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Abstract. Given a homomorphism of commutative noetherian rings R → S
and an S–module N , it is proved that the Gorenstein flat dimension of N
over R, when finite, may be computed locally over S. When, in addition, the
homomorphism is local and N is finitely generated over S, the Gorenstein flat
dimension equals sup {m ∈ Z | TorR

m(E, N) 6= 0}, where E is the injective hull
of the residue field of R. This result is analogous to a theorem of André on
flat dimension.

Introduction

Let R be a commutative noetherian ring and let N be an R–module. We say that
N is finite over a homomorphism if there exists a homomorphism of rings R → S
such that S is noetherian, N is a finite (that is, finitely generated) S–module, and
the S–action is compatible with the action of R.

In the case where R → S is a local homomorphism, this class of modules has been
studied by Apassov [2], who called them almost finite modules, and by Avramov,
Foxby, Miller, Sather-Wagstaff and others, cf. [5,23,7]. The work of these and other
authors show that modules finite over (local) homomorphisms have homological
properties extending those of finite modules (over local rings).

An important property of many invariants of R–modules is that they can be
computed locally over R. A basic question is whether the same property holds
for modules over a homomorphism; that is, whether an invariant of the R–module
N can be computed locally over S. It is easy to see that this is the case for flat
dimension; this paper focuses on the Gorenstein flat dimension. Introduced by
Enochs, Jenda and Torrecillas [16], this invariant is one generalization to non-finite
modules of the notion of G–dimension, due to Auslander and Bridger [3, 4]. In
Theorem (2.1) we prove that if GfdR N , the Gorenstein flat dimension of N , is
finite, then

GfdR N = sup {GfdRp Nq | q ∈ Spec S and p = R ∩ q}.

This extends a well-known result [12,21] for the absolute case R
=−→ S.

The result above focuses attention on modules over local homomorphisms. In this
situation, a theorem of André [1] says that if N is finite, then the flat dimension
over R equals sup {m ∈ Z | TorR

m(k, N) 6= 0}, where k is the residue field of R.
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Theorem (4.1) gives an analogous result in the context of Gorenstein flat dimension:
If N is finite over a local homomorphism, and GfdR N is finite, then

GfdR N = sup {m ∈ Z | TorR
m(E,N) 6= 0},

where E is the injective hull of the residue field k. The absolute case appears in [9].
A crucial difference between this result and André’s is that it must be assumed

a priori that GfdR N is finite: Vanishing of TorR
�0(E,N) does not detect finite

Gorenstein flat dimension, see Example (4.3). This example also suggests that
André’s proof, which relies on the fact that finite flat dimension of N is detected by
vanishing of TorR

�0(−, N), is not likely to carry over to our context. And, indeed,
our arguments have a different flavor.

As a corollary we obtain the following result about completions: If N is finite
over a local homomorphism, and GfdR N is finite, then

GfdR N = Gfd bR(Ŝ ⊗S N).

The corresponding result for flat dimension is elementary; for Gorenstein flat di-
mension we are not aware of any other proof.

1. Basic notions

Throughout the paper R and S denote rings; unless stated otherwise, they are
assumed to be commutative and noetherian. Given a homomorphism ϕ : R → S,
any S–module becomes an R–module with the action determined by ϕ. We say that
ϕ is local, if R and S are local rings with maximal ideals m and n, and ϕ(m) ⊆ n.

We work with complexes, which we grade homologically:

M = · · · → M`+1 → M` → M`−1 → · · ·
The homological size of a complex is captured by the numbers supM and inf M ,
defined as the supremum and infimum of the set {` ∈ Z | H`(M) 6= 0}. We say that
M is homologically finite if the R–module H(M) is finite, that is, finitely generated.

We use the notation D(R) for the derived category of R, and Df(R) for its
subcategory of homologically finite complexes. We use the symbol ' to denote
isomorphisms in derived categories.

Let L and M be R–complexes, that is to say, complexes of R–modules. The
derived tensor product and Hom functors are denoted L⊗L

R M and RHomR(L,M).
We write pdR M for the projective dimension, and fdR M for the flat dimension, of
M over R, cf. [5].

When (R,m, k) is local, the depth of an R–complex M is defined by

(1.0.1) depthR M = − supRHomR(k, M).

Thus, depthR M = ∞ if and only if H(RHomR(k, M)) = 0.

(1.1) Supports. The support of an R–complex M is a subset of Spec R:

SuppR M = {p ∈ Spec R | H(Mp) 6= 0},
and MaxR M is the subset of maximal ideals in SuppR M .

Foxby [18] has introduced the small support of M as

suppR M = {p ∈ Spec R | H(k(p)⊗L
R M) 6= 0},

where k(p) denotes the residue field Rp/pRp of R at p. For convenience we set

maxR M = {p ∈ suppR M | p is maximal in suppR M}.
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Note that suppR M ⊆ SuppR M and equality holds when M is homologically
finite. Elements in MaxR M are maximal ideals, while those in maxR M need not
be; see property (c) below.

We recall some properties of these subsets. Let L and M be R–complexes. For p
in Spec R we write ER(R/p) for the injective hull of the R–module R/p.

(a) suppR M = ∅ if and only if H(M) = 0.
(b) suppR(L⊗L

R M) = suppR L ∩ suppR M , for any R–complex L.
(c) suppR ER(R/p) = {p}, for any p in Spec R.
(d) A prime ideal p is in suppR M if and only if H(ER(R/p)⊗L

R M) 6= 0.
(e) When supM = s is finite, the associated primes of the top homology module

belong to the small support: AssR Hs(M) ⊆ suppR M .
(f) When (R,m, k) is local, m is in suppR M if and only if depthR M is finite.
Indeed, parts (a), (b), (c), and (f) are proved in [18, sec. 2]; part (d) follows

immediately from (a), (b) and (c); part (e) is [11, prop. 2.6 and (2.4.1)].

Next we recall the notion of G–dimension; see [4, 8, 9] for details.

(1.2) G–dimension. A finite R–module G is said to be totally reflexive if there
exists an exact complex L of finite free R–modules such that G ∼= Coker(L1 → L0)
and H(HomR(L,R)) = 0. Any finite free module is totally reflexive, so each ho-
mologically finite R–complex N with H`(N) = 0 for ` � 0 admits a resolution by
totally reflexive modules. The G–dimension is the number

G–dimR N = inf

{
d ∈ Z

∣∣∣∣∣ N is isomorphic in D(R) to a complex of totally
reflexive modules: 0 → Gd → Gd−1 → · · · → Gi → 0

}

Enochs, Jenda and Torrecillas [16, 14] have studied extensions of G–dimension to
complexes whose homology may not be finite. One such extension is the Gorenstein
flat dimension; see [16,9].

(1.3) Gorenstein flat dimension. An R–module A is Gorenstein flat if there
exists an exact complex F of flat modules such that A ∼= Coker(F1 → F0) and
H(J ⊗R F ) = 0 for any injective R–module J . Any free module is Gorenstein flat,
so each complex M with H`(M) = 0 for ` � 0 admits a resolution by Gorenstein
flat modules. The Gorenstein flat dimension is the number

GfdR M = inf

{
d ∈ Z

∣∣∣∣∣ M is isomorphic in D(R) to a complex of Gorenstein
flat modules: 0 → Ad → Ad−1 → · · · → Ai → 0

}
When M is homologically finite GfdR M = G–dimR M ; see [9, thm. (5.1.11)].

(1.4) Remark. By [13, thm. (3.5) and cor. (3.6)], if M is an R–complex of finite
Gorenstein flat dimension, then:

GfdR M = sup { sup (J ⊗L
R M) | J is injective}

= sup { sup (ER(R/p)⊗L
R M) | p ∈ Spec R}.
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2. Localization

The gist of this section is that for complexes over homomorphisms the Gorenstein
flat dimension, when it is finite, may be computed locally. We should like to note
that the analogue for flat dimensions is elementary to verify, for the finiteness of
that invariant is detected by vanishing of Tor functors. The absolute case, R

=−→ S,
is easily deduced from [23, thm. 8.8] and [12, thm. (2.4)].

(2.1) Theorem. Let ϕ : R → S be a homomorphism of rings and let X be an S–
complex. If GfdR X is finite, then

GfdR X =


sup {GfdRp Xq | q ∈ Spec S and p = q ∩R}
sup {GfdRp Xq | q ∈ MaxS X and p = q ∩R}
sup {GfdRp Xq | q ∈ maxS X and p = q ∩R}

The proof is given towards the end of this section. In preparation we recall a result
about colimits of Gorenstein flat modules:

(2.2) Remark. If (Mi)i∈I is a filtered system of Gorenstein flat modules over a
coherent ring, then the colimit lim−→Mi is Gorenstein flat. This follows from work of
Enochs et. al. [17,15] and Holm [21]: By [17, thm. 2.4 (and remarks before sec. 2)]
a filtered colimit M = lim−→Mi of Gorenstein flat modules has a co-proper right
resolution by flat modules. Because colimits commute with tensor products, (1.4)
provides an equality

sup { sup (J ⊗L
R M) | J is injective} = 0.

Therefore, by [21, thm. 3.6], the colimit M is Gorenstein flat.

For the next result note that any R–module M has a natural structure of a module
over its endomorphism ring HomR(M,M).

(2.3) Lemma. Let R be a coherent ring and M a Gorenstein flat R–module. Let
Z be a multiplicatively closed set in the center of the ring HomR(M,M). Then the
R–module Z−1M is Gorenstein flat.

Proof. Let V denote the set of finitely generated (as semigroups) multiplicatively
closed subsets of Z. The modules V −1M , for V ∈ V, with natural maps

ρUV : U−1M → V −1M for U ⊆ V

form a filtered system. It is straightforward to verify that the colimit lim−→V −1M is
isomorphic to Z−1M as HomR(M,M)–module and, therefore, as an R–module.

By Remark (2.2), a filtered colimit of Gorenstein flat modules is Gorenstein flat,
so it remains to see that the modules V −1M are Gorenstein flat. For any V ∈ V
the module V −1M can be constructed by successively inverting the finitely many
generators of V . Thus, it suffices to prove that Mz is Gorenstein flat for any z ∈ Z.
Again, Mz is the colimit of the linear system (M z−→ M

z−→ M
z−→ · · · ) and hence

Gorenstein flat by (2.2). �

We should like to stress that in the next result the ring S need not be noetherian.
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(2.4) Proposition. Let R be a noetherian ring. Let ϕ : R → S be a homomorphism
of rings and X an S–complex. For each q ∈ Spec S and p = q ∩R, one has

GfdRp Xq = GfdR Xq ≤ GfdR X.

Proof. The equality in the statement is evident: a Gorenstein flat Rp–module
is Gorenstein flat over R and any Gorenstein flat R–module localizes to give a
Gorenstein flat Rp–module.

In verifying the inequality one may assume that GfdR X is finite. Pick a surjec-
tive homomorphism S̃ → S where S̃ is an R–algebra, free as an R–module, and let
q̃ be the preimage of q in S̃. Evidently, Xq̃ ' Xq as S̃–complexes, and hence also
as R–complexes, so replacing S with S̃, we assume henceforth that the R–module
S is free.

Let U be a free resolution of X over S and set Ω = Ker(∂U
d−1) for d = GfdR X.

Since S is a free R–module, U is also an R–free resolution of X, and since GfdR X is
finite, Ω viewed as an R–module is Gorenstein flat. Note that one has isomorphisms

Uq ' Xq and Ker(∂Uq

d−1) ∼= Ωq.

The complex Uq consists of flat R–modules, so to settle the claim it suffices to prove
that the R–module Ωq is Gorenstein flat. Therefore, it suffices to verify the result
in the case where the S–module X is Gorenstein flat over R.

Homothety provides a homomorphism of rings S → HomR(X, X). Let Z be
the image of S \ q under this map; it is a multiplicatively closed subset in the
center of HomR(X, X), and Z−1X ∼= Xq as S–modules. It now remains to invoke
Lemma (2.3). �

Proof of Theorem (2.1). Proposition (2.4) implies the first inequality below

GfdR X ≥ sup {GfdRp Xq | q ∈ Spec S and p = q ∩R}
≥ sup {GfdRp Xq | q ∈ MaxS X and p = q ∩R}
≥ sup {GfdRp Xq | q ∈ maxS X and p = q ∩R}.

The second inequality holds because of the inclusion MaxS X ⊆ SuppS X, and the
third follows also by Proposition (2.4) as any ideal in maxS X is contained in an
ideal from MaxS X. This leaves us one inequality to verify:

GfdR X ≤ sup {GfdRp Xq | q ∈ maxS X and p = q ∩R}.

Set d = GfdR X and pick a p̃ in Spec R for which sup (ER(R/p̃)⊗L
R X) = d. Pick a

prime ideal q′ associated to the S–module Hd(ER(R/p̃)⊗L
R X) and set p′ = q′ ∩R.

In the (in)equalities below:

d = sup (ER(R/p̃)⊗L
R X)

= sup (ER(R/p̃)⊗L
R Xq′)

= sup (ERp′ (Rp′/p̃Rp′)⊗L
Rp′ Xq′)

≤ GfdRp′ Xq′

(†)

the second one holds by choice of q′, while the third holds because ER(R/p̃) is
an Rp′–module, as p̃ ⊆ p′. By (1.1)(e) the ideal q′ is in the small support of the
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S–complex ER(R/p̃) ⊗L
R X. The first equality below is due to the associativity of

the tensor product

suppS(ER(R/p̃)⊗L
R X) = suppS((ER(R/p̃)⊗L

R S)⊗L
S X)

= suppS(ER(R/p̃)⊗L
R S) ∩ suppS X

while the second one is by (1.1)(b). These show that q′ is in suppS X. Finally,
choose q ∈ maxS X containing q′ and set p = q ∩R. It follows by (†) and Proposi-
tion (2.4) that d ≤ GfdRp′ Xq′ ≤ GfdRp Xq. �

3. Approximations

In this section we establish an approximation theorem for complexes of finite
G–dimension; this is an important ingredient in the proof of Theorem (4.1). It
is a common generalization to complexes of [21, thm. 2.10] and [13, lem. (2.17)],
which deal with modules. Similar extensions have been obtained by Holm et. al.
[19,22]; see (3.5) and the remarks following the statement of the theorem for further
relations to earlier work.

(3.1) Theorem. Let S be a ring and N a homologically finite S–complex with
finite G–dimension. For each integer n ≤ G–dimS N there exists an exact triangle

N → P → H → ΣN

in Df(S) with the following properties:

(a) pdS P = G–dimS N and G–dimS H ≤ n.

(b) There are inequalities: inf P ≥ n ≥ supH, and

max {n, supN} ≥ supP and inf H ≥ min {n, inf N + 1}.
Moreover, the following induced sequence of S–modules is exact:

0 → Hn(N) → Hn(P ) → Hn(H) → Hn−1(N) → 0.

We precede the proof with a couple of remarks and a lemma.

(3.2) Remark. As above, let N be a homologically finite S–complex of finite G–
dimension. By rotating the exact triangle in (3.1), we see that for each integer
n ≤ G–dimS N there exists an exact triangle

P ′ → H ′ → N → ΣP ′

in Df(S) where pdS P ′ = G–dimS N − 1 and G–dimS H ′ ≤ n− 1.

(3.3) Remark. Let N be a finite S–module with finite G–dimension. Applying
Theorem (3.1) with n = 0 we get from part (b) an exact sequence of finite modules

0 → N → H0(P ) → H0(H) → 0.

Moreover, H`(H) = 0 = H`(P ) for ` 6= 0, so from part (a) it follows that H0(H) is
totally reflexive and pdR H0(P ) = G–dimS N . Thus we recover [13, lem. (2.17)].

Analogously, if G–dimS N ≥ 1, applying Theorem (3.1) with n = 1 yields an
exact sequence of finite modules:

0 → H1(P ) → H1(H) → N → 0,

where H1(H) is totally reflexive and pdR H1(P ) = G–dimS N − 1. In this way we
also recover [21, thm. 2.10].
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(3.4) Lemma. Let X be an S–complex. For any injective homomorphism ι : Xn → Yn

of S–modules there is a commutative diagram

X = · · · // Xn+1
α // Xn� _

ι

��

β // Xn−1� _

ι′

��

γ // Xn−2
// · · ·

Y = · · · // Xn+1
α′
// Yn

β′
// Yn−1

γ′
// Xn−2

// · · ·

such that Y is a complex, Coker ι′ ∼= Coker ι, and the induced map H(X) → H(Y )
is an isomorphism. When Xn−1 and Yn are finite, Yn−1 can be chosen finite.

Proof. Set α′ = ια and let β′ : Yn → Yn−1 be the pushout of β along ι; thus

Yn−1 =
Yn ⊕Xn−1

{(ι(x), β(x)) | x ∈ Xn}
.

Let ι′ : Xn−1 → Yn−1 be the induced map, which sends x to (0, x); it is injective be-
cause ι is. Define γ′ : Yn−1 → Xn−2 by (y, x) 7→ γ(x). By construction the diagram
is commutative. It is elementary to check that Y is a complex, and the induced
map Coker ι → Coker ι′ an isomorphism. Thus, the cokernel of the inclusion of
complexes X ↪→ Y is exact, and hence the induced map H(X) → H(Y ) is bijective.
By construction, Yn−1 is finite when Xn−1 and Yn are so. �

Proof of Theorem (3.1). The hypothesis is that N is a homologically finite S–
complex with finite G–dimension; set d = G–dimR N and i = inf N . Let

· · · → P` → P`−1 → · · · → Pi → 0

be a projective resolution of N by finite modules. For integers n ≤ d + 1 we
construct, by descending induction on n, complexes C(n) isomorphic to N in D(S)
and of the form

C(n) = 0 → Qd → · · · → Qn → Gn−1 → Pn−2 → · · · → Pi → 0,

where the modules Q` are also finite projective and Gn−1 is totally reflexive. For the
first step, set Gd = Ker(Pd → Pd−1); this module is totally reflexive, the complex

C(d + 1) = 0 → Gd → Pd−1 → · · · → Pi → 0

is isomorphic to N in D(S) and has the desired form. Next we construct C(n) from
C(n + 1). The totally reflexive module Gn in C(n + 1) embeds into a finite free
module ι : Gn → Qn such that Coker ι is totally reflexive. By Lemma (3.4) we have
a commutative diagram

C(n + 1) = · · · // Qn+1
// Gn� _

ι

��

// Pn−1� _

ι′

��

// Pn−2
// · · ·

C(n) = · · · // Qn+1
// Qn

// Gn−1
// Pn−2

// · · ·

The module Coker ι′ is isomorphic to Coker ι and hence totally reflexive; therefore
Gn−1 is totally reflexive. The complex C(n) has the desired form, by construction,
and is isomorphic to C(n + 1) ' N , again by (3.4).

Now, fix an integer n ≤ d and replace N by C(n). Let P be the truncation N>n

of N and H = Σ(N6n−1); the canonical surjection N → P yields an exact triangle

(∆) N → P → H → ΣN.
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We now verify that this triangle has the desired properties:
(a): It is evident from the construction that G–dimS H ≤ n and pdS P ≤ d.

To see that pdS P = d, apply RHomS(−, S) to (∆) and take homology to get the
exact sequence

Extd
S(P, S) → Extd

S(N,S) → Extd+1
S (H,S).

Recall that G–dimS X = sup {m ∈ Z | Extm
S (X, S) 6= 0} for any homologically fi-

nite S–complex of finite G–dimension, cf. [9, cor. (2.3.8)]. Therefore, in the exact
sequence above, the module on the right is zero as d ≥ n ≥ G–dimS H, while the
middle one is non-zero as G–dimS N = d. Thus, Extd

S(P, S) 6= 0.
(b): By construction inf P ≥ n ≥ supH, so the homology exact sequence

· · · → H`(N) → H`(P ) → H`(H) → H`−1(N) → · · ·

associated with (∆) gives the desired exact sequence and isomorphisms H`(P ) ∼=
H`(N) for ` ≥ n + 1 and H`(H) ∼= H`−1(N) for ` ≤ n − 1. In particular,
max {n, supN} ≥ supP and inf H ≥ min {n, inf N + 1}. �

(3.5) Remark. We note that with G–dimension replaced by Gorenstein projective
dimension, or by Gorenstein flat dimension, the arguments in the preceding proof
carry over to the case where the homology modules of N are not necessarily finite.
In this paper we only need the version stated in Theorem (3.1).

4. Local homomorphisms

The main result of this section is:

(4.1) Theorem. Let (R,m, k) be a local ring, and let N be an R–complex, finite
over a local homomorphism. If GfdR N is finite, then

GfdR N = sup (ER(k)⊗L
R N) = depth R− depthR N.

The second equality was proved in [23, thm. 8.7]; the theorem is motivated by the
following considerations:

(4.2) Remarks. The flat dimension of N can be tested by cyclic modules, R/p,
and if fdR N is finite, then

sup (k ⊗L
R N) = depthR R− depthR N.

This is the Auslander–Buchsbaum formula for N , cf. [18, p. 153]. Analogously, the
Gorenstein flat dimension is tested by modules ER(R/p), cf. (1.4), and if GfdR N
is finite, an analogue of the Auslander–Buchsbaum is provided by [23, thm. 8.7]:

sup (ER(k)⊗L
R N) = depth R− depthR N.

Assume that N is finite over a local homomorphism, then

fdR N = sup (k ⊗L
R N)

by [5, prop. 5.5]. By the three displayed equations it follows that

(4.2.1) fdR N = sup (ER(k)⊗L
R N) when fdR N is finite.
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However, an elementary argument is also available: Set f = fdR N ; associated to
the exact sequence 0 → k → ER(k) → C → 0 is an exact sequence of homology
modules

0 → Hf (k ⊗L
R N) → Hf (ER(k)⊗L

R N) → · · · ,

which shows that also Hf (ER(k)⊗L
R N) 6= 0.

Theorem (4.1) is an analogue of (4.2.1) for Gorenstein flat dimension. When N
is finite over R itself, the first equality in (4.1) recovers [9, thm. (2.4.5)(b)]:

G–dimR N = sup (ER(k)⊗L
R N).

Even in this case one has to assume a priori that the dimension is finite:

(4.3) Example. Jorgensen and Şega [24, thm. 1.7] construct an artinian ring R
and a finite R–module L with

G–dimR L = ∞ and inf RHomR(L,R) = 0.

The last equality translates to sup (ER(k)⊗L
R L) = 0 by Matlis duality.

It is implicit in Theorem (4.1) that both sup (ER(k)⊗L
R N) and depthR N are finite.

This holds in general for complexes finite over local homomorphisms:

(4.4) Lemma. Let (R,m, k) be a local ring and let N be an R–complex, finite over
a local homomorphism. If H(N) 6= 0, then

depthR N is finite and H(ER(k)⊗L
R N) 6= 0.

Proof. By assumption there is a local homomorphism ϕ : (R,m, k) → (S, n, l), such
that N is homologically finite over S. With i = inf N one has

Hi(k ⊗L
R N) ∼= k ⊗R Hi(N) ∼= Hi(N)/mHi(N).

Since ϕ is local, and the S–module Hi(N) is finite and non-zero, Nakayama’s lemma
implies Hi(N)/mHi(N) is non-zero. Thus m is in suppR N , in particular, depthR N
is finite, cf. (1.1)(f). Moreover, m is in suppR ER(k), by (1.1)(c), and thus also in
suppR(ER(k)⊗L

R N), whence H(ER(k)⊗L
R N) 6= 0 by (1.1)(a). �

For Theorem (4.1) it is important that the homology of ER(k) ⊗L
R N is non-zero.

However, that condition alone is not sufficient for the first equality, not even for
(4.2.1); one needs the finiteness of H(N):

(4.5) Example. Let (R,m, k) be a regular local ring. For a prime ideal p 6= m set
k(p) = Rp/pRp and N = k(p)⊕R. Then

fdR N = fdRp k(p) = dim Rp and

sup (ER(k)⊗L
R N) = 0 = sup (k ⊗L

R N).

For the proof of the theorem we need the following lemmas. The first one deals
with the restricted flat dimension, introduced by Foxby in [12]. Its relevance for
our purpose comes from [23, thm. 8.8], see also [21, thm. 3.19].

As usual, for any local ring (R,m, k) its m-adic completion is denoted R̂.
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(4.6) Lemma. Let ϕ : R → S be a homomorphism of rings and X an S–complex.

(a) If ϕ is flat, then RfdR X ≤ RfdS X

(b) If ϕ is local, then RfdR X = RfdR(Ŝ ⊗S X) ≤ Rfd bR(Ŝ ⊗S X)

Proof. Let F0(R) be the class of R–modules of finite flat dimension.
(a): For each T ∈ F0(R) the module T ⊗R S has finite flat dimension over S.

With this, the desired inequality follows from:

RfdR X = sup { sup (T ⊗L
R X) | T ∈ F0(R)}

= sup { sup (T ⊗L
R (S ⊗S X)) | T ∈ F0(R)}

= sup { sup ((T ⊗R S)⊗L
S X) | T ∈ F0(R)}

≤ RfdS X,

where the first equality is the definition.
(b): The inequality follows from (a), and the equality is an easy calculation:

RfdR X = sup { sup (T ⊗L
R X) | T ∈ F0(R)}

= sup { sup ((T ⊗L
R X)⊗S Ŝ) | T ∈ F0(R)}

= sup { sup (T ⊗L
R (X ⊗S Ŝ)) | T ∈ F0(R)}

= RfdR(X ⊗S Ŝ) �

(4.7) Lemma. Let ϕ : R → S be a local homomorphism and N a homologically

finite S–complex. If GfdR N is finite, then Gfd bR(Ŝ ⊗S N) is finite as well, and

there is an inequality: GfdR N ≤ Gfd bR(Ŝ ⊗S N).

In Corollary (4.8) we strengthen the inequality to an equality.

Proof. By [23, prop. 8.13] the G–dimension of N along ϕ, introduced in that
paper and denoted G–dimϕ N , is finite. By [23, 3.4.1] also G–dimϕ̂(Ŝ ⊗S N) is
finite, where ϕ̂ : R̂ → Ŝ is the completion of ϕ, and hence Gfd bR(Ŝ ⊗S N) is finite,
by [23, thm. 8.2]. Moreover, we have

GfdR N = RfdR N ≤ Rfd bR(Ŝ ⊗S N) = Gfd bR(Ŝ ⊗S N),

where the equalities are by [23, thm. 8.8] and the inequality is Lemma (4.6)(b). �

Proof of Theorem (4.1). By hypothesis N is an R–complex and there exists a
local homomorphism ϕ : R → S such that N is a homologically finite S–complex.
It suffices to prove

(†) GfdR N = sup (ER(k)⊗L
R N),

since the second equality of the claim is [23, thm. 8.7].

1◦ First we reduce the problem to the case where R and S are complete (in the
topologies induced by the respective maximal ideals). The right hand side in (†) is
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unchanged on tensoring with Ŝ: Indeed there are isomorphisms of complexes

(ER(k)⊗L
R N)⊗S Ŝ ' ER(k)⊗L

R (N ⊗S Ŝ)

' ER(k)⊗L
R (Ŝ ⊗S N)

' ER(k)⊗L
R (R̂⊗LbR (Ŝ ⊗S N))

' (ER(k)⊗L
R R̂)⊗LbR (Ŝ ⊗S N)

' E bR(k)⊗LbR (Ŝ ⊗S N)

where the first and penultimate ones hold by associativity of tensor products. The
second isomorphism holds as N⊗S Ŝ and Ŝ⊗SN are isomorphic as S–complexes and
hence also as R–complexes. The third isomorphism holds because the composite
map R → S → Ŝ factors through R̂. Being m-torsion, ER(k) is naturally isomorphic
to ER(k) ⊗R R̂, and as R̂–modules ER(k) ∼= E bR(k); this accounts for the last
isomorphism. The faithful flatness of Ŝ over S and the isomorphisms above yield:

sup (ER(k)⊗L
R N) = sup ((ER(k)⊗L

R N)⊗S Ŝ)

= sup (E bR(k)⊗LbR (Ŝ ⊗S N))

The preceding equality and Remark (1.4) yield the first two (in)equalities below,
while Lemma (4.7) gives the third one:

sup (E bR(k)⊗LbR (Ŝ ⊗S N)) = sup (ER(k)⊗L
R N)

≤ GfdR N

≤ Gfd bR(Ŝ ⊗S N).

(‡)

Moreover, Gfd bR(Ŝ ⊗S N) is finite, again by (4.7), and the complex Ŝ ⊗S N is
homologically finite over Ŝ. Thus, if (†) holds when R and S are complete, then
equalities must hold all way through in (‡).

We assume henceforth that R and S are complete.

2◦ Next we reduce to the case where ϕ is flat and the closed fiber S/mS is regular.
Since R and S are complete, the homomorphism ϕ admits a regular factorization:
a commutative diagram of local homomorphisms

R′

ϕ′

    @
@@

@@
@@

@

R

ϕ̇
>>}}}}}}}
ϕ

// S

where ϕ′ is surjective and ϕ̇ is flat with R′/mR′ regular, cf. [6, thm. (1.1)]. Since
N is homologically finite over S it is also finite over R′, and so it suffices to prove
the result for ϕ̇; this achieves the desired reduction.

3◦ Since R is complete, it has a dualizing complex D; since ϕ is flat with regu-
lar closed fiber, the complex S ⊗R D is dualizing for S, cf. [20]. Now, from [10,
prop. (5.3)] it follows that an S–complex X is in the Auslander category A(S) if
and only if it is in A(R). By [13, thm. (4.1)] complexes in the Auslander category
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are exactly those of finite Gorenstein flat dimension, that is,
GfdR X < ∞ ⇐⇒ X ∈ A(R)

⇐⇒ X ∈ A(S)
⇐⇒ GfdS X < ∞.

(∗)

Therefore, when GfdR X is finite, so is GfdS X, and hence

GfdR X = RfdR X ≤ RfdS X = GfdS X,(∗∗)
where the inequality is Lemma (4.6)(a) and the equalities are by [23, thm. 8.8].

We may assume that H(N) 6= 0 and set i = inf N . By (∗) the complex N has
finite Gorenstein flat dimension over S; since it is homologically finite, it thus has
finite G–dimension over S, cf. [9, thm. (5.1.11)]. By Theorem (3.1) there is an exact
triangle in Df(S):

N → P → H → ΣN,

where pdS P = G–dimS N and G–dimS H ≤ i; in particular GfdS H ≤ i, again
by [9, thm. (5.1.11)]. By (∗∗) it follows that GfdR H ≤ GfdS H ≤ i. For any
injective R–module J one therefore has sup (J ⊗L

R H) ≤ i by (1.4), and hence the
exact triangle above yields the following isomorphisms and exact sequence

H`(J ⊗L
R N) ∼= H`(J ⊗L

R P ) for ` ≥ i + 1,

0 → Hi(J ⊗L
R N) → Hi(J ⊗L

R P ).
(††)

Since inf P ≥ i we deduce that sup (J ⊗L
R N) ≤ sup (J ⊗L

R P ). Combined with (1.4)
this implies the second inequality below

sup (ER(k)⊗L
R N) ≤ GfdR N

≤ GfdR P

≤ fdR P

= sup (ER(k)⊗L
R P );

the first inequality is also by (1.4), the third inequality is trivial, while the equality
is by (4.2.1), since ϕ flat and pdS P finite implies fdR P finite.

Finally, H`(ER(k) ⊗L
R N) 6= 0 for some ` ≥ i = inf N , cf. Lemma (4.4), and so

(††) shows that sup (ER(k)⊗L
R N) = sup (ER(k)⊗L

R P ). Thus, from the preceding
display, we conclude that sup (ER(k)⊗L

R N) = GfdR N . �

(4.8) Corollary. Let ϕ : R → S be a local homomorphism and N a homologically
finite S–complex. If GfdR N is finite, then

GfdR N = Gfd bR(Ŝ ⊗S N).

Proof. From Lemma (4.7) one obtains that Gfd bR(Ŝ ⊗S N) is finite. Since the
R̂–complex Ŝ ⊗S N is finite over the completion ϕ̂ : R̂ → Ŝ, Theorem (4.1) gives
the first and the last equalities below:

GfdR N = depthR− depthR N

= depth R̂− depth bR(Ŝ ⊗S N)

= Gfd bR(Ŝ ⊗S N);

the second equality is a standard property of depth. �
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We conclude with a global version of Theorem (4.1):

(4.9) Theorem. Let ϕ : R → S be a homomorphism of rings and let N be a homo-
logically finite S–complex. If GfdR N is finite, then

GfdR X = sup { sup (ER(k(p))⊗L
Rp

Nq) | q ∈ MaxS N and p = q ∩R}.

Note that maxS N = MaxS N as N is homologically finite.

Proof. For each q ∈ MaxS N the Rp–complex Nq is finite over the local homomor-
phism ϕq : Rp → Sq, and GfdRp Nq is finite by Theorem (2.1), so (4.1) yields

GfdRp Nq = sup (ER(k(p))⊗L
Rp

Nq).

Combining this equality with that in Theorem (2.1) gives the desired result. �

Acknowledgments

We thank Lucho Avramov and Sean Sather-Wagstaff for their comments and
suggestions on this work.

References
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