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Abstract. Tate homology—originally defined for modules over group algebras—

has a straightforward generalization to Iwanaga–Gorenstein rings, and a far-

reaching generalization to associative rings. We report on progress in under-
standing the latter.

Introduction

The theories of Tate homology and Tate cohomology go back to the early 1950s,
and they were originally introduced as (co)homology theories for (modules over)
group algebras. The underlying construction has since evolved through a series of
generalizations to yield a theory for Iwanaga–Gorenstein rings; that is, noetherian
rings with finite self-injective dimension on either side. This process was started
by T. Nakayama [13] already in 1957, and the most recent developments—due to
Avramov and Martsinkovsky [3], Veliche [14], and Iacob [12]—date from the 2000s.
Here is the central piece of technology:

Definition 1. A complex T of projective right R-modules is called totally acyclic
if one has H(T ) = 0 = H(HomR(T, P )) for every projective right R-module P . A

complete resolution of a right R-module M is a diagram T
$−−→ P

π−→M , where T is
a totally acyclic complex of projective right R-modules, π is a projective resolution,
and $i is an isomorphism for i� 0.

It is not evident, but every module over an Iwanaga–Gorenstein ring has a com-
plete resolution [9, 14] (and that characterizes these rings). The next definition thus
defines Tate (co)homology for every pair of modules over an Iwanaga–Gorenstein
ring.

Definition 2. Let M be a right R-module with a complete resolution T → P →
M . For a left R-module N , Tate homology T̂orR∗ (M,N) is the homology of the

complex T ⊗R N , and for a right R-module N , Tate cohomology Êxt∗R(M,N) is
the cohomology of the complex HomR(T,N).

It is not only possible to take Tate homology beyond group algebras, it is also
useful. Here is an example due to Christensen and Jorgensen [7]. (A commutative
local ring is Iwanaga–Gorenstein if and only if it is Gorenstein in the commutative
algebra sense.)

Theorem 3. Let R be a commutative Gorenstein local ring. For R-modules M

and N with T̂orR∗ (M,N) = 0 one has

depthR(M ⊗L
R N) = depthRM + depthRN − depthR .
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The symbol M ⊗L
R N denotes the derived tensor product of M and N . It can be

computed as P ⊗R N , where P → M is a projective resolution. The homology of
M ⊗L

R N is TorR∗ (M,N), and the theorem thus generalizes Auslander’s [1] depth
formula depthR(M ⊗R N) = depthRM + depthRN − depthR for modules with

TorR>0(M,N) = 0.

Stabilization of (co)homology

A view of Tate (co)homology as a stabilization of ordinary (co)homology emerged
in the 1980s and early 1990s in work of P. Vogel, published by Goichot [10] and in

work of Benson and Carlson [5]. The stable cohomology Ẽxt∗R(M,N) of a pair of
right R-modules is computed as follows: Let P → M and Q → N be projective
resolutions. The total Hom-complex HomR(P,Q) is the product totalization of the
double complex (HomR(Pi, Qj))i,j≥0. The direct sum totalization of the same dou-
ble complex yields a subcomplex of HomR(P,Q); the quotient complex is denoted

H̃omR(P,Q), and its cohomology is stable cohomology Ẽxt∗R(M,N).
It was proved by Cornick and Kropholler [8] that there is an isomorphism

Ẽxt∗R(M,−) ∼= Êxt∗R(M,−)

whenever Tate cohomology Êxt∗R(M,−) is defined, i.e. M has a complete resolu-
tion. This establishes stable cohomology as a wide-ranging generalization of Tate
cohomology, available over every associative ring. Moreover, a detailed study by
Avramov and Veliche [4] of stable cohomology over commutative local rings has
shown that the theory carries useful information beyond the setting of Gorenstein
rings.

Now, what about the homological side? A theory of stable homology, also due
to P. Vogel, is included in [10]. Here is the definition.

Definition 4. Let M be a right R-module and N be a left R-module. Let P →M
be a projective resolution and let N → I be an injective resolution. The tensor
product P ⊗R I is the direct sum totalization of the double complex (Pi ⊗R Ij)i,j≥0.
It is a subcomplex of the product totalization P ⊗R I of the same double complex,

and the homology of the quotient complex is stable homology T̃orR∗ (M,N).

While it is proved in [10] that stable homology, indeed, coincides with Tate
homology over group algebras, little has been known about the general stable ho-
mology theory. The purpose of the talk is to report on progress in this direction
that has been achieved in recent work of Celikbas, Christensen, Liang, and Piep-
meyer [6].

Stable homology

To simplify the statements, R is now assumed to be noetherian (on either side)
and all modules are tacitly assumed to be finitely generated. First of all, stable
homology agrees with Tate homology whenever the latter is defined.

Theorem 5. Let M be a right R-module with a complete resolution. For every

i ∈ Z the stable homology T̃orRi (M,−) is naturally isomorphic to Tate homology

T̂orRi (M,−).

One expects a homology theory to detect finiteness of homological dimensions.
The next two results reflect the asymmetry in the definition of stable homology.
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Proposition 6. Let R be an Artin algebra or commutative and local. For a right
R-module M , the following conditions are equivalent.

(i) M has finite projective dimension.

(ii) T̃orRi (M,−) = 0 for all i ∈ Z.

(iii) There is an i ≥ 0 with T̃orRi (M,−) = 0.

Proposition 7. Let R be an Artin algebra or commutative and local. For a left
R-module N , the following conditions are equivalent.

(i) N has finite injective dimension.

(ii) T̃orRi (−, N) = 0 for all i ∈ Z.

(iii) There is an i ≤ 0 with T̃orRi (−, N) = 0.

It is evident from these two vanishing results that stable homology cannot be bal-
anced in the way Tor is balanced.

Theorem 8. Let R be an Artin algebra or commutative. The following conditions
on R are equivalent.

(i) R is Iwanaga–Gorenstein.

(ii) For all right R-modules M , all left R-modules N , and all i ∈ Z there are

isomorphisms T̃orRi (M,N) ∼= T̃orR
◦

i (N,M).1

Stable homology also detects commutative Gorenstein rings in a different, and
perhaps surprising, way.

Theorem 9. Let R be commutative. The following conditions are equivalent.

(i) The local ring Rp is Gorenstein for every prime ideal p in R.

(ii) For every R-module M one has T̃orR∗ (M,R) = 0.

The proof showcases one way in which to extract information from stable ho-
mology, or rather, vanishing of stable homology.

Proof. By a theorem of S. Goto [11], the ring R is Gorenstein at every prime ideal
if and only if every R-module M has a complete resolution T → P →M . A result
of Foxby, published in [2], implies that M has a complete resolution if (and only if)
there is an isomorphism M ∼= RHomR(RHomR(M,R), R) in the derived category
over R.

(i) =⇒ (ii): Let M be an R-module, by Goto’s theorem it has a complete
resolution T → P →M , so by Theorem 5 one has

T̃orR∗ (M,R) ∼= T̂orR∗ (M,R) = H(T ⊗R R) ∼= H(T ) = 0 .

(ii) =⇒ (i): Let M be an R-module; by assumption one has T̃orR∗ (M,R) = 0.
Let P →M be a degree-wise finitely generated projective resolution and let R→ I
be an injective resolution. In the derived category there are isomorphisms

M ∼= P ∼= P ⊗R R ∼= P ⊗R I ∼= P ⊗R HomR(R, I) .

There is a natural morphism of complexes

P ⊗R HomR(R, I) −→ HomR(HomR(P,R), I) ,

1Here R◦ denotes the opposite ring of R.
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and the right-hand complex is isomorphic to RHomR(RHomR(M,R), R) in the
derived category. However, the natural morphism is not invertible; that comes down
to the left-hand complex being a direct sum totalization as opposed to the right-

hand complex which is a product totalization. Now, the assumption T̃orR∗ (M,R) =
0 yields P ⊗R I ∼= P ⊗R I in the derived category, and one has

P ⊗R I ∼= P ⊗R HomR(R, I) ∼= HomR(HomR(P,R), I)

where the last isomorphism holds as both complexes are now product totaliza-
tions. Thus, for every R-module M one has M ∼= RHomR(RHomR(M,R), R) in
the derived category, and it follows from the works of Foxby and Goto that R is
Gorenstein at every prime. �
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no. 1, 39–64. MR1181092

[11] Shiro Goto, Vanishing of ExtiA(M, A), J. Math. Kyoto Univ. 22 (1982/83), no. 3, 481–484.

MR0674605
[12] Alina Iacob, Absolute, Gorenstein, and Tate torsion modules, Comm. Algebra 35 (2007),

no. 5, 1589–1606. MR2317632
[13] Tadasi Nakayama, On the complete cohomology theory of Frobenius algebras, Osaka Math.

J. 9 (1957), 165–187. MR0100013

[14] Oana Veliche, Gorenstein projective dimension for complexes, Trans. Amer. Math. Soc. 358
(2006), no. 3, 1257–1283. MR2187653

Texas Tech University, Lubbock, TX 79409, U.S.A.

E-mail address: lars.w.christensen@ttu.edu

URL: http://www.math.ttu.edu/~lchriste

http://www.ams.org/mathscinet-getitem?mr=MR0179211
http://www.ams.org/mathscinet-getitem?mr=MR2592013
http://www.ams.org/mathscinet-getitem?mr=MR1912056
http://www.ams.org/mathscinet-getitem?mr=MR2331239
http://www.ams.org/mathscinet-getitem?mr=MR1182934
http://arxiv.org/abs/1409.3605
http://www.ams.org/mathscinet-getitem?mr=MR3279366
http://www.ams.org/mathscinet-getitem?mr=MR1454602
http://www.ams.org/mathscinet-getitem?mr=MR1753146
http://www.ams.org/mathscinet-getitem?mr=MR1181092
http://www.ams.org/mathscinet-getitem?mr=MR0674605
http://www.ams.org/mathscinet-getitem?mr=MR2317632
http://www.ams.org/mathscinet-getitem?mr=MR0100013
http://www.ams.org/mathscinet-getitem?mr=MR2187653

	Introduction
	Stabilization of (co)homology
	Stable homology
	References

