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Abstract. We construct a non-affine analogue of the singularity category of a
Gorenstein local ring. With this Buchweitz’s classic equivalence of three trian-

gulated categories over a Gorenstein local ring has been generalized to schemes,

a project started by Murfet and Salarian more than ten years ago. Our con-
struction originates in a framework we develop for singularity categories of

exact categories. As an application of this framework in the non-commutative

setting, we characterize rings of finite finitistic dimension.

Introduction

The singularity category of a commutative noetherian ring A is the Verdier quo-
tient of the finite bounded derived category of A by the subcategory of perfect
A-complexes. A motivation for this paper comes from work of Buchweitz [7]: In
contemporary terminology, he proved that the singularity category of a Gorenstein
local ring A is equivalent to the stable category of finitely generated Gorenstein
projective A-modules and to the homotopy category of totally acyclic complexes of
finitely generated projective A-modules; in symbols

(⋄) Dsg(A) ≃ StGorprj(A) ≃ Ktac(prj(A)) .

A perfect non-affine analogue may be beyond reach: Work of Orlov [32] shows that
even under the assumption that a scheme has enough locally free sheaves—a prereq-
uisite for talking about Gorenstein projective coherent sheaves—these sheaves do
not form a Frobenius category; i.e. they do not provide an analogue of StGorprj(A).

Murfet and Salarian [30] initiated the quest for non-affine analogues of the cat-
egories in (⋄). Noticing that the structure sheaf of a scheme is flat, but not neces-
sarily projective, their idea is to replace projective objects by flat objects. In this
process, though, one must give up finite generation. Fortunately, there are “big”
versions of all three categories in (⋄)—obtained by dropping the assumptions of
finite generation—and they are also equivalent. Indeed, the big singularity cate-
gory of a Gorenstein ring A is by work of Beligiannis [4, Thm. 6.9] equivalent to
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the stable category StGorPrj(A) of Gorenstein projective A-modules, and the latter
category is for every ring A equivalent to the homotopy category Ktac(Prj(A)) of
totally acyclic complexes of projective A-modules, see for example [14, Cor. 3.9].
Thus, these are equivalences one can aim to replicate in the non-affine setting.

As an analogue of the category Ktac(Prj(A)) for a semi-separated noetherian
scheme X, Murfet and Salarian identified the category

DF-tac(Flat(X)) :=
KF-tac(Flat(X))

Kpac(Flat(X))
,

i.e. the Verdier quotient of the homotopy category of F-totally acyclic complexes of
flat quasi-coherent sheaves on X by its subcategory of pure-acyclic complexes. In-
deed, for a commutative noetherian ring A of finite Krull dimension and the scheme
X = Spec(A), the categories Ktac(Prj(A)) and DF-tac(Flat(X)) are equivalent by [30,
Lem. 4.22]. An analogue for schemes of the stable category was identified in [13],
based on a change of focus from flat objects to flat-cotorsion objects: For a semi-
separated noetherian scheme X, the category DF-tac(Flat(X)) is equivalent to the
homotopy category Ktac(FlatCot(X)) of totally acyclic complexes of flat-cotorsion
sheaves on X, and that category is equivalent to the stable category StGorFlatCot(X)
of Gorenstein flat-cotorsion sheaves on X. The primary goal of this paper is to iden-
tify an analogue of the singularity category in the non-affine setting and to show
that it is equivalent to the categories Ktac(FlatCot(X)) and StGorFlatCot(X) for a
Gorenstein scheme X of finite Krull dimension.

We achieve this goal as an application of a more general theory that we develop
for singularity categories associated to a cotorsion pair. Before giving an outline of
this theory, we remark that in the case of flat-cotorsion sheaves onX, the singularity
category takes the form

Db(Cot(X))

⟨bounded complexes of flat-cotorsion sheaves⟩
.

We notice in Example 1.10 that this singularity category detects when a noetherian
semi-separated scheme of finite Krull dimension is regular. Further, for a Gorenstein
scheme of finite Krull dimension the category is compactly generated and closely
related to Orlov’s singularity category, see Remark 4.3.

Here is the outline: Let A be an abelian category. To an additive full subcategory
E of A that is closed under extensions and direct summands, we associate in Sec-
tion 1 two singularity categories relative to the projective and injective objects in E.
If E is part of a complete hereditary cotorsion pair, then there are natural functors
from categories of Gorenstein objects into these singularity categories. This allows
us in Section 2—inspired by works of Bergh, Jorgensen, and Oppermann [6] and
Iyengar and Krause [20]—to define associated defect categories. Given a complete
hereditary cotorsion pair (U,V) in A, we build on the theory from [14] to develop
Gorenstein dimensions for objects in U and V. Assuming that A is Grothendieck—
as is the case for the categories of modules over a ring and quasi-coherent sheaves
on a semi-separated noetherian scheme—these dimensions extend through work of
Gillespie to invariants on the derived category of A; that’s the topic of Section 3. In
Section 4 we arrive at equivalences of categories akin to those in (⋄)—but now for a
Gorenstein scheme. In Section 5 we characterize rings of finite finitistic dimension
in terms of the singularity and defect categories developed in the first sections.

∗ ∗ ∗
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Throughout the paper, A denotes an abelian category; hom-sets of objects in A are
denoted homA, and that notation is also used for the induced functor from Aop×A
to abelian groups. By a subcategory of A we mean a full subcategory that is closed
under isomorphisms. Let S be a subcategory of A. The category of chain complexes
of objects from S, or S-complexes, is denoted C(S) and K(S) is the associated
homotopy category; the latter is triangulated if S is additive. A complex X in C(S)
is said to be bounded below if Xn = 0 holds for n ≪ 0, bounded above if Xn = 0
holds for n ≫ 0, and bounded if Xn = 0 holds for |n| ≫ 0. The full subcategories
of bounded below, bounded above, and bounded complexes are denoted C+(S),
C−(S), and Cb(S), respectively. The essential images of these subcategories in the
homotopy category K(S) are triangulated subcategories denoted K+(S), K−(S), and
Kb(S), respectively.

Given a complex X ∈ C(A) with differential ∂X we write Bn(X) and Zn(X)
for the subobjects of boundaries and cycles in Xn. The cokernel of ∂X

n+1 is the
quotient object Cn(X) := Xn/Bn(X), and the homology of X in degree n is the
subquotient object Hn(X) := Zn(X)/Bn(X). Given a second A-complex Y , we
write HomA(X,Y ) for the total hom-complex in C(A).

1. Singularity categories of exact categories

Let E ⊆ A be an additive subcategory closed under extensions and direct summands;
it is an idempotent complete exact category with the exact structure induced from
A, see Bühler [8, Rmk. 6.2 and Lem. 10.20]. The setup developed in this first
section could be done in the generality of idempotent complete exact categories.
We don’t need that for the applications we pursue in this paper, but we structure
the arguments in such a way as to make the generalizations straightforward for the
initiated reader.

Given a subcategory S ⊆ E, a complex X in K(S) is called E-acyclic if

(1.0.1) 0 −→ Zn(X) −→ Xn −→ Zn−1(X) −→ 0

is an exact sequence in E for every n ∈ Z. The full subcategory of such complexes is
denoted KE-ac(S); it is isomorphism closed, see Keller [23, 4.1], and is indeed trian-
gulated, see Neeman [31, Lem. 1.1]. The symbol KE-ac(S) is used with subscripts +,
−, and b to indicate boundedness: KE-ac,b(S) := KE-ac(S)∩Kb(S) etc. An A-acyclic
complex is simply referred to as acyclic, and the corresponding category is denoted
Kac(S). A morphism in K(S) is called an E-quasi-isomorphism if its mapping cone
is E-acyclic and simply a quasi-isomorphism if its mapping cone is acyclic.

The derived category of E is defined to be the Verdier quotient

D(E) := K(E)/KE-ac(E) ;

see [31] and Keller [24]. In the case where E = A is the module category of a ring,
this construction yields the usual derived category. The bounded versions D+(E),
D−(E), and Db(E) are defined analogously: D+(E) := K+(E)/KE-ac,+(E) etc.

A complex X in K(S) is called eventually E-acyclic if the sequences (1.0.1) are
exact in E for all |n| ≫ 0. The full subcategory of such complexes is denoted
K(E-ac)(S); this notation is also used with subscripts to indicate boundedness.

Recall that for an A-complex X and an integer n, the hard truncation below of
X at n is the complex X⩾n := · · · → Xn+1 → Xn → 0, and the soft truncation
below of X at n is the complex X⊇n := · · · → Xn+1 → Zn(X) → 0. Hard and
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soft truncations above are defined similarly: X⩽n := 0 → Xn → Xn−1 → · · · and
X⊆n := 0→ Cn(X)→ Xn−1 → · · · .

1.1 Proposition. Let E be an additive subcategory of A that is closed under ex-
tensions and direct summands; let S be an additive subcategory of E.

(a) The category K(E-ac),+(S) is a triangulated subcategory of K+(S).

(b) The category K(E-ac),−(S) is a triangulated subcategory of K−(S).

Proof. We prove (a); the proof of (b) is similar. That K(E-ac),+(S) is additive and
closed under shifts is evident; it remains to show that it is closed under isomorphisms
and cones.

Let α : X → Y be an isomorphism in K+(S) with X ∈ K(E-ac),+(S). The complex
Cone(α) is contractible and hence E-acyclic as E is closed under direct summands.
For every n ∈ Z the short exact sequence

(1) 0 −→ Yn −→ Cone(α)n −→ (ΣX)n −→ 0

yields a commutative diagram

(2)

Cone(α)n
//

��

Xn−1

��

// 0

Zn−1(Cone(α)) // Zn−2(X) .

For all n≫ 0 the vertical morphisms in (2) are epimorphisms, hence so is the lower
horizontal morphism. Thus the vertical morphisms in the commutative diagram

0 // Zn(Cone(α)) //

��

Cone(α)n
//

��

Zn−1(Cone(α)) //

��

0

0 // Zn−1(X) // Xn−1
// Zn−2(X) // 0

are epimorphisms. As the cycle functor is left exact, (1) and the Snake Lemma
yield the exact sequence

0 −→ Zn(Y ) −→ Yn −→ Zn−1(Y ) −→ 0 .

In (2) the upper horizontal and right-hand vertical morphisms are epimorphisms
with kernels in E, namely Yn and Zn−1(X). As E is an exact category closed under
direct summands, [8, Prop. 7.6] shows that the lower horizontal morphism in (2)
is an epimorphism with kernel in E. By left exactness of the cycle functor, it now
follows from (1) that Zn−1(Y ) is in E; thus Y belongs to K(E-ac),+(S).

Finally, if α : X → Y is a morphism in K(E-ac),+(S), then for n≫ 0 the complexes
X⊇n and Y⊇n are E-acyclic and α induces a map α′ between them. In high degrees,
the cones of α and α′ agree, and the cone of α′ is E-acyclic; see [8, Lem. 10.3]. □

We denote by Prj(E) and Inj(E) the subcategories of projective and injective
objects in E.

1.2 Proposition. Let E be an additive subcategory of A that is closed under ex-
tensions and direct summands.
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(a) If E has enough projectives, then there are triangulated equivalences of tri-
angulated categories

K+(Prj(E)) ≃ D+(E) and K(E-ac),+(Prj(E)) ≃ Db(E) .

(b) If E has enough injectives, then there are triangulated equivalences of trian-
gulated categories

K−(Inj(E)) ≃ D−(E) and K(E-ac),−(Inj(E)) ≃ Db(E) .

Proof. We prove part (a); the proof of part (b) is dual. For every complex X in
K+(E) there is a distinguished triangle in K+(E),

p(X) −→ X −→ a(X) −→ Σp(X) ,

with p(X) in K+(Prj(E)) and a(X) an E-acyclic complex; moreover the inclusion of
E-acyclic complexes into K+(E) has a left adjoint. For a proof (of the dual result)
see [23, Lem. 4.1]. It is now standard, see Krause [26, Prop. 4.9.1 and the proof
of Prop. 4.13.1], that the functor G : K+(Prj(E)) → K+(E) → D+(E) yields the
equivalence K+(Prj(E)) ≃ D+(E); see also [24, Exa. 12.2].

By Proposition 1.1 the triangulated subcategory K(E-ac),+(Prj(E)) is equivalent to
its essential image under G in D+(E). For X in Kb(E) the complex p(X) belongs to
K(E-ac),+(Prj(E)), and a complex in K(E-ac),+(Prj(E)) is E-quasi-isomorphic in K+(E)
to a complex in Kb(E). As Db(E) is equivalent to the subcategory of D(E) generated
by Kb(E), see [24, Lem. 11.7], the restriction of G to K(E-ac),+(Prj(E)) induces the
second equivalence. □

As Kb(Prj(E)) evidently is a thick subcategory of K+(Prj(E)), it follows that
for a category E as in Proposition 1.2 with enough projectives, the subcategory
Kb(Prj(E)) is equivalent to a thick subcategory of Db(E). Similarly, if E has enough
injectives, then Kb(Inj(E)) is equivalent to a thick subcategory of Db(E).

1.3 Definition. Let E be an additive subcategory of A that is closed under exten-
sions and direct summands.

(a) Assume that E has enough projectives. The Verdier quotient

Dsg
Prj(E) := Db(E)/Kb(Prj(E))

is called the projective singularity category of E or Prj(E)-singularity category.

(b) Assume that E has enough injectives. The Verdier quotient

Dsg
Inj(E) := Db(E)/Kb(Inj(E))

is called the injective singularity category of E or Inj(E)-singularity category.

With an eye towards module categories, the next result justifies the term “singu-
larity category.” Resolutions of objects in exact categories are defined in the usual
way, see [8, Sec. 12].

1.4 Theorem. Let E be an additive subcategory of A that is closed under exten-
sions and direct summands.

(a) Assume that E has enough projectives. The category Dsg
Prj(E) vanishes if and

only if every object in E has a bounded resolution by objects from Prj(E).

(b) Assume that E has enough injectives. The category Dsg
Inj(E) vanishes if and

only if every object in E has a bounded coresolution by objects from Inj(E).
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Proof. We prove (a); the proof of (b) is dual. The category Dsg
Prj(E) is per Proposi-

tion 1.2 equivalent to K(E-ac),+(Prj(E))/Kb(Prj(E)). The “only if” statement is clear.
For the “if” statement let P be a complex in K(E-ac),+(Prj(E)). For n ≫ 0 the ob-
jects Zn(P ) belong to E, and the sequences 0 → Zn+1(P ) → Pn+1 → Zn(P ) → 0
are exact. From the Comparison Theorem for projective resolutions [8, Thm. 12.4]
it follows that P is isomorphic to a complex in Kb(Prj(E)). □

Given a ring A we write Mod(A) for the abelian category of A-modules.

1.5 Example. Let A be a ring. The category Dsg
Prj(Mod(A)) vanishes if and only

if every A-module has finite projective dimension; that is, if and only if A has
finite global dimension. In particular, for a commutative noetherian local ring A
the category Dsg

Prj(Mod(A)) provides a measure of how singular—i.e. how far from
being regular—A is. It thus serves the same purpose as the classic singularity
category Dsg(A) recalled in the introduction.

1.6 Remark. A variety of relative singularity categories are considered in the lit-
erature. They are in certain aspects more general and/or more restrictive than our
notions. Closest to ours is, perhaps, the category considered by Chen [11]: In the
case E = A his category DPrj(A)(A) agrees with Dsg

Prj(A).

Let (U,V) be a cotorsion pair in A; the next result shows that the setup developed
above applies to U and V, and in the balance of the paper, we work in that setting.
A cotorsion pair (U,V) is called complete if for each object M ∈ A there are exact
sequences 0 → V → U → M → 0 and 0 → M → V ′ → U ′ → 0 with U,U ′ ∈ U
and V, V ′ ∈ V. Such sequences are known as special U-precovers and special V-
envelopes, respectively. A cotorsion pair is called hereditary if ExtiA(U, V ) = 0
holds for all objects U ∈ U and V ∈ V and all i > 0.

1.7 Proposition. Let (U,V) be a complete cotorsion pair in A.

(a) The category V has enough projectives, and one has Prj(V) = U ∩ V.

(b) The category U has enough injectives, and one has Inj(U) = U ∩ V.

Proof. We prove (a); the proof of (b) is dual. LetM ∈ V; since (U,V) is a complete
cotorsion pair in A, there is an exact sequence

0 −→ V −→ U −→M −→ 0

with V ∈ V and U ∈ U. As V is closed under extensions, the object U is in U∩V. It
is evident that objects in U∩V are projective in V, and given any projective object
M in V the exact sequence above shows that it is a quotient object, and hence a
direct summand, of an object in U ∩ V. Thus one has Prj(V) = U ∩ V. □

1.8 Remark. Let (U,V) be a complete cotorsion pair. It follows in view of Theo-
rem 1.4 that the projective singularity category of V vanishes if and only if every
object in A has a bounded resolution by objects from U. Indeed, every object in
A has a resolution by objects from U in which the first syzygy belongs to V, and
Dsg

Prj(V) vanishes if and only if this object has a bounded resolution by objects from

U ∩ V. Similarly, vanishing of the category Dsg
Inj(U) means that every object in A

has a bounded coresolution by objects from V.
As U contains Prj(A) the singularity category Dsg

Prj(U) is defined if A has enough
projectives, but we are not aware of any interpretation of it in this generality.
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For the absolute cotorsion pair (Prj(A),A) in a category with enough projectives,
the singularity category Dsg

Prj(Prj(A)), of course, vanishes. The category Dsg
Inj(V) is

defined if A has enough injectives and in general it appears equally intractable.

1.9 Example. Let A be a ring and consider the cotorsion pair (Flat(A),Cot(A)),
which is complete.

The singularity category Dsg
Prj(Cot(A)) vanishes if and only if every A-module

has finite flat dimension; that is, if and only if A has finite weak global dimension.
The singularity category Dsg

Inj(Flat(A)) vanishes if and only if every A-module

has finite cotorsion dimension; by a result of Mao and Ding [28, Thm. 19.2.5] this
is equivalent to A being n-perfect—every flat module has projective dimension at
most n—for some n.

If A has finite global dimension, then both Dsg
Prj(Cot(A)) and Dsg

Inj(Flat(A)) van-

ish, and the converse holds by [28, Thm. 19.2.14].

1.10 Example. Let X be a semi-separated noetherian scheme of finite Krull di-
mension. The flat sheaves and cotorsion sheaves on X form a complete cotorsion
pair (Flat(X),Cot(X)) in the category of quasi-coherent sheaves on X; see [13,
Rmk. 2.4]. Now the singularity category Dsg

Prj(Cot(X)) vanishes if and only if every
sheaf has finite flat dimension. This is equivalent to OX,x being a regular local ring
for every x ∈ X; that is Dsg

Prj(Cot(X)) vanishes if and only if X is a regular scheme.

2. Gorenstein defect categories

In this section, (U,V) is a complete cotorsion pair in A. The additive categories U
and V are closed under extensions and direct summands, and by Proposition 1.7
the category V has enough projectives, and U has enough injectives. Thus the
singularity categories Dsg

Prj(V) and Dsg
Inj(U) are defined in this context. In the case

of a complete hereditary cotorsion pair we give a more concrete interpretation of
these singularity categories in terms of the notions of U- and V-Gorenstein objects.

We recall from [14] that an acyclic complex T of objects from U is called right
U-totally acyclic if and only if the cycle objects Zn(T ) belong to V and the complex
homA(T,W ) is acyclic for every W ∈ U∩V. As V is extension closed, the objects in
a U-totally acyclic complex in fact belong to U∩V; the symbol KR

U-tac(U∩V) denotes
the homotopy category of such complexes. An object is called right U-Gorenstein
if it equals Z0(T ) for some right U-totally acyclic complex T . The subcategory
of right U-Gorenstein objects in A is denoted RGorU(A); it is by [14, Thm. 2.11]
a Frobenius category, and the associated stable category is denoted StRGorU(A).
Dually one defines left V-totally acyclic complexes, left V-Gorenstein objects, and
associated categories KL

V-tac(U ∩ V), LGorV(A), and StLGorV(A).
It is straightforward to verify that the functors described in the next theorem

are those induced by the embeddings of V and U into Db(V) and Db(U).

2.1 Theorem. Let (U,V) be a complete cotorsion pair in A. There are fully faithful
triangulated functors

FPrj : StRGorU(A) −→ Dsg
Prj(V) and FInj : StLGorV(A) −→ Dsg

Inj(U) ,

where FPrj sends a right U-Gorenstein object to the hard truncation below at 0 of
a defining U-totally acyclic complex, and FInj is defined similarly.
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Proof. We prove the assertion regarding FPrj; the one for FInj is proved similarly.
The functor RGorU(A) → KR

U-tac(U ∩ V) that maps a right U-Gorenstein object
to a defining right U-totally acyclic complex induces a triangulated equivalence
StRGorU(A)→ KR

U-tac(U ∩ V); this was shown in [14, Thm. 3.8]. The arguments in
the proof of [6, Thm. 3.1] show that hard truncation below at 0 yields a fully faithful
triangulated functor KR

U-tac(U∩V)→ K(U-ac),+(U∩V)/Kb(U∩V). Propositions 1.2
and 1.7 now yield the desired fully faithful triangulated functor FPrj. □

Theorem 2.1 facilitates the following definition; see also [6].

2.2 Definition. Let (U,V) be a complete cotorsion pair in A. The Verdier quotient
of the projective singularity category by the essential image of FPrj,

Ddef
Prj(V) := Dsg

Prj(V)/ im(FPrj) ,

is called the projective Gorenstein defect category of V or Prj(V)-Gorenstein de-
fect category. Similarly, the injective Gorenstein defect category of U or Inj(U)-
Gorenstein defect category is the Verdier quotient

Ddef
Inj (U) := Dsg

Inj(U)/ im(FInj) .

It was shown in [14, Lem. 2.10] that the categories RGorU(A) and LGorV(A) are
closed under extensions. In the context of a complete hereditary cotorsion pair, we
now show that they are closed under direct summands; our proof relies of work of
Chen, Liu, and Yang [10, 35]. In the next two proofs we use the notation G(U)
from [35, Def. 3.1] to denote cycle subobjects of acyclic complexes of objects from
U that are homA(−,U ∩ V)-exact.

2.3 Lemma. Let (U,V) be a complete hereditary cotorsion pair in A. The cate-
gories RGorU(A) and LGorV(A) are closed under direct summands.

Proof. It follows from [14, Def. 1.1] and [35, Lem. 3.2] that the class RGorU(A) is
the intersection of V and the class G(U) defined in [35, Def. 3.1]. (We notice that
[35, 3.1–3.3] do not depend on the blanket assumption that the underlying abelian
category is bicomplete.) It now follows from [10, Prop. 3.3] that RGorU(A) is closed
under direct summands. That LGorV(A) is closed under direct summands is proved
similarly. □

2.4 Lemma. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) Let 0→ V ′ → V → V ′′ → 0 be an exact sequence in V.

(1) If V ′′ is in RGorU(A), then V ′ is in RGorU(A) if and only if V is in
RGorU(A).

(2) If V ′ and V are in RGorU(A), then V ′′ ∈ RGorU(A) if and only if
Ext1A(V

′′,W ) = 0 holds for all W ∈ U ∩ V.

(b) Let 0→ U ′ → U → U ′′ → 0 be an exact sequence in U.

(1) If U ′ is in LGorV(A), then U ′′ is in LGorV(A) if and only if U is in
LGorV(A).

(2) If U and U ′′ are in LGorV(A), then U ′ is in LGorV(A) if and only if
Ext1A(W,U ′) = 0 holds for all W ∈ U ∩ V.
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Proof. As noticed in the proof of Lemma 2.3, the class RGorU(A) is the intersection
of V and the class G(U) defined in [35, Def. 3.1]. The assertions in part (a) now
follow from [35, Prop. 3.3]; the proof of part (b) is similar. □

The next definition foreshadows notions of Gorenstein dimensions relative to a
cotorsion pair.

2.5 Definition. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) A complex V in Db(V) is called RGorU(A)-perfect if V is isomorphic in Db(V)
to a complex X with Xn ∈ RGorU(A) for all n ∈ Z and Xn = 0 for |n| ≫ 0.

(b) A complex U in Db(U) is called LGorV(A)-perfect if U is isomorphic in Db(U)
to a complex Y with Yn ∈ LGorV(A) for all n ∈ Z and Yn = 0 for |n| ≫ 0.

2.6 Theorem. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) For a complex V ∈ Db(V) the following conditions are equivalent:

(i) V is RGorU(A)-perfect.

(ii) For every complex X ∈ K(V-ac),+(U ∩ V) isomorphic to V in Db(V) one
has Zn(X) ∈ RGorU(A) for n≫ 0.

(iii) There exists a complex X ∈ K(V-ac),+(U ∩ V) isomorphic to V in Db(V)
with Zn(X) ∈ RGorU(A) for n≫ 0.

(iv) For every complex X ∈ K(V-ac),+(RGorU(A)) isomorphic to V in Db(V)
one has Zn(X) ∈ RGorU(A) for n≫ 0.

(b) For a complex U ∈ Db(U) the following conditions are equivalent:

(i) U is LGorV(A)-perfect.

(ii) For every complex Y ∈ K(U-ac),−(U ∩ V) isomorphic to U in Db(U) one
has Zn(Y ) ∈ LGorV(A) for n≪ 0.

(iii) There exists a complex Y ∈ K(U-ac),−(U ∩ V) isomorphic to U in Db(U)
with Zn(Y ) ∈ LGorV(A) for n≪ 0.

(iv) For every complex Y ∈ K(U-ac),−(LGorV(A)) isomorphic to U in Db(U)
one has Zn(Y ) ∈ LGorV(A) for n≪ 0.

Proof. We prove (a); the proof of (b) is dual.
(i)=⇒(ii): Let X be a complex in K(V-ac),+(U ∩ V) with V ∼= X in Db(V).

As X is isomorphic in K(U ∩ V) to a bounded below complex, and as U ∩ V is
closed under direct summands, the complex X is isomorphic in K(U ∩ V) to a
soft truncation below, so we may assume that Xn = 0 holds for n ≪ 0. By
assumption, there is a complex X ′ isomorphic to V in Db(V) with X ′

n ∈ RGorU(A)
for all n ∈ Z and X ′

n = 0 for |n| ≫ 0. As X ∼= X ′ in Db(V), there exists a
V-quasi-isomorphism α : X → X ′; indeed, this follows from the dual statement to
Bühler’s [9, Lem. 3.3.3], cf. Proposition 1.7. In particular, Cone(α) is a V-acyclic
complex. The category RGorU(A) is additive, so Cone(α) is a complex of right
U-Gorenstein objects and Cone(α)n = 0 holds for n ≪ 0. It now follows from
Lemma 2.4(a,1) that Zn(Cone(α)) is right U-Gorenstein for all n ∈ Z. For n ≫ 0
one has Zn(Cone(α)) ∼= Zn(X) and thus Zn(X) belongs to RGorU(A).

(ii)=⇒(iii): Trivial in view of Proposition 1.2.
(iii)=⇒(iv): Let X be a complex in K(V-ac),+(RGorU(A)) with V ∼= X in Db(V).

By assumption, there exists a complex X ′ in K(V-ac),+(U ∩ V) such that X ∼=
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X ′ in Db(V) and Zn(X
′) ∈ RGorU(A) for n ≫ 0. By Lemma 2.3 the category

RGorU(A) is closed under direct summands, and so is U ∩ V. It follows that X
and X ′ are isomorphic to soft truncations below, so without loss of generality we
assume that Xn = 0 = X ′

n holds for n ≪ 0. As above there exists a V-quasi-
isomorphism α : X ′ → X. Thus Cone(α) is a bounded below V-acyclic complex of
right U-Gorenstein objects, so Zn(Cone(α)) is right U-Gorenstein for every n ∈ Z
by Lemma 2.4(a,1). For n≫ 0 the exact sequence 0→ X → Cone(α)→ ΣX ′ → 0
now yields an exact sequence 0 → Zn(X) → Zn(Cone(α)) → Zn−1(X

′) → 0, and
another application of Lemma 2.4(a,1) yields Zn(X) ∈ RGorU(A).

(iv)=⇒(i): In view of Proposition 1.2 there exists a complexX in K(V-ac),+(U∩V)
with V ∼= X in Db(V), and as above we can without loss of generality assume that
Xn = 0 holds for n≪ 0. By (iv) the cycle object Zn(X) is right U-Gorenstein for
some n ≫ 0, so the complex 0 → Zn(X) → Xn → · · · is a bounded complex that
is isomorphic to V in Db(V) and whose objects belong to RGorU(A). □

2.7 Definition. Let (U,V) be a complete hereditary cotorsion pair in A. We con-
sider the following subcategories of Db(V) and Db(U):

PerfRGorU(A)(V) := {V ∈ Db(V) | V is RGorU(A)-perfect} and

PerfLGorV(A)(U) := {U ∈ Db(U) | U is LGorV(A)-perfect} .

2.8 Proposition. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) The category PerfRGorU(A)(V) is thick in Db(V), and it is the smallest triangu-
lated subcategory of Db(V) that contains the objects from RGorU(A).

(b) The category PerfLGorV(A)(U) is thick in Db(U), and it is the smallest triangu-
lated subcategory of Db(U) that contains the objects from LGorV(A).

Proof. We prove part (a); the proof of (b) is similar. Evidently PerfRGorU(A)(V) is
additive and closed under shifts and isomorphisms.

Let V ′ → V → V ′′ → ΣV ′ be a triangle in Db(V) with V ′, V ∈ PerfRGorU(A)(V).

By Proposition 1.2, there is a triangle X ′ α−−→ X −→ Cone(α) −→ ΣX ′ in
K(V-ac),+(U ∩ V) and an isomorphism in Db(V) of triangles:

V ′ //

∼=
��

V //

∼=
��

V ′′ //

∼=
��

ΣV ′

∼=
��

X ′ // X // Cone(α) // ΣX ′ .

Since the category PerfRGorU(A)(V) is closed under isomorphisms and V ′ and V
belong to PerfRGorU(A)(V), so do X and X ′. Consequently, there is an exact sequence

0 −→ X −→ Cone(α) −→ ΣX ′ −→ 0

of complexes in C(V). The sequence 0→ Zn(X)→ Zn(Cone(α))→ Zn(ΣX ′)→ 0 is
exact for all n≫ 0, and Zn(X) and Zn(ΣX ′) belong to RGorU(A) by Theorem 2.6.
It now follows from [14, Lem. 2.10] that Zn(Cone(α)) belongs to RGorU(A) for
n≫ 0. Thus Cone(α) belongs to PerfRGorU(A)(V), again by Theorem 2.6. It follows
that PerfRGorU(A)(V) is a triangulated subcategory of Db(V).

The triangulated subcategory PerfRGorU(A)(V) holds the objects from RGorU(A).
Let ⟨RGorU(A)⟩ be the smallest triangulated subcategory of Db(V) that contains
the objects from RGorU(A), one then has ⟨RGorU(A)⟩ ⊆ PerfRGorU(A)(V). Let V be
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an object in PerfRGorU(A)(V). There exists a bounded complex X with V ∼= X in
Db(V) such that each Xn is in RGorU(A). Without loss of generality we may assume
that one has X0 ̸= 0 and Xn = 0 for n < 0. Set s = sup{n | Xn ̸= 0}; we proceed
by induction on s. If s = 0, clearly X ∈ ⟨RGorU(A)⟩. For s > 0, there is a triangle
in Db(V)

X⩽s−1 −→ X −→ ΣsXs −→ ΣX⩽s−1 .

By the induction hypothesis, both X⩽s−1 and ΣsXs belong to the triangulated
category ⟨RGorU(A)⟩, and hence so does X.

It remains to show that PerfRGorU(A)(V) is closed under direct summands. Let
V, V ′ ∈ Db(V) and assume that V ⊕ V ′ is RGorU(A)-perfect. There are V-quasi-
isomorphisms X → V and X ′ → V ′ in K(V) with X,X ′ ∈ K(V-ac),+(U ∩ V), this
follows from the dual to [23, Lem. 4.1]. It follows thatX⊕X ′ → V ⊕V ′ is a V-quasi-
isomorphism in K(V). As V ⊕V ′ is RGorU(A)-perfect and X⊕X ′ ∈ K(V-ac),+(U∩V),
Theorem 2.6 implies that Zn(X)⊕ Zn(X

′) ∼= Zn(X ⊕X ′) belongs to RGorU(A) for
n ≫ 0. Thus Zn(X) and Zn(X

′) belong to RGorU(A) for n ≫ 0 by Lemma 2.3.
Again from Theorem 2.6 it follows that V and V ′ belong to PerfRGorU(A)(V). □

Given [14, Thm. 2.11], Theorem 2.6, and Proposition 2.8 one could obtain the
first equivalence in part (a) below from a result of Iyama and Yang [19, Cor. 2.2],
which elaborates on an example by Keller and Vossieck [25].

2.9 Theorem. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) There are triangulated equivalences

StRGorU(A) ≃
PerfRGorU(A)(V)

Kb(U ∩ V)
and Ddef

Prj(V) ≃
Db(V)

PerfRGorU(A)(V)
.

(b) There are triangulated equivalences

StLGorV(A) ≃
PerfLGorV(A)(U)

Kb(U ∩ V)
and Ddef

Inj (U) ≃
Db(U)

PerfLGorV(A)(U)
.

Proof. We prove part (a); the equivalences in part (b) have similar proofs. By
Proposition 2.8 it suffices to show that the quotient PerfRGorU(A)(V)/Kb(U ∩ V) is
the essential image of the functor FPrj : StRGorU(A) → Db(V)/Kb(U ∩ V). Let
V ∈ PerfRGorU(A)(V), by Proposition 1.2 there is an isomorphism V ∼= X in Db(V)
for some X ∈ K(V-ac),+(U ∩ V). By Theorem 2.6 there exists an integer n such
that Zn(X) ∈ RGorU(A) and X⊇n is V-acyclic; indeed, the cycle objects are right

U-Gorenstein by Lemma 2.4(a,1). Let T̃ be a right U-totally acyclic complex with

Z0(T̃ ) = Zn(X). Splicing together ΣnT̃⩽0 and X⩾n+1 we obtain a right U-totally
acyclic complex T with T⩾n+1 = X⩾n+1. By definition one has FPrj(Z0(T )) = T⩾0,
and there are isomorphisms T⩾0

∼= T⩾n+1
∼= X in Dsg

Prj(V).
Since the projective objects in V are those in U ∩ V, see Proposition 1.7, the

equivalence Ddef
Prj(V) ≃ Db(V)/PerfRGorU(A)(V) follows from Definition 1.3(a) and

Definition 2.2. □

2.10 Corollary. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) The following conditions are equivalent:

(i) FPrj : StRGorU(A)→ Dsg
Prj(V) is a triangulated equivalence.

(ii) One has Ddef
Prj(V) = 0.
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(iii) Every object in Db(V) is RGorU(A)-perfect.

(iv) Every object in V is RGorU(A)-perfect.

(b) The following conditions are equivalent:

(i) FInj : StLGorV(A)→ Dsg
Inj(U) is a triangulated equivalence.

(ii) One has Ddef
Inj (U) = 0.

(iii) Every object in Db(U) is LGorV(A)-perfect.

(iv) Every object in U is LGorV(A)-perfect.

Proof. We prove part (a); the proof of part (b) is similar. The equivalence of
the first three conditions follows immediately from Definition 2.2 and Theorem 2.9.
The equivalence of (iii) and (iv) follows from Proposition 2.8, as the smallest tri-
angulated subcategory of Db(V) that contains V is Db(V). □

2.11 Remark. Let (U,V) be a cotorsion pair in A. When one combines the pre-
vious corollary with the equivalence from [14, Thm. 3.8], it transpires that if every
object in V is RGorU(A)-perfect, then there are triangulated equivalences

Dsg
Prj(V) ≃ StRGorU(A) ≃ KR

U-tac(U ∩ V) .

Similarly, if every object in U is LGorV(A)-perfect, then there are triangulated equiv-
alences

Dsg
Inj(U) ≃ StLGorV(A) ≃ KL

V-tac(U ∩ V) .

In [14] right and left totally acyclic complexes and right and left Gorenstein
objects are defined for any subcategory of A. Given a cotorsion pair (U,V) in A,
the subcategory U ∩ V is self-orthogonal, and for such a category the right/left
distinctions disappear, see [14, Def. 1.6 and 2.1], and one speaks of U ∩ V-totally
acyclic complexes and U∩V-Gorenstein objects. The homotopy category of U∩V-
totally acyclic complexes is denoted Ktac(U∩V) and the category of U∩V-Gorenstein
objects is denoted GorU∩V(A).

2.12 Proposition. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) The following conditions are equivalent:

(i) GorU∩V(A) ⊆ V.

(ii) GorU∩V(A) = RGorU(A).

Moreover, when these conditions hold one has LGorV(A) = U ∩ V.

(b) The following conditions are equivalent:

(i) GorU∩V(A) ⊆ U.

(ii) GorU∩V(A) = LGorV(A).

Moreover, when these conditions hold one has RGorU(A) = U ∩ V.

Proof. We prove (a); the proof of (b) is similar.
(ii)=⇒(i): The containment RGorU(A) ⊆ V holds by definition.
(i)=⇒(ii): The containment GorU∩V(A) ⊇ RGorU(A) holds by [14, Rem. 1.8]. If

one has GorU∩V(A) ⊆ V, then every U∩V-totally acyclic complex is right U-totally
acyclic, and hence (ii) follows.

To see that the moreover statement holds under these conditions, recall from
[14, Def. 1.1 and Exa. 1.2] that there are containments U ∩ V ⊆ LGorV(A) ⊆ U.
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Further, LGorV(A) ⊆ GorU∩V(A) holds by [14, Rem. 1.8], so in view of (i) one now
has LGorV(A) ⊆ V and hence LGorV(A) = U ∩ V. □

2.13 Remark. Let (U,V) be a cotorsion pair in A. For the self-orthogonal class
U ∩ V, the equivalences in Remark 2.11 simplify as follows:

If every object in V is RGorU(A)-perfect and GorU∩V(A) ⊆ V, then there are
triangulated equivalences

Dsg
Prj(V) ≃ StGorU∩V(A) ≃ Ktac(U ∩ V) .

Similarly, if every object in U is LGorV(A)-perfect and GorU∩V(A) ⊆ U, then there
are triangulated equivalences

Dsg
Inj(U) ≃ StGorU∩V(A) ≃ Ktac(U ∩ V) .

2.14 Example. Let A be a ring and consider the cotorsion pair (Prj(A),Mod(A)).
A Prj(A)-Gorenstein module is a Gorenstein projective module in the classic sense,
see [14, Exa. 2.5]. If every A-module has finite Gorenstein projective dimension,
then the categories in the first display in Remark 2.13 are “big” versions of the
equivalent categories (⋄) from the introduction.

3. Gorenstein dimensions for everyone

Assume that A is Grothendieck and (U,V) is a complete hereditary cotorsion pair
in A. Under this extra, but not too restrictive, assumption on A one can extend
the notions of RGorU(A)- and LGorV(A)-perfection to the derived category of A: To
every complexM of objects from A we assign two numbers, the RGorU(A)-projective
dimension and the LGorV(A)-injective dimension, and for objects in Db(V) and
Db(U) these dimensions are finite if and only if the objects are RGorU(A)- and
LGorV(A)-perfect, respectively.

The category C(A) of chain complexes is also Grothendieck, and it follows from
work of Gillespie [17, Prop. 3.6] and Š ’tov́ıček [33, Prop. 7.14] that (U,V) induces
two complete hereditary cotorsion pairs in C(A):

(3.0.1) (semi-U,V-ac) and (U-ac, semi-V) .

The complexes in V-ac are acyclic complexes of objects in V with cycle objects in
V, i.e. the V-acyclic complexes in K(V). The semi-U complexes, i.e. the objects
in semi-U, are complexes U of objects in U with the property that HomA(U, V ) is
acyclic for every V-acyclic complex V . The classes U-ac and semi-V are defined
similarly. We call a complex in semi-U ∩ semi-V a semi-U-V complex.

Completeness of the cotorsion pairs in (3.0.1) yields:

3.1 Fact. For every A-complex M there are exact sequences of A-complexes,

0 −→ V ′ −→ U
π−−→M −→ 0 and 0 −→M

ι−→ V −→ U ′ −→ 0 ,

where U is semi-U, V is semi-V, V ′ is V-acyclic, U ′ is U-acyclic, and the homomor-
phisms π and ι are quasi-isomorphisms. See [17, Prop. 3.6] and [33, Prop. 7.14].

3.2 Example. A complex U of objects in U with Cn(U) ∈ U for n≪ 0 is a semi-U
complex and a complex V of objects in V with Zn(V ) ∈ V for n ≫ 0 is a semi-V
complex. This follows from [15, Props. A.1 and A.3]1.

1The proofs of [15, Props. A.1 and A.3] apply to complexes of objects in any abelian category.
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In particular, a bounded below complex of objects in U is a semi-U complex and
a bounded above complex of objects in V is a semi-V complex; cf. [17, Lem. 3.4].

3.3 Definition. Let M be an A-complex. A semi-U-V replacement of M is a semi-
U-V complex that is isomorphic to M in the derived category D(A).

Some technical results about the cotorsion pairs (3.0.1) and semi-U-V complexes
have been relegated to an appendix. The first step towards defining the RGorU(A)-
projective and LGorV(A)-injective dimensions is to notice that every A-complex has
a semi-U-V replacement.

3.4 Remark. Per Lemma A.4(a) every semi-V complex V has a semi-U-V replace-

ment, as there is even a surjective quasi-isomorphism W
≃−−→ V with W semi-U-V.

Similarly, by Lemma A.4(b), every semi-U complex U has a semi-U-V replacement

as there is even an injective quasi-isomorphism U
≃−−→W ′ withW ′ semi-U-V. These

combine to show that every A-complex M has a semi-U-V replacement:
Let M be an A-complex. By Fact 3.1 there is a semi-V complex V and a quasi-

isomorphism M
≃−−→ V , and Lemma A.4(a) yields a semi-U-V complex W and a

quasi-isomorphism W
≃−−→ V . Thus W is a semi-U-V replacement of M .

One could also start with a quasi-isomorphism U
≃−−→ M as in Lemma A.4(a)

and get a quasi-isomorphism U
≃−−→W ′ from Lemma A.4(b).

The classic notion of Gorenstein projective dimension of modules and complexes
over a ring A is a special case of the RGorU(A)-projective dimension defined below:
Apply the definition with A = Mod(A) and (U,V) = (Prj(A),Mod(A)); see also [14,
Exa. 1.7] and [12, Rmk. 4.8].

3.5 Definition. Let (U,V) be a complete hereditary cotorsion pair in A and M an
A-complex.

(a) The RGorU(A)-projective dimension of M is given by

RGorU(A) -pdM =

inf

{
n ∈ Z

∣∣∣∣ There is a semi-U-V replacement W of M with

Hi(W ) = 0 for all i > n and Cn(W ) in RGorU(A)

}
with inf ∅ =∞ by convention.

(b) The LGorV(A)-injective dimension of M is given by

LGorV(A) -idM =

inf

{
n ∈ Z

∣∣∣∣ There is a semi-U-V replacement W of M with

Hi(W ) = 0 for all i < −n and Z−n(W ) in LGorV(A)

}
with inf ∅ =∞ by convention.

Note that RGorU(A) -pdM = −∞ = LGorV(A) -idM holds if M is acyclic. We
continue with a caveat that compares to [12, Rmk. 5.9]: An object of RGorU(A)-
projective dimension 0 need not belong to RGorU(A); similarly for LGorV(A).

3.6 Remark. For every non-zero object U ∈ U one has RGorU(A) -pdU = 0. In-
deed, the inequality “⩾” holds as H0(U) ̸= 0 and the opposite inequality holds as
one can construct a semi-U-V replacement of U concentrated in non-positive de-
grees: Completeness of (U,V) yields a coresolution of U by objects in U ∩ V that
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is concentrated in non-positive degrees and whose cycle objects are in U; it is a
semi-U-V complex by Example 3.2.

Similarly, LGorV(A) -idV = 0 holds for every non-zero object V ∈ V.

3.7 Lemma. Let (U,V) be a complete hereditary cotorsion pair in A and M an
A-complex with a semi-U-V replacement W .

(a) For every integer n with RGorU(A) -pdM ⩽ n one has Cn(W ) ∈ RGorU(A).

(b) For every integer n with LGorV(A) -idM ⩽ n one has Z−n(W ) ∈ LGorV(A).

Proof. We prove part (a); the proof of part (b) is similar. One can assume that
RGorU(A) -pdM = g holds for some integer g. By assumption there exists a semi-U-
V replacement W ′ of M with Cg(W

′) in RGorU(A) and Hn(W
′) = 0 for n > g. By

induction it follows from Lemma 2.4(a) that Cn(W
′) belongs to RGorU(A) for every

n ⩾ g. Let W be any semi-U-V replacement of M . It follows from Proposition A.7
and Lemma 2.3 that Cn(W ) belongs to RGorU(A) for every n ⩾ g. □

3.8 Theorem. Let (U,V) be a complete hereditary cotorsion pair in A.

(a) An object V ∈ Db(V) is RGorU(A)-perfect if and only if it has finite RGorU(A)-
projective dimension.

(b) An object U ∈ Db(U) is LGorV(A)-perfect if and only if it has finite LGorV(A)-
injective dimension.

Proof. We prove part (a); the proof of part (b) is similar. Without loss of
generality, let V be a bounded complex of objects in V. There exists by Theo-
rem A.8(a) a bounded below semi-U-V replacement W of V . The assertion now
follows from Theorem 2.6 and Lemma 3.7 as one has Zn(W ) ∼= Cn+1(W ) for
n > sup{i ∈ Z | Hi(V ) ̸= 0}. □

3.9 Remark. Let (U,V) be a complete hereditary cotorsion pair in A. Standard
arguments, see [12, Thm. 4.5], based on Lemma 2.4(a,2) and 2.4(b,2) show that the
RGorU(A)-projective and LGorV(A)-injective dimensions of an A-complex M when
finite can be detected in terms of vanishing of cohomology:

RGorU(A) -pdM = sup{m ∈ Z | ExtmA (M,W ) ̸= 0 for some W ∈ U ∩ V} and

LGorV(A) -idM = sup{m ∈ Z | ExtmA (W,M) ̸= 0 for some W ∈ U ∩ V} .

4. Gorenstein rings and schemes

Our main interest here is schemes, but we warm up with rings.
Let A be a ring. The cotorsion pair (Flat(A),Cot(A)) in the Grothendieck cat-

egory Mod(A) is complete and hereditary and hence gives rise to the RGorFlat(A)-
projective dimension. By [14, Prop. 4.2] this cotorsion pair satisfies the conditions
in Proposition 2.12(a), and the RGorFlat(A)-projective dimension was studied in [12]
under the name “Gorenstein flat-cotorsion dimension;” see also [12, Rmk. 4.8]. In
this section we keep with that terminology as it more descriptive, and we write
FlatCot(A) for the intersection Flat(A) ∩ Cot(A).

If every A-module has finite Gorenstein flat-cotorsion dimension, then, as noted
in Remark 2.13, there are triangulated equivalences

Dsg
Prj(Cot(A)) ≃ StGorFlatCot(A) ≃ Ktac(FlatCot(A)) .
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We proceed to identify a class of rings over which these equivalences are realized.
Recall that a commutative noetherian ring is called Iwanaga–Gorenstein if it

has finite self-injective dimension. The next theorem collects characterizations of
such rings in terms of (Gorenstein) flat–cotorsion theory that closely mirror classic
characterizations in terms of (Gorenstein) projectivity. In particular, (ii) is the ana-
logue of Buchweitz’s equivalence between the stable category of finitely generated
Gorenstein projective modules and the singularity category [7, Thm. 4.4.1]. Condi-
tion (iii) is analogous to [6, Thm. 3.6] and compares to [20, Rmk. 5.6]. Conditions
(iv) and (v) compare to Auslander and Bridger’s [1, Thm. 4.20].

4.1 Theorem. Let A be commutative noetherian; the next conditions are equiva-
lent.

(i) A is Iwanaga–Gorenstein.

(ii) The functor FPrj : StGorFlatCot(A) −→ Dsg
Prj(Cot(A)) yields a triangulated equiv-

alence.

(iii) One has Ddef
Prj(Cot(A)) = 0.

(iv) Every cotorsion A-module has finite Gorenstein flat-cotorsion dimension.

(v) Every A-module has finite Gorenstein flat-cotorsion dimension.

(vi) Every A-complex with bounded above homology has finite Gorenstein flat-
cotorsion dimension.

Proof. Conditions (ii), (iii), and (iv) are equivalent by Corollary 2.10 and Theo-
rem 3.8. Conditions (i), (v), and (vi) are equivalent by [12, Cor. 5.10]. Evidently
(v) implies (iv). For the converse let M be an A-module and consider an exact
sequence 0 → M → C → F → 0 where C is cotorsion and F is flat. By [12,
Cor. 5.8] an A-module has finite Gorenstein flat-cotorsion dimension if and only if
it has finite Gorenstein flat dimension. It now follows from Holm [18, Thm. 3.15]
that also M has finite Gorenstein flat-cotorsion dimension. □

Part of the allure of the category Dsg
Prj(Cot(A)) is that it does not rely on pro-

jective modules and thus persists in the non-affine setting. Let X denote a scheme
with structure sheaf OX . By a sheaf on X we mean a quasi-coherent sheaf, and
Qcoh(X) denotes the category of such sheaves. We say that X is semi-separated if
it has an open affine covering with the property that the intersection of any two
open affine sets is affine.

Let X be semi-separated noetherian. The flat sheaves and cotorsion sheaves on
X form a complete hereditary cotorsion pair (Flat(X),Cot(X)) in the Grothendieck
category Qcoh(X); see [13, Rmk. 2.4]. It follows from [13, Thm. 3.3] that this pair
satisfies the equivalent conditions in Proposition 2.12(a), so as above we refer to
the RGorFlat(X)-projective dimension as the Gorenstein flat-cotorsion dimension.

If every cotorsion sheaf on X has finite Gorenstein flat-cotorsion dimension then,
as noted in Remark 2.13, there are triangulated equivalences:

Dsg
Prj(Cot(X)) ≃ StGorFlatCot(X) ≃ Ktac(FlatCot(X)) .

We proceed to identify a class of schemes over which these equivalences are realized.
Recall that a semi-separated noetherian schemeX is Gorenstein provided thatOX,x

is a Gorenstein ring for every x ∈ X. If, in addition, the scheme has finite Krull
dimension, then this is equivalent to saying that OX(U) is a Gorenstein ring for
each open affine set U in some, equivalently every, open affine covering of X.
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4.2 Theorem. Let X be a semi-separated noetherian scheme of finite Krull di-
mension. The following conditions are equivalent.

(i) X is Gorenstein.

(ii) The functor

FPrj : StGorFlatCot(X) −→ Dsg
Prj(Cot(X))

yields a triangulated equivalence.

(iii) One has Ddef
Prj(Cot(X)) = 0.

(iv) Every cotorsion sheaf on X has finite Gorenstein flat-cotorsion dimension.

(v) Every sheaf on X has finite Gorenstein flat-cotorsion dimension.

(vi) Every complex of sheaves on X with bounded above homology has finite
Gorenstein flat-cotorsion dimension.

Proof. Conditions (ii), (iii), and (iv) are equivalent by Corollary 2.10 and The-
orem 3.8. Evidently, (vi) implies (v) implies (iv), so it suffices to show that (i)
implies (vi) and (iv) implies (i). Denote by d the Krull dimension of X.

(i)=⇒(vi): Let M be a complex of sheaves on X with bounded above homology
and assume without loss of generality that Hn(M ) = 0 holds for n > 0. Let F be
a semi-flat-cotorsion replacement of M . Notice that the truncated complex F⩾0

is a semi-flat-cotorsion replacement of the cokernel C = C0(F ); set G = Zd−1(F )
and consider the exact sequence

0 −→ G −→ Fd−1 −→ · · · −→ F0 −→ C −→ 0 .

The truncated complex F⩾d yields a left resolution of G by cotorsion sheaves;
splicing this with a coresolution by injective sheaves, one obtains G as a cycle in an
acyclic complex of cotorsion sheaves, whence G is cotorsion by [13, Thm. 3.3]. Per
[13, Thm. 4.3] it now suffices to show that G is Gorenstein flat in the sense of [13,
Def. 1.2]. Let U be an open affine covering of X. For every open set U ∈ U there
is an exact sequence of OX(U)-modules,

0 −→ G (U) −→ Fd−1(U) −→ · · · −→ F0(U) −→ C (U) −→ 0 ,

with Fn(U) a flat OX(U)-module for 0 ⩽ n ⩽ d − 1. As OX(U) is Gorenstein
of Krull dimension at most d, the module G (U) is Gorenstein flat; see e.g. [16,
Thm. 12.3.1]. From [13, Thm. 1.6] it follows that the sheaf G is Gorenstein flat.

(iv)=⇒(i): Let U be an open affine covering of X and fix an open set U ∈ U .
The goal is to prove that the ring OX(U) is Gorenstein. As it has finite Krull
dimension, it suffices to show that every OX(U)-module has finite Gorenstein flat

dimension; see e.g. [16, Thm. 12.3.1]. Let M be an OX(U)-module; denote by M̃

the corresponding sheaf on U and by (iU )∗(M̃) the sheaf on X induced by the
embedding iU : U → X. As (Flat(X),Cot(X)) is a complete hereditary cotorsion

pair in Qcoh(X), see [13, Rmk. 2.4], there is a flat resolution F of (iU )∗(M̃) over
X constructed by taking special flat precovers. In particular, for n ⩾ 1 the sheaf
Cn(F ) is cotorsion and Fn is flat-cotorsion. By assumption C1(F ) has finite
Gorenstein flat-cotorsion dimension, which means that Cn(F ) is Gorenstein flat-
cotorsion for some n ⩾ 1. In particular, Cn(F ) is by [13, Thm. 4.3] Gorenstein
flat. Thus one gets an exact sequence of OX(U)-modules,

0 −→ Cn(F )(U) −→ Fn−1(U) −→ · · · −→ F0(U) −→M −→ 0 ,
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which shows that M has finite Gorenstein flat dimension, cf. [13, Thm. 1.6]. □

4.3 Remark. Let X be a Gorenstein scheme of finite Krull dimension. It follows
from [13, Cor. 4.6], [30, Thm. 4.27], and Murfet’s [29, Thm. 7.9] that the stable
category StGorFlatCot(X) is compactly generated. Further, the opposite category
of Orlov’s singularity category [32, Def. 1.8] is equivalent, up to direct factors, to
the subcategory StGorFlatCot(X)c of compact objects. Thus, it follows from The-
orem 4.2 that the singularity category Dsg

Prj(Cot(X)) is compactly generated and
that the opposite of Orlov’s singularity category, up to direct factors, is equivalent
to Dsg

Prj(Cot(X))c.

Finally we justify that Dsg
Prj(Cot(X)) is a non-affine avatar of Dsg

Prj(A):

4.4 Theorem. Let A be a commutative Gorenstein ring of finite Krull dimension
and set X = Spec(A). There are equivalences of triangulated categories

Dsg
Prj(A) ≃ StGorPrj(A) ≃ Ktac(Prj(A))≃

Dsg
Prj(Cot(X)) ≃ StGorFlatCot(X) ≃ Ktac(FlatCot(X)) .

Proof. A commutative noetherian ring of finite Krull dimension is Gorenstein if
and only if it is Iwanaga–Gorenstein. The horizontal equivalences thus come from
the two theorems above combined with Remark 2.13. The vertical equivalence
follows from [14, Cor. 5.9]. □

5. Finitistic dimension

As discussed in Section 1, vanishing of singularity categories can capture finiteness
of global dimensions. In this section we show how vanishing of a defect category
captures finiteness of a finitistic dimension.

In this section A is a left noetherian ring. The little finitistic dimension of A,
findim(A), is the supremum of projective dimensions of finitely generatedA-modules
of finite projective dimension. It is conjectured that findim(A) <∞ holds for Artin
algebras A; see Bass [3] and [2, Conjectures]. Originally raised as a question by
Rosenberg and Zelinsky, this is now the Finitistic Dimension Conjecture.

5.1 Definition. Let (U,V) be a complete hereditary cotorsion pair in Mod(A). Let
M be an A-module. The U ∩ V-injective dimension of M is defined as

U ∩ V -idM = inf

{
n ∈ Z

∣∣∣∣ There is a semi-U-V replacement W

of M with W−i = 0 for i > n.

}
.

5.2 Lemma. Let (U,V) be a complete hereditary cotorsion pair in Mod(A) and M
an A-module. There is an inequality

LGorV(A) -idM ⩽ U ∩ V -idM

and equality holds if U ∩ V -idM <∞.

Proof. Assume U∩V -idM = n holds for some integer n, otherwise the statement
is trivial. Let W be a semi-U-V replacement of M with W−i = 0 for i > n. The
inequality holds as every module in U ∩ V is left V-Gorenstein; see [14, Exa. 2.2].
Let m ⩽ n be such that H−i(M) = 0 for i > m. If Z−m(W ) is left V-Gorenstein,
then Z−m(W ) ∈ U ∩ V. Indeed, it has a finite coresolution by modules in U ∩ V
which splits by Lemma 2.4(b). □
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5.3 Lemma. Let (U,V) be a complete hereditary cotorsion pair in Mod(A), M an
A-module in U, and n > 0 an integer. One has LGorV(A) -idM ⩽ n if and only if
there exists an exact sequence of A-modules

0 −→M −→ G −→ L −→ 0

with G ∈ LGorV(A), L ∈ U, and U ∩ V -idL ⩽ n− 1.

Proof. There is, by the completeness of (U,V), a coresolution of M consisting of
modules in U ∩ V, concentrated in non-positive degrees and with cycle modules in
U; it is a semi-U-V complex by Example 3.2. Using this, the “only if” statement is
proved the same way as [18, Thm. 2.10]. The “if” statement holds by a standard
application of the Horseshoe Lemma, see [16, Lem. 8.2.1 and Rmk. 8.2.2], and
Lemma 3.7; it also follows from the second equality in Remark 3.9. □

5.4 Proposition. Let (U,V) be a complete hereditary cotorsion pair in Mod(A).
For every module M in U ∩ ⊥LGorV(A) one has LGorV(A) -idM = U ∩ V -idM .

Proof. By Lemma 5.2, it suffices to show that U∩V -idM ⩽ LGorV(A) -idM holds.
Set LGorV(A) -idM = n. If n = 0, then there is an exact sequence of A-modules

0 −→ H −→W −→M −→ 0

with H ∈ LGorV(A) and W ∈ U ∩ V. Since M is in ⊥LGorV(A) the sequence splits,
whenceM ∈ U∩V. If n ⩾ 1, then Lemma 5.3 yields an exact sequence of A-modules,
0→M → G→ L→ 0, with G ∈ LGorV(A), L ∈ U, and U∩V -idL ⩽ n−1. There is
also an exact sequence 0→ G′ → W ′ → G→ 0 of A-modules with G′ ∈ LGorV(A)
and W ′ ∈ U ∩ V. There is a pullback diagram with exact rows and columns:

0

��

0

��

G′

��

G′

��

0 // T //

��

W ′ //

��

L // 0

0 // M //

��

G //

��

L // 0

0 0 .

As W ′ is in U∩V and U∩V -idL ⩽ n− 1 holds, exactness of the middle row yields
U ∩ V -idT ⩽ n. As the left-hand column splits, one has U ∩ V -idM ⩽ n. □

Let P<∞(A) denote the class of finitely generated A-modules of finite projective
dimension and (U,V) be the complete cotorsion pair in Mod(A) cogenerated by
P<∞; that is, V = (P<∞(A))⊥ and U = ⊥V. This cotorsion pair is also hereditary
by a result of Cortés Izurdiaga, Estrada, and Guil Asensio [21, Cor. 2.7].

5.5 Theorem. Set V = (P<∞(A))⊥ and U = ⊥V. The following conditions are
equivalent.

(i) One has findim(A) <∞.

(ii) Every module in U is LGorV(A)-perfect.
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Proof. (i)=⇒(ii): If one has findim(A) = n for an integer n, then [21, Thm. 3.4]
yields U∩V -idM ⩽ n for every module M ∈ U; in particular M is LGorV(A)-perfect
by Lemma 5.2 and Theorem 3.8.

(ii)=⇒(i): The coproduct A(A) is a projective A-module and hence belongs to
U, so by Theorem 3.8 there is an integer n such that LGorV(A) -idA(A) = n holds.
As A(A) also belongs to ⊥LGorV(A), one has U∩V -idA(A) ⩽ n by Proposition 5.4.
Now apply [21, Thm. 3.4] to conclude that findim(A) ⩽ n holds. □

5.6 Corollary. Set V = (P<∞(A))⊥ and U = ⊥V. The following conditions are
equivalent:

(i) One has findim(A) <∞.

(ii) The functor FInj : StLGorV(A)→ Dsg
Inj(U) yields a triangulated equivalence.

(iii) One has Ddef
Inj (U) = 0.

Proof. Combine Theorem 5.5 and Corollary 2.10. □

5.7 Remark. Another classic conjecture for Artin algebras is the Wakamatsu tilt-
ing conjecture, which says that any Wakamatsu tilting A-module of finite projective
dimension is a tilting A-module; see Beligiannis and Reiten [5, Chap. IV]. Mantese
and Reiten [27, Prop. 4.4] showed that the Wakamatsu tilting conjecture is a special
case of the Finitistic Dimension Conjecture. A Wakamatsu tilting module gives rise
to a cotorsion pair, see Wang, Li, and Hu [34, Thm. 1.3]. If the module has finite
projective dimension, then vanishing of an associated defect category betrays if it
is tilting. We omit the details which are similar to the arguments above.

Appendix: A Schanuel’s lemma for semi-U-V replacements

Assume throughout this appendix that A, as in Section 3, is Grothendieck and let
(U,V) be a complete hereditary cotorsion pair in A.

A.1 Lemma. Let 0→M ′ →M →M ′′ → 0 be an exact sequence in C(A).

(a) If M ′ is semi-V then M is semi-V if and only if M ′′ is semi-V.

(b) If M ′′ is semi-U then M is semi-U if and only if M ′ is semi-U.

Proof. We prove part (a); the proof of part (b) is similar. Assume that M ′ is semi-
V. It is in particular a complex of objects from V, so M is a complex of objects
from V if and only if M ′′ is so. Assuming that this is the case, let U be a U-acyclic
complex. As M ′ is a complex of objects from V, there is an exact sequence

0 −→ HomA(U,M
′) −→ HomA(U,M) −→ HomA(U,M

′′) −→ 0 .

By assumption the left-hand complex is acyclic, so the middle complex is acyclic if
and only if the right-hand complex is acyclic. □

A.2 Proposition. The following assertions hold:

(a) An A-complex is U-acyclic if and only if it is semi-U and acyclic.

(b) An A-complex is V-acyclic if and only if it is semi-V and acyclic.

Moreover, an acyclic semi-U-V complex is contractible.
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Proof. By [17, Lem. 3.10] a U-acyclic complex is semi-U, and a V-acyclic complex
is semi-V. The category A has enough injectives, see e.g. Kashiwara and Schapira
[22, Thm. 9.6.2], so it follows from [17, Thm. 3.12] that an acyclic semi-U complex is
U-acyclic. As (semi-U,V-ac) is complete, see [17, Prop. 3.6] and [33, Prop. 7.14], it
follows from [17, Lem. 3.14(1)] that an acyclic semi-V complex is V-acyclic. Finally,
an acyclic semi-U-V complex is contractible as it has cycle objects in U ∩ V. □

A.3 Corollary. The following assertions hold.

(a) A quasi-isomorphism of semi-U complexes is a U-quasi-isomorphism.

(b) A quasi-isomorphism of semi-V complexes is a V-quasi-isomorphism.

(c) A quasi-isomorphism of semi-U-V complexes is a homotopy equivalence.

Proof. The mapping cone of a quasi-isomorphism of semi-U complexes is acyclic
and by Lemma A.1 semi-U, so it is U-acyclic by Proposition A.2. This proves (a) and
the proof of (b) is similar. Finally, the mapping cone of a quasi-isomorphism of semi-
U-V complexes is an acyclic semi-U-V complex and hence per A.2 contractible. □

A.4 Lemma. Let M be an A-complex and consider the exact sequences from 3.1,

0 −→ V ′ −→ U
π−−→M −→ 0 and 0 −→M

ι−→ V −→ U ′ −→ 0 .

(a) If M is a complex of objects in V, then π is a V-quasi-isomorphism, and if M
is semi-V, then U is semi-U-V.

(b) If M is a complex of objects in U, then ι is a U-quasi-isomorphism, and if M
is semi-U, then V is semi-U-V.

Proof. We prove part (a); the proof of part (b) is similar. For every object U ′ in
U the induced sequence

0 −→ HomA(U
′, V ′) −→ HomA(U

′, U)
HomA(U

′,π)−−−−−−−−→ HomA(U
′,M) −→ 0

is exact and HomA(U
′, V ′) is acyclic. It follows that HomA(U

′, π) is a quasi-
isomorphism. If M is a complex of objects from V, then so is U , whence Cone(π)
is an acyclic complex of objects in V. As HomA(U

′,Cone(π)) is acyclic for every
U ′ ∈ U it follows that the cycles of the complex Cone(π) belong to V. Thus π
is a V-quasi-isomorphism. Finally, if M is semi-V, then by Proposition A.2 and
Lemma A.1 so is U . That is, U is semi-U-V. □

The lemma above provides a semi-U-V replacement of any A-complex; see Re-
mark 3.4. Our next goal is a Schanuel’s lemma for semi-U-V replacements. We
move towards it with the next result and prove it in Proposition A.7.

A.5 Proposition. Let U and U ′ be semi-U complexes and V and V ′ be a semi-V
complexes.

(a) Let β : U
≃−−→ U ′ be a U-quasi-isomorphism. For every morphism α : U → V

there is a morphism γ : U ′ → V with γβ ∼ α, and γ is unique up to homotopy.

(b) Let β : V ′ ≃−−→ V be a V-quasi-isomorphism. For every morphism α : U → V
there is a morphism γ : U → V ′ with βγ ∼ α, and γ is unique up to homotopy.

Proof. We prove part (a); the proof of part (b) is similar. The complex Cone(β) is
U-acyclic, so the morphism HomA(β, V ) is a quasi-isomorphism. From this point,
the proof of [12, Prop. 1.7] applies verbatim. □



22 L.W. CHRISTENSEN, N. DING, S. ESTRADA, J. HU, H. LI, AND P. THOMPSON

A.6 Lemma. Let W and W ′ be semi-U-V complexes. If there is an isomorphism
W ≃W ′ in D(A), then there is a homotopy equivalence W →W ′ in C(A).

Proof. By assumption there exists an A-complex X and a diagram in C(A):

W
≃←−− X

≃−−→W ′ .

By Fact 3.1 there is a semi-U complex U and a quasi-isomorphism U
≃−−→ X.

The composite U −→ W is by Corollary A.3(a) a U-quasi-isomorphism, so up
to homotopy the composite U → W ′ lifts to a quasi-isomorphism W −→ W ′;
see Proposition A.5. By Corollary A.3(c) this quasi-isomorphism is a homotopy
equivalence. □

A.7 Proposition. Let W and W ′ be semi-U-V complexes isomorphic in D(A). For
every n ∈ Z the following assertions hold.

(a) There exist objects U and U ′ in U∩V such that Cn(W )⊕U ∼= Cn(W
′)⊕U ′.

(b) There exist objects V and V ′ in U∩V such that Zn(W )⊕ V ∼= Zn(W
′)⊕ V ′.

Proof. We prove part (a); the proof of part (b) is similar. By Lemma A.6 there
is a homotopy equivalence α : W →W ′. It follows from Proposition A.2 that ev-
ery cycle object Zn(Cone(α)) belongs to U ∩ V. The soft truncated morphism
α⊆n : W⊆n →W ′

⊆n is also a homotopy equivalence, so Cone(α⊆n), i.e. the complex

0→ Cn(W )→ Cn(W
′)⊕Wn−1 →W ′

n−1 ⊕Wn−2

∂
Cone(α)
n−1−−−−−→W ′

n−2 ⊕Wn−3 → · · ·

is contractible. Hence one has Cn(W )⊕ Zn−1(Cone(α)) ∼= Cn(W
′)⊕Wn−1. □

The point of the next result, which is crucial to our proof of Theorem 3.8, is
that one can exert some control over the boundedness of semi-U-V-replacements of
bounded complexes.

A.8 Theorem. The following assertions hold.

(a) For every bounded below semi-V complex V there exists an exact sequence

0 −→ V ′ −→W
π−−→ V −→ 0

such that V ′ is V-acyclic, W is semi-U-V and bounded below, and π is a
V-quasi-isomorphism.

(b) For every bounded above semi-U complex U there exists an exact sequence

0 −→ U
ι−→W −→ U ′ −→ 0

such that U ′ is U-acyclic, W is semi-U-V and bounded above, and ι is a
U-quasi-isomorphism.

Proof. We prove part (a); the proof of part (b) is similar. There exists by
Lemma A.4(a) an exact sequence

0 −→ V ′ −→W
π−−→ V −→ 0

such that V ′ is V-acyclic, W is semi-U-V and π is a V-quasi-isomorphism. Since
V is bounded below, the complexes V ′ and W agree in low degrees. It suffices to
show that Zn(W ) belongs to U ∩ V for n ≪ 0, as one then can replace V ′ and W
with soft truncations V ′

⊇n and W⊇n, cf. Lemma A.1 and Example 3.2.
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For n≪ 0 one has Zn(W ) = Zn(V
′); this is an object in V so it remains to show

that it is in U. Completeness of (U,V) provides a resolution U of Zn(W ) that is
concentrated in non-negative degrees, consists of objects in U ∩ V, and has cycle
objects in V; it is thus a semi-U-V replacement per Example 3.2. The truncated
complex Σn(W⩽n) is another semi-U-V replacement of Zn(W ), cf. Lemma A.1 and
Example 3.2. Now Proposition A.7(b) yields objects X and X ′ in U ∩ V such that
Zn(W )⊕X ∼= U0 ⊕X ′ holds. As U0 ⊕X ′ is in U, so is Zn(W ). □
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