3.9].
What is the analogue in the non-affine setting?

Murfet and Salarian [23] offer a non-affine analogue of the category Ktac(Prj(A))
over a semi-separated noetherian scheme X in the form of the Verdier quotient,

DF-tac(Flat(X)) =
KF-tac(Flat(X))

Kpac(Flat(X))
,

of the homotopy category of F-totally acyclic complexes of flat quasi-coherent
sheaves on X by its subcategory of pure-acyclic complexes. Indeed, for a commu-
tative noetherian ring A of finite Krull dimension and X = Spec(A), the categories
Ktac(Prj(A)) and DF-tac(Flat(X)) are equivalent by [23, Lemma 4.22]. What re-
mains is to identify an analogue of the category StGPrj(A) in the non-affine setting,
and that is the goal of this paper.
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The stable category of Gorenstein projective modules is a standard construction
that applies to any Frobenius category. The category of Gorenstein flat modules is
rarely Frobenius; it is essentially only Frobenius if it coincides with the category of
Gorenstein projective modules, see [5, Theorem 4.5]. The cotorsion Gorenstein flat
modules, however, do form a Frobenius category, and a special case of [5, Corol-
lary 5.9] says that for a commutative noetherian ring A of finite Krull dimension,
the category StGPrj(A) is equivalent to the stable category StGFC(A) of cotorsion
Gorenstein flat modules. This identifies a candidate category and, indeed, the goal
stated above is obtained (in 4.6) with

Theorem A. Let X be a semi-separated noetherian scheme. The stable category
StGFC(X) of cotorsion Gorenstein flat sheaves is equivalent to DF-tac(Flat(X)).

In the statement of this theorem, and everywhere else in this paper, a sheaf means
a quasi-coherent sheaf. A sheaf on X is called cotorsion if it is right Ext-orthogonal
to flat sheaves on X.

A crucial step towards the equivalence in Theorem A is to prove (in 4.2 and
4.3) that the sheaves that are both cotorsion and Gorenstein flat are precisely the
sheaves that arise as cycles in F-totally acyclic complexes of flat-cotorsion sheaves.
This is exactly what happens in the affine case, and it transpires that the main
take-away from [5] also applies in the non-affine setting: One should work with
sheaves that are both cotorsion and Gorenstein flat rather than all Gorenstein flat
sheaves! One manifestation is a result (4.7) that sharpens [23, Theorem 4.27]:

Theorem B. A semi-separated noetherian scheme X is Gorenstein if and only if
every acyclic complex of flat-cotorsion sheaves on X is F-totally acyclic.

A second manifestation—actually the result behind Theorem A—is that the
category DF-tac(Flat(X)) considered by Murfet and Salarian is equivalent to the
homotopy category KF-tac(Flat(X) ∩ Cot(X)) of F-totally acyclic complexes of flat
cotorsion sheaves (see 4.5). That is, passing from the affine to the non-affine setting,
one can replace the homotopy category Ktac(Prj(A)) by another homotopy category.

Up to equivalence, the category KF-tac(Flat(X) ∩ Cot(X)) arises in a related,
yet different, context. The category of Gorenstein flat sheaves on a semi-separated
noetherian scheme X is part of a complete hereditary cotorsion pair (see 2.2), and
one that is comparable to the cotorsion pair of flat sheaves and cotorsion sheaves
on X. Through work of Hovey [21] and Gillespie [16], these cotorsion pairs induce
a model structure on the category of sheaves on X. We prove (see 4.4) that the
associated homotopy category is equivalent to KF-tac(Flat(X) ∩ Cot(X)).

1. Gorenstein flat sheaves

In this paper, the symbol X denotes a scheme with structure sheaf OX . By a
sheaf on X we shall always mean a quasi-coherent sheaf, and Qcoh(X) denotes the
category of (quasi-coherent) sheaves on X. We frequently add the assumption that
X is semi-separated, by which we mean that X has an open affine covering U such
that U∩V is affine for all U, V ∈ U ; such a covering is referred to as semi-separating.
We use standard cohomological notation for cochain complexes.

In this first section we show that over a semi-separated noetherian scheme, one
can equivalently define Gorenstein flatness of sheaves globally, locally, or stalkwise.
Let A be a commutative ring. An acyclic complex F of flat A-modules is called
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F-totally acyclic if the complex I ⊗A F is acyclic for every injective A-module I.
An A-module M is Gorenstein flat if there exists an F-totally acyclic complex F
with M = Z0(F ). Denote by GFlat(A) the category of Gorenstein flat A-modules.

Remark 1.1. For an acyclic complex F of flat sheaves on X there is a global, a
local, and a stalkwise notion of F-total acyclicity:

• For every injective sheaf I on X the complex I ⊗ F is acyclic.
• For every open affine U ⊆ X the OX(U)-complex F (U) is F-totally acyclic.
• For every x ∈ X the OX,x-complex Fx is F-totally acyclic.

It is proved in [23, Lemmas 4.4 and 4.5] that all three notions agree if the scheme
X is semi-separated noetherian. Christensen, Estrada, and Iacob [4, Corollary 2.8]
show that the local notion is Zariski-local, and by [4, Proposition 2.10] the local
and global notions agree if X is semi-separated and quasi-compact (which is weaker
than noetherian).

Definition 1.2. Assume that X is semi-separated noetherian. An acyclic complex
F of flat sheaves on X is called F-totally acyclic if it satisfies the equivalent con-
ditions in Remark 1.1. A sheaf M on X is called Gorenstein flat if there exists an
F-totally acyclic complex F of flat sheaves on X with M = Z0(F ). Denote by
GFlat(X) the category of Gorenstein flat sheaves on X.

Over any scheme, Gorenstein flatness can also be defined locally or stalkwise,
and we proceed to show that these notions agree with Gorenstein flatness as defined
above if the scheme is semi-separated noetherian.

Definition 1.3. A sheaf M on X is called locally Gorenstein flat if for every open
affine subset U ⊆ X the OX(U)-module M (U) is Gorenstein flat, and M is called
stalkwise Gorenstein flat if Mx is a Gorenstein flat OX,x-module for every x ∈ X.

Like local F-total acyclicity, local Gorenstein flatness is a Zariski-local property,
at least under mild assumptions on the scheme. As shown in [4], this follows from
the next proposition.

Proposition 1.4. Let ϕ : A→ B be a flat homomorphism of commutative rings.

(a) If M is a Gorenstein flat A-module, then B ⊗AM is a Gorenstein flat
B-module.

(b) Assume that A is coherent and ϕ is faithfully flat. An A-module M is
Gorenstein flat if the B-module B ⊗AM is Gorenstein flat.

Proof. (a) Let F be an F-totally acyclic complex of flatA-modules withM = Z0(F ).
By [4, Proposition 2.7(1)] the B-complex B ⊗A F is an F-totally acyclic complex
of flat B-modules, so B ⊗AM = Z0(B ⊗A F ) is a Gorenstein flat B-module.

(b) It follows from work of Šaroch and Š ’tov́ıček [28, Corollary 4.12] that the
category GFlat(A) is closed under extensions, so the assertion is immediate from a
result of Christensen, Köksal, and Liang [6, Theorem 1.1]. �

Corollary 1.5. Assume that X is locally coherent. A sheaf M on X is locally
Gorenstein flat if there exists an open affine covering U of X such that the OX(U)-
module M (U) is Gorenstein flat for every U ∈ U .

Proof. Proposition 1.4 shows that Gorenstein flatness is an ascent–descent property
for modules over commutative coherent rings. Now invoke [4, Lemma 2.4]. �
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Theorem 1.6. Assume that X is semi-separated noetherian. For a sheaf M on
X the following conditions are equivalent.

(i) M is Gorenstein flat.
(ii) M is locally Gorenstein flat.

(iii) M is stalkwise Gorenstein flat.

Proof. The implication (i)⇒ (ii) is trivial by the definition of Gorenstein flatness;
see Remark 1.1.

(ii) ⇒ (iii): Let x ∈ X and choose an open affine subset U ⊆ X with x ∈ U .
Localization is exact and commutes with tensor products, so it preserves Gorenstein
flatness of modules, whence the module Mx

∼= M (U)x is Gorenstein flat over the
local ring OX,x ∼= OX(U)x.

(iii) ⇒ (i): This argument is inspired by Yang and Liu [29, Lemmas 3.8 and
3.9]. Let U = {U0, . . . , Un} be a semi-separating open affine covering of X. For
every x ∈ X there is a short exact sequence of OX,x-modules,

(1) 0 −→Mx −→ Fx −→ Tx −→ 0 ,

where Fx is flat and Tx is Gorenstein flat. For x ∈ X and U ∈ U consider the
canonical maps

ix : Spec(OX,x) −→ X and iU : Spec(OX(U)) −→ X ;

for x ∈ U the map ix factors through iU . The map M →
∏
x∈X(ix)∗(M̃x) is a

monomorphism locally at every y ∈ X, as one has∏
x∈X

(ix)∗(M̃x) ∼= (iy)∗(M̃y)⊕
∏

x∈X\{y}

(ix)∗(M̃x) ,

so it is a monomorphism in Qcoh(X). Now (1) yields a monomorphism

M −→
∏
x∈X

(ix)∗(F̃x) ,

so with F 0 =
∏
x∈X(ix)∗(F̃x) there is an exact sequence in Qcoh(X)

(2) 0 −→M −→ F 0 −→ K 1 −→ 0 .

The first goal is to show that F 0 is flat. For every x ∈ X choose only one element
Uk in U with x ∈ Uk, and for k = 0, . . . , n let Ik ⊆ Uk denote the corresponding
subset such that X is the disjoint union

⋃n
k=0 Ik. Now one has

F 0 =
∏
x∈X

(ix)∗(F̃x) =

n⊕
k=0

∏
x∈Ik

(iUk)∗(F̃x) ∼=

(†)∼=
n⊕
k=0

(iUk)∗(
∏
x∈Ik

F̃x) ∼=
n⊕
k=0

(iUk)∗(
∏̃
x∈Ik

Fx) ,

where the isomorphism (†) holds as (iUk)∗, being a right adjoint functor, preserves
direct products. Since Fx is a flat OX(Uk)-module, and OX(Uk) is noetherian, it
follows that

∏
x∈Ik Fx is a flat OX(Uk)-module. Hence F 0 is a flat sheaf.
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The second goal is to show that K 1 is Gorenstein flat locally at every point
y ∈ X. Consider the commutative diagram of OX,y-modules

0 //My
// F 0

y
//

π

��

K 1
y

//

$

��

0

0 //My
// Fy // Ty // 0

where π is the canonical projection with kernel L; this is a flat module as it is the
kernel of an epimorphism between flat OX,x-modules. By the Snake Lemma $ is
surjective with kernel L, so K 1

y is Gorenstein flat; see e.g. [28, Corollary 4.12].
Let I be an injective sheaf on X; we argue that (2) remains exact after tensoring

with I by showing that Tor
Qcoh(X)
1 (I ,K 1) = 0 holds. For x ∈ X let J(x) be the

sheaf on Spec(OX,x) associated to the injective hull of the residue field of the local
ring OX,x. One has

I ∼=
⊕
x∈X

(ix)∗J(x)(Λx)

for some index sets Λx; see Hartshorne [19, Proposition II.7.17]. Therefore, it

suffices to verify that Tor
Qcoh(X)
1 ((ix)∗J(x),K 1) = 0 holds for every x ∈ X. This

can be verified locally, and every localization Tor
Qcoh(X)
1 ((ix)∗J(x),K 1)x′ is 0 or

isomorphic to Tor
OX,x
1 (J(x),K 1

x ), and the latter is also 0 as K 1
x is a Gorenstein

flat OX,x-module.
Repeating this process, one gets an exact sequence of sheaves

(3) 0 −→M −→ F 0 −→ F 1 −→ F 2 −→ · · ·

which remains exact after tensoring with any injective sheaf on X. Since X, in
particular, is semi-separated quasi-compact, every sheaf is a homomorphic image
of a flat sheaf; see for example Efimov and Positselski [7, Lemma A.1]. Therefore,
there is an exact sequence

(4) 0 −→ K −1 −→ F−1 −→M −→ 0

with F−1 a flat sheaf. The class of Gorenstein flat modules is closed under kernels
of epimorphisms, see e.g. [28, Corollary 4.12], so K −1

x is a Gorenstein flat OX,x-
module for every x ∈ X. By the same argument as above the sequence (4) remains
exact after tensoring with any injective sheaf on X. Repeating this process, one
obtains an exact sequence

(5) · · · −→ F−3 −→ F−2 −→ F−1 −→M −→ 0

that remains exact after tensoring with any injective sheaf on X. Splicing together
(3) and (5) one gets per Definition 1.2 an F-totally acyclic complex of flat sheaves,
F = · · · → F−1 → F 0 → F 1 → · · · . Thus, M = Z0(F ) is Gorenstein flat. �

Henceforth we work mainly over semi-separated noetherian schemes. In that set-
ting we consistently refer to the sheaves described in Theorem 1.6 by their shortest
name: Gorenstein flat; some proofs, though, rely crucially on their local properties.
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2. The Gorenstein flat model structure on Qcoh(X)

Let G be a Grothendieck category, that is, an abelian category that has colimits,
exact direct limits (filtered colimits), and a generator. A class C of objects in G
is called resolving if it contains all projective objects and is closed under exten-
sions and kernels of epimorphisms. To a class C of objects in G one associates the
orthogonal classes

C⊥ = {G ∈ G | Ext1
G(C,G) = 0 for all C ∈ C} and

⊥C = {G ∈ G | Ext1
G(G,C) = 0 for all C ∈ C} .

Let S ⊆ C be a set. The pair (C, C⊥) is said to be generated by the set S if an object
G belongs to C⊥ if and only if Ext1

G(C,G) = 0 holds for all C ∈ S. A pair (F , C) of

classes in G with F⊥ = C and ⊥C = F is called a cotorsion pair. The intersection
F ∩ C is called the core of the cotorsion pair.

A cotorsion pair (F , C) in G is called hereditary if for all F ∈ F and C ∈ C one
has ExtiG(F,C) = 0 for all i ≥ 1. Notice that the class F in this case is resolving.

A cotorsion pair (F , C) in G is called complete provided that for every G ∈ G
there are short exact sequences 0→ C → F → G→ 0 and 0→ G→ C ′ → F ′ → 0
with F, F ′ ∈ F and C,C ′ ∈ C.

Abelian model category structures from cotorsion pairs. Gillespie [16]
shows how to construct a hereditary abelian model structure on G from two com-

parable cotorsion pairs. Namely, if (Q, R̃) and (Q̃,R) are complete hereditary

cotorsion pairs in G with R̃ ⊆ R, Q̃ ⊆ Q, and Q ∩ R̃ = Q̃ ∩ R, then there exists
a unique thick (i.e. full, closed under direct summands, and having the two-out-of-

three property) subcategory W of G such that Q̃ = Q ∩W and R̃ = R ∩W. In
other words (Q,W,R) is a so-called Hovey triple, and from work of Hovey [21] it
is known that there is a unique abelian model structure on G in which Q, R, and
W are the classes of cofibrant, fibrant, and trivial objects, respectively; refer to [21]
for this standard terminology. We are now going to apply this machine to cotorsion

pairs with Q̃ and Q the categories of flat and Gorenstein flat sheaves on X.

Remark 2.1. If X is semi-separated quasi-compact, then Qcoh(X) is a locally
finitely presentable Grothendieck category. This was proved already in EGA [18,
I.6.9.12], though not using that terminology. Being a Grothendieck category, Qcoh(X)
has a generator and hence, by [7, Lemma A.1], a flat generator. Slávik and Š ’tov́ıček
[26] have recently proved that if X is quasi-separated and quasi-compact, then
Qcoh(X) has a flat generator if and only if X is semi-separated.

Theorem 2.2. Assume that X is semi-separated noetherian. The pair

(GFlat(X),GFlat(X)⊥)

is a complete hereditary cotorsion pair.

Proof. For an open affine subset U ⊆ X we write GFlat(U) for the category
GFlat(OX(U)) of Gorenstein flat OX(U)-modules. For every open affine subset
U ⊆ X the pair (GFlat(U),GFlat(U)⊥) is a complete hereditary cotorsion pair; see
Enochs, Jenda, and López-Ramos [10, Theorems 2.11 and 2.12]. The proof of [10,
Theorem 2.11] shows that the pair is generated by a set SU ; see also the more
precise statement in [28, Corollary 4.12].
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A result of Estrada, Guil Asensio, Prest, and Trlifaj [11, Corollary 3.15] now
shows that (GFlat(X),GFlat(X)⊥) is a complete cotorsion pair. Indeed, the flat
generator of Qcoh(X) belongs to GFlat(X). As the quiver in [11, Notation 3.12]
one takes the quiver with vertices all open affine subsets of X, and the class L in
[11, Corollary 3.15] is in this case

L = {L ∈ Qcoh(X) | L (U) ∈ SU for every open affine subset U ⊆ X} .
Moreover since (GFlat(U),GFlat(U)⊥) is hereditary, the class GFlat(U) is resolving
for every open affine subset U ⊆ X. It follows that GFlat(X) is also resolving,
whence (GFlat(X),GFlat(X)⊥) is hereditary as GFlat(X) contains a generator; see
Saoŕın and Š ’tov́ıček [25, Lemma 4.25]. �

Let X be a semi-separated noetherian scheme. By Flat(X) we denote the cate-
gory of flat sheaves on X. The proof of the next result is modeled on an argument
due to Estrada, Iacob, and Pérez [12, Proposition 4.1].

Lemma 2.3. Assume that X is semi-separated noetherian. In Qcoh(X) one has

GFlat(X) ∩ GFlat(X)⊥ = Flat(X) ∩ Flat(X)⊥ .

Proof. “⊆”: Let M ∈ GFlat(X) ∩ GFlat(X)⊥. The inclusion Flat(X) ⊆ GFlat(X)
yields GFlat(X)⊥ ⊆ Flat(X)⊥, so it remains to show that M is flat. Since M is in
GFlat(X) there is an exact sequence in Qcoh(X),

0 −→M −→ F −→ N −→ 0 ,

with F a flat sheaf and N a Gorenstein flat sheaf on X. Since M belongs to
GFlat(X)⊥ the sequence splits, whence M is flat.

“⊇”: Let M ∈ Flat(X) ∩ Flat(X)⊥. As the inclusion Flat(X) ⊆ GFlat(X) holds,
it remains to show that M is in GFlat(X)⊥. Since (GFlat(X),GFlat(X)⊥) is a
complete cotorsion pair in Qcoh(X), see Theorem 2.2, there is an exact sequence
in Qcoh(X),

(6) 0 −→M −→ G −→ N −→ 0 ,

with G ∈ GFlat(X)⊥ and N ∈ GFlat(X). Moreover, since GFlat(X) is closed under
extensions by Theorem 2.2, also G belongs to GFlat(X). Thus the sheaf G is in
GFlat(X)∩GFlat(X)⊥, so by the containment already proved G is flat. Since M is
also flat, it follows that

flat dimOX(U) N (U) ≤ 1

holds for every open affine subset U ⊆ X. Thus N (U) is a Gorenstein flat OX(U)-
module of finite flat dimension and, therefore, flat; see [9, Corollary 10.3.4]. It
follows that N is a flat sheaf. Since M ∈ Flat(X)⊥ by assumption, the sequence
(6) splits. Therefore, M is a direct summand of G and thus in GFlat(X)⊥. �

We call sheaves in the subcategory Cot(X) = Flat(X)⊥ of Qcoh(X) cotorsion.
Sheaves in the intersection Flat(X) ∩ Cot(X) are called flat-cotorsion.

Remark 2.4. Assume that X is semi-separated quasi-compact. In this case the
category Flat(X) contains a generator for Qcoh(X), so it follows from work of
Enochs and Estrada [8, Corollary 4.2] that (Flat(X),Cot(X)) is a complete cotorsion
pair, and since Flat(X) is resolving it follows from [25, Lemma 4.25] that the pair
(Flat(X),Cot(X)) is hereditary. This fact can also be deduced from work of Gillespie
[14, Proposition 6.4] and Hovey [21, Corollary 6.6].
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The next theorem establishes what we call the Gorenstein flat model structure
on Qcoh(X); it may be regarded as a non-affine version of [17, Theorem 3.3].

Theorem 2.5. Assume that X is semi-separated noetherian. There exists a unique
abelian model structure on Qcoh(X) with GFlat(X) the class of cofibrant objects and
Cot(X) the class of fibrant objects. In this structure Flat(X) is the class of trivially
cofibrant objects and GFlat(X)⊥ is the class of trivially fibrant objects.

Proof. It follows from Theorem 2.2 and Remark 2.4, that (GFlat(X),GFlat(X)⊥)
and (Flat(X),Cot(X)) are complete hereditary cotorsion pairs. Every flat sheaf is
Gorenstein flat, and by Lemma 2.3 the two pairs have the same core, so they satisfy
the conditions in [16, Theorem 1.2]. Thus the pairs determine a Hovey triple, and
by [21, Theorem 2.2] a unique abelian model category structure on Qcoh(X) with
fibrant and cofibrant objects as asserted. �

Corollary 2.6. Assume that the scheme X is semi-separated noetherian. The
category Cot(X)∩GFlat(X) is Frobenius and the projective–injective objects are the
flat-cotorsion sheaves. Its associated stable category is equivalent to the homotopy
category of the Gorenstein flat model structure.

Proof. Applied to the Gorenstein flat model structure from the theorem, [15, Propo-
sition 5.2(4)] shows that Cot(X)∩GFlat(X) is a Frobenius category with the stated
projective–injective objects. The last assertion follows from [15, Corollary 5.4]. �

3. Acyclic complexes of cotorsion sheaves

We assume throughout this section that X is semi-separated quasi-compact. The
category of cochain complexes of sheaves on X is denoted C(Qcoh(X)). The goal
is to establish a result, Theorem 3.3 below, which in the affine case is proved by
Bazzoni, Cortés Izurdiaga, and Estrada [1, Theorem 1.3]. It says, in part, that every
acyclic complex of cotorsion sheaves has cotorsion cycles. Our proof is inspired by
arguments of Hosseini [20] and Š ’tov́ıček [27].

Let CZ
ac(Flat(X)) denote the full subcategory of C(Qcoh(X)) whose objects are

the acyclic complexes F of flat sheaves with Zn(F ) ∈ Flat(X) for every n ∈ Z;
similarly, let CZ

ac(Cot(X)) denote the full subcategory whose objects are the acyclic
complexes C of cotorsion sheaves with Zn(C ) ∈ Cot(X) for every n ∈ Z. Further,
Csemi(Cot(X)) denotes the category of complexes C of cotorsion sheaves with the
property that the total Hom complex Hom(F ,C ) of abelian groups is acyclic for
every complex F ∈ CZ

ac(Flat(X)). In the literature such complexes are referred to
as dg- or semi-cotorsion complexes; it is part of Theorem 3.3 that every complex of
cotorsion sheaves on X has this property.

Remark 3.1. The pair (CZ
ac(Flat(X)),Csemi(Cot(X))) is by [14, Theorem 6.7] and

[21, Theorem 2.2] a complete cotorsion pair in C(Qcoh(X)).

For complexes A and B of sheaves on X, let Hom(A ,B) denote the standard
total Hom complex of abelian groups. There is an isomorphism

(7) Ext1
C(Qcoh(X)),dw(A ,Σn−1B) ∼= Hn Hom(A ,B) ,

where Ext1
C(Qcoh(X)),dw(A ,Σn−1B) is the subgroup of Ext1

C(Qcoh(X))(A ,Σn−1B)

consisting of degreewise split short exact sequences; see e.g. [13, Lemma 2.1]. For
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a complex F of flat sheaves and a complex C of cotorsion sheaves, every extension
0→ C →X → F → 0 is degreewise split, so (7) reads

(8) Ext1
C(Qcoh(X))(F ,Σn−1C ) ∼= Hn Hom(F ,C ) .

Lemma 3.2. Let (Fλ)λ∈Λ be a direct system of complexes in CZ
ac(Flat(X)). If each

complex Fλ is contractible, then

Ext1
C(Qcoh(X))(lim−→

λ∈Λ

Fλ,C ) ∼= H1 Hom(lim−→
λ∈Λ

Fλ,C ) = 0

holds for every complex C of cotorsion sheaves on X.

Proof. The category Qcoh(X) is locally finitely presentable and, therefore, finitely
accessible; see Remark 2.1. It follows that the results, and arguments, in [27] apply.
The argument in the proof of [27, Proposition 5.3] yields an exact sequence,

(9) 0 −→ K −→
⊕
λ∈Λ

Fλ −→ lim−→
λ∈Λ

Fλ −→ 0 ,

where K is filtered by finite direct sums of complexes Fλ. That is, there is an
ordinal number β and a filtration (Kα | α < β), where K0 = 0, Kβ = K , and
Kα+1/Kα

∼=
⊕

λ∈Jα Fλ for α < β and Jα a finite set.

Let C be a complex of cotorsion sheaves on X. As CZ
ac(Flat(X)) is closed under

direct limits, one has lim−→Fλ ∈ CZ
ac(Flat(X)). Thus, Ext1

Qcoh(X)((lim−→Fλ)i,C j) = 0
holds for all i, j ∈ Z, whence there is an exact sequence of complexes of abelian
groups:

(10) 0 −→ Hom(lim−→
λ∈Λ

Fλ,C ) −→ Hom(
⊕
λ∈Λ

Fλ,C ) −→ Hom(K ,C ) −→ 0 .

By (8) it now suffices to show that the left-hand complex in this sequence is acyclic.
The middle complex is acyclic because each complex Fλ and, therefore, the direct
sum

⊕
Fλ is contractible. Thus it is enough to prove that Hom(K ,C ) is acyclic.

Since Flat(X) is resolving, it follows from (9) that K is a complex of flat sheaves.
As C is a complex of cotorsion sheaves, (8) yields

Hn Hom(K ,C ) ∼= Ext1
C(Qcoh(X))(K ,Σn−1C ) .

Hence, it suffices to show that Ext1
C(Qcoh(X))(K ,Σn−1C ) = 0 holds for all n ∈ Z.

Let (Kα | α ≤ λ) be the filtration of K described above. For every n ∈ Z one has

Ext1
C(Qcoh(X))(

⊕
λ∈Jα

Fλ,Σ
n−1C ) = 0 ,

so Eklof’s lemma [27, Proposition 2.10] yields Ext1
C(Qcoh(X))(K ,Σn−1C ) = 0. �

Theorem 3.3. Assume that X is semi-separated quasi-compact. Every complex
of cotorsion sheaves on X belongs to Csemi(Cot(X)), and every acyclic complex of
cotorsion sheaves belongs to CZ

ac(Cot(X)).

Proof. As (CZ
ac(Flat(X)),Csemi(Cot(X))) is a cotorsion pair, see Remark 3.1, the

first assertion is that for every complex M of cotorsion sheaves and every F in
CZ

ac(Flat(X)) one has Ext1
C(Qcoh(X))(F ,M ) = 0. Fix F ∈ CZ

ac(Flat(X)) and a

semi-separating open affine covering U = {U0, . . . , Ud} of X. Consider the double
complex of sheaves obtained by taking the Čech resolutions of each term in F ;
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see Murfet [22, Section 3.1]. The rows of the double complex form a sequence in
C(Qcoh(X)):

(11) 0 −→ F −→ C 0(U ,F ) −→ C 1(U ,F ) −→ · · · −→ C d(U ,F ) −→ 0

with

C p(U ,F ) =
⊕

j0<···<jp

i∗( ˜F (Uj0,...,jp)) ,

where j0, . . . , jp belong to the set {0, . . . , d} and i : Uj0,...,jp −→ X is the inclusion
of the open affine subset Uj0,...,jp = Uj0 ∩ . . . ∩ Ujp of X. For a tuple of indices
j0 < · · · < jp, the complex F (Uj0,...,jp) is an acyclic complex of flat OX(Uj0,...,jp)-
modules whose cycle modules are also flat. It follows that the complex F (Uj0,...,jp)
is a direct limit

F (Uj0,...,jp) = lim−→
λ∈Λ

P
Uj0,...,jp
λ

of contractible complexes of projective, hence flat, OX(Uj0,...,jp)-modules; see for
example Neeman [24, Theorem 8.6]. The functor i∗ preserves split exact sequences,

so i∗(
˜

P
Uj0,...,jp
λ ) is for every λ ∈ Λ a contractible complex of flat sheaves. The

functor also preserves direct limits, so C p(U ,F ) is a finite direct sum of direct
limits of contractible complexes in CZ

ac(Flat(X)), hence C p(U ,F ) is itself a direct
limit of contractible complexes in CZ

ac(Flat(X)). For every complex M of cotorsion
sheaves and every n ∈ Z, Lemma 3.2 now yields

Hn Hom(C p(U ,F ),M ) ∼= H1 Hom(C p(U ,F ),Σn−1M ) = 0 for 0 ≤ p ≤ d .

That is, the complex Hom(C p(U ,F ),M ) is acyclic for every 0 ≤ p ≤ d and every
complex M of cotorsion sheaves. Applying Hom(−,M ) to the exact sequence

0 −→ Ld−1 −→ C d−1(U ,F ) −→ C d(U ,F ) −→ 0 ,

one gets an exact sequence of complexes of abelian groups

0 −→ Hom(C d(U ,F ),M ) −→ Hom(C d−1(U ,F ),M ) −→ Hom(Ld−1,M ) −→ 0 .

The first two terms are acyclic, and hence so is Hom(Ld−1,M ). Repeating this
argument d− 1 more times, one concludes that Hom(F ,M ) is acyclic, whence one
has Ext1

C(Qcoh(X))(F ,M ) = 0 per (8).

The second assertion now follows from [14, Corollary 3.9] which applies as
(Flat(X),Cot(X)) is a complete hereditary cotorsion pair and Flat(X) contains a
generator for Qcoh(X); see Remark 2.1. �

4. The stable category of Gorenstein flat-cotorsion sheaves

In this last section, we give a description of the stable category associated to the
cotorsion pair of Gorenstein flat sheaves described in Theorem 2.2. In particular,
we prove Theorems A and B from the introduction.

Here we use the symbol hom to denote the morphism sets in Qcoh(X) as well
as the induced functor to abelian groups. Further, the tensor product on Qcoh(X)
has a right adjoint functor denoted H omqc; see for example [23, 2.1].

We recall from [5, Definition 1.1, Proposition 1.3, and Definition 2.1]:
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Definition 4.1. An acyclic complex F of flat-cotorsion sheaves on X is called
totally acyclic if the complexes hom(C ,F ) and hom(F ,C ) are acyclic for every
flat-cotorsion sheaf C on X.

A sheaf M on X is called Gorenstein flat-cotorsion if there exists a totally acyclic
complex F of flat-cotorsion sheaves on X with M = Z0(F ). Denote by GFC(X)
the category of Gorenstein flat-cotorsion sheaves on X.1

We proceed to show that the sheaves defined in 4.1 are precisely the cotorsion
Gorenstein flat sheaves, i.e. the sheaves that are both cotorsion and Gorenstein flat.

The next result is analogous to [5, Theorem 4.4].

Proposition 4.2. Assume that X is semi-separated noetherian. An acyclic com-
plex of flat-cotorsion sheaves on X is totally acyclic if and only if it is F-totally
acyclic.

Proof. Let F be a totally acyclic complex of flat-cotorsion sheaves. Let I be an
injective sheaf and E an injective cogenerator in Qcoh(X). By [23, Lemma 3.2],
the sheaf H omqc(I ,E ) is flat-cotorsion. The adjunction isomorphism

hom(I ⊗F ,E ) ∼= hom(F ,H omqc(I ,E ))(12)

along with faithful injectivity of E implies that I ⊗ F is acyclic, hence F is
F-totally acyclic.

For the converse, let F be an F-totally acyclic complex of flat-cotorsion sheaves
and C be a flat-cotorsion sheaf. Recall from [23, Proposition 3.3] that C is a direct
summand of H omqc(I ,E ) for some injective sheaf I and injective cogenerator E .
Thus (12) shows that hom(F ,C ) is acyclic. Moreover, it follows from Theorem 3.3
that Zn(F ) is cotorsion for every n ∈ Z, so hom(C ,F ) is acyclic. �

Theorem 4.3. Assume that X is semi-separated noetherian. A sheaf on X is
Gorenstein flat-cotorsion if and only if it is cotorsion and Gorenstein flat; that is,

GFC(X) = Cot(X) ∩ GFlat(X) .

Proof. The containment “⊆” is immediate by Theorem 3.3 and Proposition 4.2.
For the reverse containment, let M be a cotorsion Gorenstein flat sheaf on X.
There exists an F-totally acyclic complex F of flat sheaves with M = Z0(F ). As
(CZ

ac(Flat(X)),Csemi(Cot(X))) is a complete cotorsion pair, see Remark 3.1, there
is an exact sequence in C(Qcoh(X))

0 −→ F −→ T −→P −→ 0

with T ∈ Csemi(Cot(X)) and P ∈ CZ
ac(Flat(X)). As F and P are F-totally acyclic

so is T ; in particular, Zn(T ) is cotorsion for every n ∈ Z; see Theorem 3.3. The
argument in [5, Theorem 5.2] now applies verbatim to finish the proof. �

Remark 4.4. One upshot of Theorem 4.3 is that the Frobenius category described
in Corollary 2.6 coincides with the one associated to GFC(X) per [5, Theorem 2.11].
In particular, the associated stable categories are equal. One of these is equivalent
to the homotopy category of the Gorenstein flat model structure and the other is
by [5, Corollary 3.9] and Proposition 4.2 equivalent to the homotopy category

KF-tac(Flat(X) ∩ Cot(X))

of F-totally acyclic complexes of flat-cotorsion sheaves on X.

1In [5] this category is denoted GorFlatCot(A) in the case of an affine scheme X = SpecA.
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In [23, 2.5] the pure derived category of flat sheaves on X is the Verdier quotient

D(Flat(X)) =
K(Flat(X))

Kpac(Flat(X))
,

where Kpac(Flat(X)) is the full subcategory of K(Flat(X)) of pure acyclic complexes;
that is, the objects in Kpac(Flat(X)) are precisely the objects in CZ

ac(Flat(X)). Still
following [23] we denote by DF-tac(Flat(X)) the full subcategory of D(Flat(X))
whose objects are F-totally acyclic. As the category Kpac(Flat(X)) is contained
in KF-tac(Flat(X)), it can be expressed as the Verdier quotient

DF-tac(Flat(X)) =
KF-tac(Flat(X))

Kpac(Flat(X))
.

Theorem 4.5. Assume that X is semi-separated noetherian. The composite of
canonical functors

KF-tac(Flat(X) ∩ Cot(X)) −→ KF-tac(Flat(X)) −→ DF-tac(Flat(X))

is a triangulated equivalence of categories.

Proof. In view of Theorem 3.3 and the fact that (CZ
ac(Flat(X)),Csemi(Cot(X))) is

a complete cotorsion pair, see Remark 3.1, the proof of [5, Theorem 5.6] applies
mutatis mutandis. �

We denote by StGFC(X) the stable category of Gorenstein flat-cotorsion sheaves;
cf. Remark 4.4. Let A be a commutative noetherian ring of finite Krull dimension.
For the affine scheme X = SpecA this category is by [5, Corollary 5.9] equivalent to
the stable category StGPrj(A) of Gorenstein projective A-modules. This, together
with the next result, suggests that StGFC(X) is a natural non-affine analogue of
StGPrj(A). Indeed, the category DF-tac(Flat(X)) is Murfet and Salarian’s non-
affine analogue of the homotopy category of totally acyclic complexes of projective
modules; see [23, Lemma 4.22].

Corollary 4.6. There is a triangulated equivalence of categories

StGFC(X) ' DF-tac(Flat(X)) .

Proof. Combine the equivalence StGFC(X) ' KF-tac(Flat(X) ∩ Cot(X)) from Re-
mark 4.4 with Theorem 4.5. �

We emphasize that Proposition 4.2 and Theorem 4.5 offer another equivalent of
the category StGFC(X), namely the homotopy category of totally acyclic complexes
of flat-cotorsion sheaves.

A noetherian scheme X is called Gorenstein if the local ring OX,x is Gorenstein
for every x ∈ X. We close this paper with a characterization of Gorenstein schemes
in terms of flat-cotorsion sheaves, it sharpens [23, Theorem 4.27]. In a paper in
progress [3] we show that Gorensteinness of a scheme X can be characterized by the
equivalence of the category StGFC(X) to a naturally defined singularity category.

Theorem 4.7. Assume that X is semi-separated noetherian. The following condi-
tions are equivalent.

(i) X is Gorenstein.
(ii) Every acyclic complex of flat sheaves on X is F-totally acyclic.

(iii) Every acyclic complex of flat-cotorsion sheaves on X is F-totally acyclic.
(iv) Every acyclic complex of flat-cotorsion sheaves on X is totally acyclic.
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Proof. The equivalence of conditions (i) and (ii) is [23, Theorem 4.27], and con-
ditions (iii) and (iv) are equivalent by Proposition 4.2. As (ii) evidently implies
(iii), it suffices to argue the converse.

Assume that every acyclic complex of flat-cotorsion sheaves is F-totally acyclic.
Let F be an acyclic complex of flat sheaves. As (CZ

ac(Flat(X)),Csemi(Cot(X))) is a
complete cotorsion pair, see Remark 3.1, there is an exact sequence in C(Qcoh(X)),

0 −→ F −→ C −→P −→ 0 ,

with C ∈ Csemi(Cot(X)) and P ∈ CZ
ac(Flat(X)). Since F and P are acyclic,

the complex C is also acyclic. Moreover, C is a complex of flat-cotorsion sheaves.
By assumption C is F-totally acyclic, and so is P, whence it follows that F is
F-totally acyclic. �
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