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Abstract. Let p be a prime ideal in a commutative noetherian ring R. It

is proved that if an R-module M satisfies TorRn (k(p),M) = 0 for some n >
dimRp, where k(p) is the residue field at p, then TorRi (k(p),M) = 0 holds for

all i > n. Similar rigidity results concerning Ext∗R(k(p),M) are proved, and

applications to the theory of homological dimensions are explored.

1. Introduction

Flatness and injectivity of modules over a commutative ring R are characterized
by vanishing of (co)homological functors and such vanishing can be verified by
testing on cyclic R-modules. We discuss the flat case first, and in mildly greater
generality: For any R-module M and integer n > 0, one has flat dimRM < n if
and only if TorRn (R/a,M) = 0 holds for all ideals a ⊆ R. When R is noetherian,
and in this paper we assume that it is, it suffices to test on modules R/p where p
varies over the prime ideals in R.

If R is local with unique maximal ideal m, and M is finitely generated, then
it is sufficient to consider one cyclic module, namely the residue field k := R/m.
Even if R is not local and M is not finitely generated, finiteness of flat dimRM
is characterized by vanishing of Tor with coefficients in fields, the residue fields
k(p) := Rp/pRp to be specific. While vanishing of TorR∗ (k(p),M) for any one
particular residue field does not imply that flat dimRM is finite, one may still
ask if vanishing of a single group TorRn (k(p),M) implies vanishing of all higher
groups, a phenomenon known as rigidity. While this does not hold in general (cf.
Example 4.2), we prove that it does hold if n is sufficiently large; see Theorem 4.1
for the proof.

Theorem 1.1. Let p be a prime ideal in a commutative noetherian ring R and let
M be an R-module. If one has TorRn (k(p),M) = 0 for some integer n > dimRp,

then TorRi (k(p),M) = 0 holds for all i > n.

As flat dimRM < n holds if and only if one has TorRi (k(p),M) = 0 for all primes p
and all i > n, Theorem 1.1 provides for an improvement of existing characterizations
of modules of finite flat dimension.

In parallel to the flat case, the injective dimension of an R-module M is less
than n if ExtnR(R/p,M) = 0 for every prime ideal p. Moreover the injective dimen-
sion can be detected by vanishing locally of cohomology with coefficients in residue
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fields. That is, inj dimRM < n holds if and only if one has ExtnRp
(k(p),Mp) = 0

for all primes p. By the standard isomorphisms TorR∗ (k(p),M) ∼= TorRp
∗ (k(p),Mp)

there is no local/global distinction for Tor vanishing. The following consequence of
Proposition 3.2 is, therefore, a perfect parallel to Theorem 1.1.

Theorem 1.2. Let p be a prime ideal in a commutative noetherian ring R and let
M be an R-module. If one has ExtnRp

(k(p),Mp) = 0 for some integer n > dimRp,

then ExtiRp
(k(p),Mp) = 0 holds for all i > n.

In contrast to the situation for Tor, the cohomology groups Ext∗Rp
(k(p),Mp) and

Ext∗R(k(p),M) can be quite different, and it was only proved recently, in [6, Theo-
rem 1.1], that the injective dimension of an R-module can be detected by vanishing
globally of cohomology with coefficients in residue fields. That is, inj dimRM < n
holds if and only if one has ExtiR(k(p),M) = 0 for all i > n and all primes p. One
advantage of this global vanishing criterion is that it also applies to complexes of
modules; per Example 6.3 the local vanishing criterion does not. For the proof of
the following rigidity result for Ext∗R(k(p),M), see Remark 5.8.

Theorem 1.3. Let p be a prime ideal in a commutative noetherian ring R and let
M be an R-module. If one has ExtnR(k(p),M) = 0 for some integer n > 2 dimR,
then ExtiR(k(p),M) = 0 holds for all i > n.

The case when p is the maximal ideal of a local ring merits comment, for the
bound on n in Theorems 1.2 and 1.3 differs by a factor of 2. The proof shows that it
is sufficient to require n > dimRp + proj dimRRp in Theorem 1.3, and that aligns
the two bounds in this special case. For a general prime p however the number
proj dimRp may depend on the Continuum Hypothesis; see Osofsky [14].

In this introduction, we have focused on results that deal with rigidity of the Tor
and Ext functors. In the text, we also establish results that track where vanishing
of these functors starts, when indeed they vanish eventually.

∗ ∗ ∗
Throughout R will be a commutative noetherian ring. Background material on
homological invariants and local (co)homology is recalled in Section 2. Rigidity
results for Ext and Tor over local rings are proved in Section 3, and applications to
homological dimensions follow in Sections 4–5. The final section explores, by way of
examples, the complicated nature of injective dimension of unbounded complexes.

2. Local homology and local cohomology

Our standard reference for definitions and constructions involving complexes is
[2]. We will be dealing with graded modules whose natural grading is the upper
one and also those whose natural grading is the lower one. Therefore, we set

inf H∗(M) := inf{i | Hi(M) 6= 0} and inf H∗(M) := inf{i | Hi(M) 6= 0}

for an R-complex M , and analogously we define sup H∗(M) and sup H∗(M). We of-
ten work in the derived category of R-modules, and write ' for isomorphisms there.
A morphism between complexes is a quasi-isomorphism if it is an isomorphism in
homology; that is to say, if it becomes an isomorphism in the derived category.

The next paragraphs summarize the definitions and basic results on local coho-
mology and local homology, following [1, 13].
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Local (co)homology. Let R be a commutative noetherian ring and a an ideal in
R. The right derived functor of the a-torsion functor Γa is denoted RΓa, and the
local cohomology supported on a of an R-complex M is the graded module

H∗a(M) := H∗(RΓa(M)) .

There is a natural morphism RΓa(M) → M in the derived category; M is said to
be derived a-torsion when this map is an isomorphism. This is equivalent to the
condition that H∗(M) is degreewise a-torsion; see [7, Proposition 6.12].

The left derived functor of the a-adic completion functor Λa is denoted LΛa and
the local homology of M supported on a is the graded module

Ha
∗(M) := H∗(LΛa(M)) .

There is a natural morphism M → LΛa(M) in the derived category and we say M
is derived a-complete when this map is an isomorphism. This is equivalent to the
condition that for each i, the natural map Hi(M)→ Ha

0(Hi(M)) is an isomorphism;
see [7, Proposition 6.15].

The morphisms RΓa(M)→M and M → LΛa(M) induce isomorphisms

(2.1)
Ext∗R(R/a,M) ∼= Ext∗R(R/a,RΓaM) and

TorR∗ (R/a,M) ∼= TorR∗ (R/a, LΛaM) .

Indeed, the first one holds because the functor RΓa is right adjoint to the inclusion
of the a-torsion complexes (that is to say, complexes whose cohomology is a-torsion)
into the derived category of R; see [13, Proposition 3.2.2]. Thus one has

(2.2) RHom(R/a,RΓaM)
'−−→ RHom(R/a,M) ,

and this gives the first isomorphism. As to the second isomorphism, consider the
commutative square in the derived category

RΓaM //

'
��

M

��

RΓaLΛaM // LΛaM

induced by the vertical morphism on right. The isomorphism on the left is part
of Greenlees–May duality; see, for example, [1, Corollary (5.1.1)]. Applying the
functor R/a⊗L

R (−) yields the commutative square

R/a⊗L
R RΓaM

' //

'
��

R/a⊗L
RM

��

R/a⊗L
R RΓaLΛaM '

// R/a⊗L
R LΛaM

The horizontal maps are isomorphisms by (2.2) and [7, Proposition 6.5]. Thus the
vertical map on the right is also an isomorphism; in homology, this is the desired
isomorphism.

Let C(a) denote the Čech complex on a set of elements that generate a. The
values of the functors LΛa and RΓa on an R-complex M can then be computed as

LΛa(M) = RHomR(C(a),M) and RΓa(M) = C(a)⊗L
RM .

See for example [1, Theorem (0.3) and Lemma (3.1.1)].
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Depth and width. In the remainder of this section (R,m, k) will be a local ring.
This means that R is a commutative noetherian ring with unique maximal ideal m
and residue field k := R/m.

The depth and width of an R-complex M are defined as follows:

depthRM = inf Ext∗R(k,M) and widthRM = inf TorR∗ (k,M) .

One has depthRM > inf H∗(M) and if i = inf H∗(M) is finite, then equality holds
if and only if HomR(k,Hi(M)) 6= 0. Similarly, one has widthRM > inf H∗(M) and
if j = inf H∗(M) is finite, then equality holds if and only if k ⊗R Hj(M) 6= 0.

If flat dimRM is finite, then one has an equality

(2.3) depthRM = depthR− sup TorR∗ (k,M) .

This is an immediate consequence of [2, Lemma 4.4(F)]. For finitely generated
modules it is the Auslander–Buchsbaum Formula.

Similarly, if inj dimRM is finite, then one has

(2.4) widthRM = depthR− sup Ext∗R(k,M) .

This is a consequence of [2, Lemma 4.4(I)]. For finitely generated modules the
equality above yields Bass’ formula inj dimRM = depthR.

From [9, Definitions 2.3 and 4.3] one gets that the depth and width of an R-
complex can be detected by vanishing of local (co)homology:

depthRM = inf H∗m(M) and widthRM = inf Hm
∗ (M) .

Combining this with (2.1) and the isomorphisms

RΓmLΛm(M) ' RΓm(M) and LΛmRΓm(M) ' LΛm(M)

from [1, Corollary (5.1.1)] one gets equalities

depthR RΓmM = depthRM = depthR LΛmM(2.5)

widthR RΓmM = widthRM = widthR LΛmM .(2.6)

For later use, we note that for each R-complex M there are inequalities

(2.7) sup H∗m(M) 6 dimR+ sup H∗(M) and sup H∗m(M) 6 sup Ext∗R(k,M) .

The first is immediate as one has H∗m(M) = H∗(C(m) ⊗L
R M) where C(m) is the

Čech complex on a system of parameters for R; the second is immediate once one
recalls the isomorphism H∗m(M) ∼= lim−→i

Ext∗R(R/mi,M).

The next result is a direct extension of [16, Proposition 2.1] by A.-M. Simon.

Concerning the last assertion: TorRi (R,M) = Hi(M) 6= 0, so n cannot equal
sup H∗(M), unless both are infinite. However, for later applications it is conve-
nient to have the statement in this form.

Lemma 2.1. Let M be a derived a-complete R-complex with inf H∗(M) > −∞ and

n an integer. If TorRn (R/p,M) = 0 all prime ideals p ⊇ a, then TorRn (−,M) = 0.
When in addition n > sup H∗(M), one has flat dimRM 6 n− 1.

Proof. First we claim that for any finitely generated R-module L and integer i,
if aTorRi (L,M) = TorRi (L,M), then TorRi (L,M) = 0. Indeed, let F be a free
resolution of L with each Fi finitely generated and equal to zero for i < 0. Let G
be a semi-flat resolution of M with Gi = 0 for i� 0; this is possible as inf H∗(M)
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is finite. Since M is derived a-complete, the complex ΛaG, which computes LΛaM ,
is quasi-isomorphic to M . Thus

TorRi (L,M) = Hi(F ⊗R ΛaG) .

Note that F ⊗R ΛaG is a complex of a-adically complete R-modules; this is where
we need that each Fi is finitely generated and that Fi and Gi are zero for i � 0.
It remains to apply [16, Proposition 1.4].

For the stated result, it suffices to prove that the set

{b ⊂ R an ideal | TorRn (R/b,M) 6= 0}
is empty. Suppose it is not. Pick a maximal element; say, q. We claim that this
is a prime ideal. The argument is standard (see, for example, [12, 2.4]) and goes
as follows: If it is not, let q′ be an associated prime ideal of R/q, and x ∈ R an
element such that q′ = {r ∈ R | xr ∈ q}. Then yields an exact sequence

0 −→ R/q′
17→x−−−→ R/q −→ R/((x) + q) −→ 0

Since both q′ and (x) + q strictly contain q, one obtains that

TorRn (R/q′,M) = 0 = TorRn (R/((x) + q),M) ,

and hence TorRn (R/q,M) = 0, contradicting the choice of q. Thus q is prime.
By hypothesis, q does not contain a, so choose an element a in a but not in q

and consider the exact sequence

0 −→ R/q
a−−→ R/q −→ R/((a) + q) −→ 0

Noting that TorRn (R/((a) + q),M) = 0 by the choice of q, it follows from the exact

sequence above that the map TorRn (R/q,M)
a−→ TorRn (R/q,M) is surjective. By

the claim in the first paragraph, this implies that TorRn (R/q,M) = 0, which is a
contradiction. �

3. Local rings

In this section (R,m, k) is a local ring. Note from (2.7) that in the next statement
n cannot equal sup H∗(M), but, as with Lemma 2.1, this formulation is convenient
for later applications.

Lemma 3.1. Let M be a derived m-torsion R-complex with inf H∗(M) > −∞. If
one has ExtnR(k,M) = 0 for some integer n > sup H∗(M), then inj dimRM 6 n−1.

Proof. Let I be the minimal semi-injective resolution of M . One has

ExtnR(k,M) = Hn(HomR(k, I)) = HomR(k, In) .

As M is derived m-torsion, each module Ii is a direct sum of copies of the injective
envelope of k, so ExtnR(k,M) = 0 implies In = 0. It follows from the assumption
on n and minimality of I that Ii = 0 holds for all i > n; in particular, one has
inj dimRM 6 n− 1. �

The result below extends (2.4); its proof would be significantly shorter under the
additional hypothesis that inf H∗m(M) is finite.

Proposition 3.2. Let M be an R-complex. If ExtnR(k,M) = 0 holds for some
integer n > sup H∗m(M), then one has ExtiR(k,M) = 0 for all i > n and

sup Ext∗R(k,M) = depthR− widthRM .
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Proof. Let J be the minimal semi-injective resolution of M and set I := Γm(J).
For every integer i one has

Hi
m(M) = Hi(I) and ExtiR(k,M) = HomR(k, J i) = HomR(k, Ii) .

Let d be any integer with n > d > sup H∗m(M) and set Z := Zd(I), the submodule
of cycles in degree d. Vanishing of Hi

m(M) and the identifications above yield

ExtiR(k,M) ∼= Exti−dR (k, Z) for all i > d .

In particular, one has Extn−dR (k, Z) = 0. Since Z is an m-torsion R-module, Lemma

3.1 and the isomorphisms above yield ExtiR(k,M) = 0 for all i > n.
It remains to verify the claim about the supremum of Ext∗R(k,M). To this end,

let K be the Koszul complex on a minimal set of generators for m. It follows from
[9, Definition 2.3] that one has the second equivalence below

sup Ext∗R(k,M) = −∞ ⇐⇒ Ext∗R(k,M) = 0

⇐⇒ H∗(K ⊗RM) = 0

⇐⇒ widthRM =∞ .

The first one is by definition while the last one is by [9, Theorem 4.1]. We may
thus assume that s := sup Ext∗R(k,M) and w := sup H∗(M ⊗R K) are integers.
Because K is a bounded complex of finitely generated free R-modules, there is a
quasi-isomorphism

RHomR(k,M)⊗L
R K ' RHom(k,M ⊗R K) .

From this and the fact that Ext∗R(k,M) is a graded k-vector space, it follows that

s = sup H∗(RHomR(k,M)⊗L
R K) = sup Ext∗R(k,M ⊗R K) .

Let E be the minimal injective resolution of M ⊗RK. Since M ⊗RK is derived m-
torsion, one has ΓmE = E. From Ext∗R(k,M ⊗R K) = Hom∗R(k,E) it thus follows
that Es 6= 0 and Ei = 0 for all i > s. On the other hand, as w = sup H∗(E) the
complex E>w is the minimal injective resolution of the module W := Zw(E) of
cycles in degree w, so one has inj dimRW = s− w.

It remains to show that inj dimRW = depthR. Evidently one has inj dimRW =
sup Ext∗R(k,W ), so by (2.4) it suffices to show that W has width 0, that is to say,
that k ⊗R W 6= 0. But this is clear because Hw(E) is nonzero and annihilated by
m, whence mW ⊆ Bw(E) (W . �

Proposition 3.3. Let M be an R-complex with TorRn (k,M) = 0 for some integer n,
and assume that one of the following conditions is satisfied:

(1) n > sup Hm
∗ (M) and inf H∗(M) > −∞;

(2) n > sup H∗m(HomR(M,E(k))) where E(k) is the injective envelope of k.

One then has TorRi (k,M) = 0 for all i > n and

sup TorR∗ (k,M) = depthR− depthRM .

Proof. Assume first that (1) is satisfied. From (2.1) one gets TorRn (k, LΛmM) = 0.
The complex LΛmM is m-adically complete and

inf H∗(LΛmM) > inf H∗(M) > −∞ .
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Thus Lemma 2.1 applies and yields that flat dimR(LΛmM) is at most n − 1. Now

(2.1) yields TorRi (k,M) = 0 for all i > n, and then (2.3) and (2.5) yield the second
and third equalities below

sup TorR∗ (k,M) = sup TorR∗ (k, LΛmM)

= depthR− depthR(LΛmM)

= depthR− depthRM .

Assume now that the hypothesis in (2) holds, and set (−)∨ := HomR(−, E(k)).
For each integer i, there is an isomorphism

TorRi (k,M)∨ ∼= ExtiR(k,M∨) .

The hypothesis and Proposition 3.2 yield TorRi (k,M) = 0 for all i > n and

sup TorR∗ (k,M) = sup Ext∗R(k,M∨) = depthR− widthRM
∨ .

Finally one has widthRM
∨ = depthRM ; see [9, Proposition 4.4]. �

The final result of this section fleshes out a remark made by Fossum, Foxby,
Griffith, and Reiten at the end of Section 1 in [8]. They phrase it as statement
about nonvanishing: If M is an R-module and ExtnR(k,M) is nonzero for some
n > depthR+ 1 then one has ExtiR(k,M) 6= 0 for all i > n. The formulation below
makes for an easier comparison with Proposition 3.2.

Proposition 3.4. Let M be an R-complex. If ExtnR(k,M) = 0 holds for some
integer n > sup H∗(M) + depthR+ 1, then one has

ExtiR(k,M) = 0 for every i in the range sup H∗(M) + depthR+ 1 6 i 6 n .

Proof. We may assume that n > sup H∗(M) + depthR + 1 holds. It suffices to
verify that when ExtnR(k,M) is zero, so is Extn−1R (k,M).

Let x be a maximal regular sequence in R, set S := R/(x) and n := m/(x).
Thus, (S, n, k) is a local ring of depth 0; in particular, (0 : n), the socle of S, is
nonzero. Thus, there exists a positive integer, say s, such that (0 : n) is contained
in ns but not in ns+1. Said otherwise, the composite of canonical maps

(0 : n) −→ ns −→ ns/ns+1

is nonzero. Since the source and the target are k-vector spaces, this implies that k
is a direct summand of ns. It thus suffices to verify that Extn−1R (ns,M) = 0.

The Koszul complex on x is a minimal free resolution of S over R, so one has
proj dimR S = depthR and hence

ExtjR(S,M) = 0 for j > depthR+ 1 + sup H∗(M) .

Given this, the exact sequence

0 −→ ns −→ S −→ S/ns −→ 0

yields an isomorphism

Extn−1R (ns,M) ∼= ExtnR(S/ns,M) .

Since the length of S/ns is finite, ExtnR(k,M) = 0 implies ExtnR(S/ns,M) = 0, and
hence the isomorphism above yields Extn−1R (ns,M) = 0, as desired. �
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4. Flat dimension

Let R be a commutative noetherian ring, M be an R-complex, and n be an integer.
Avramov and Foxby [2, Proposition 5.3.F] prove that flat dimRM < n holds if and

only if one has Tor
Rp

i (k(p),Mp) = 0 for every prime p in R and all i > n. That is,

(4.1) flat dimRM = sup{i ∈ Z | Tor
Rp

i (k(p),Mp) 6= 0 for some p ∈ SpecR} .

By way of the isomorphisms

(4.2) Tor
Rp

i (k(p),Mp) ∼= TorRi (k(p),M)

this result compares—or may be it is the other way around—to [6, Theorem 1.1];
see (5.1). Combining (4.1) and (4.2) with (2.3) one gets

(4.3) flat dimRM = sup
p∈SpecR

{depthRp − depthRp
Mp}

for every R-complex M of finite flat dimension. For modules of finite flat dimension
this equality is known from work of Chouinard [5].

For rings of finite Krull dimension, the next theorem, which contains Theo-
rem 1.1, represents a significant strengthening of (4.1).

Theorem 4.1. Let R be a commutative noetherian ring and M be an R-complex.
If for a prime ideal p and n > dimRp + sup H∗(M) one has TorRn (k(p),M) = 0,

then

sup TorR∗ (k(p),M) = depthRp − depthRp
Mp < n .

In particular, if there exists an integer n > dimR+ sup H∗(M) such that

TorRn (k(p),M) = 0 holds for every prime ideal p in R ,

then the flat dimension of M is less than n.

Proof. It suffices to prove the first claim; the assertion about the flat dimension of
M is a consequence, given (4.1).

Fix p and n as in the hypotheses. Given (4.2), this yields TorRp
n (k(p),Mp) = 0.

One has the following (in)equalities

sup H∗ (M) > sup H∗ (Mp) = sup H∗HomRp
(Mp, E(k(p))) .

Since dimR > dimRp, it follows from (2.7) and Proposition 3.3 that

sup TorRp
∗ (k(p),Mp) = depthRp − depthRp

Mp < n .

This is the desired result. �

The next example shows that the constraint on n in Theorem 4.1 is needed.

Example 4.2. Let (R,m, k) be a local ring, N a finitely generated Cohen–Macaulay

R-module of dimension d, and set M := Hd
m(N). There are isomorphisms

TorRi (k,M) ∼= TorRi−d(k,N) for all i .

To see this, let F be the Čech complex on a maximal N -regular sequence x. The
complex (Σd F )⊗R N is quasi-isomorphic to M , for inf H∗m(N) = sup H∗m(N) = d,
by the hypothesis on N . Thus, there are quasi-isomorphisms

k ⊗L
RM ' k ⊗L

R ((Σd F )⊗L
R N) ' Σd k ⊗L

R N .
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The isomorphisms above follow. Thus one has

TorRi (k,M) =

{
0 for i < d

N/mN for i = d .

In particular, one has inf TorR∗ (k,M) = d, while TorR∗ (k(p),M) = 0 for every prime
ideal p 6= m, since M is m-torsion.

Now, if in addition the inequality d > depthR holds, then flat dimRM is infinite.
To see this apply Matlis duality TorRi (k,M)∨ ∼= ExtiR(k,M∨) and conclude from

Proposition 3.4 that TorRi (k,M) is nonzero for all i > d.
It remains to remark that such R and N exist: Let k be a field, d be a positive

integer, and set

R := k[[x1, . . . , xd+1]]/(x21, x1x2, . . . , x1xd+1) .

This R is a local ring of dimension d and depth 0. The R-module N = R/(x1) is
Cohen–Macaulay of dimension d.

5. Injective dimension

Let M be an R-complex, by [6, Theorem 1.1] one has

(5.1) inj dimRM = sup{i ∈ Z | ExtiR(k(p),M) 6= 0 for some p ∈ SpecR} .

In view of (4.2) this is a perfect parallel to the formula for flat dimension (4.1).
The equality flat dimRM = supp∈SpecR{flat dimRp

Mp} is immediate from (4.1)
and (4.2). The corresponding equality for the injective dimension only holds true
under extra conditions, and the whole picture is altogether more complicated. If
M satisfies inf H∗(M) > −∞, then [2, Proposition 5.3.I] yields

(5.2)
inj dimRM = sup{i ∈ Z | ExtiRp

(k(p),Mp) 6= 0 for some p ∈ SpecR}
= sup

p∈SpecR
{inj dimRp

Mp} .

Without the boundedness condition on H(M) the injective dimension may increase
under localization; an example is provided in 6.3.

The next statement, which still requires homological boundedness, is folklore but
not readily available in the literature.

Theorem 5.1. Let R be a commutative noetherian ring and M an R-complex with
inf H∗(M) > −∞. If there exists an integer n > sup H∗(M) such that

Extn+1
Rp

(k(p),Mp) = 0 holds for every prime ideal p in R ,

then the injective dimension of M is at most n.

Proof. Let I be a minimal semi-injective resolution of M ; as inf H∗(M) > −∞ holds
one has In = 0 for n� 0. For every integer i one has Ii =

∐
p∈SpecRE(R/p)(µi(p)),

and to prove that inj dimRM is at most n it is sufficient to show that the index set
µn+1(p) is empty for every prime p. Fix p. Since Ip is a complex of injectives with
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(Ip)n = 0 for n� 0, it is a minimal semi-injective resolution of Mp, so one has

0 = Extn+1
Rp

(k(p),Mp)

= Hn+1 HomRp
(k(p), Ip)

= HomRp
(k(p), (Ip)n+1)

= HomRp
(k(p), E(k(p))(µn+1(p))) .

It follows that µn+1(p) is empty. �

The next result corresponds to (4.3). It removes a restriction on the boundedness
of M in Yassemi’s version [17, Theorem 2.10] of Chouinard’s formula [5, Corollary
3].

Proposition 5.2. For every R-complex M of finite injective dimension one has

inj dimRM = sup
p∈SpecR

{depthRp − widthRp
Mp} .

Proof. Without loss of generality, we can assume that M is semi-injective with
M i = 0 for all i > d := inj dimRM . For every u 6 d there is an exact sequence of
semi-injective complexes

(1) 0 −→M>u −→M −→M6u−1 −→ 0

with inj dimRM
6u−1 6 u − 1 and inj dimRM

>u = d. The complex M>u is
bounded, so (2.4) and (5.2) conspire to yield

(2) d = sup
p∈SpecR

{depthRp − widthRp
M>u

p } .

First we establish the inequality

(3) inj dimRM > sup
p∈SpecR

{depthRp − widthRp
Mp} .

Let p be a prime. There are inequalities

widthRp
Mp > inf H∗(Mp) > inf H∗(M) = − sup H∗(M) > −d ,

and without loss of generality one can assume that widthRp
Mp is finite. Consider

(1) for u = −widthRp
Mp and localize at p. The associated exact sequence of Tor

groups yields widthRp
Mp = widthRp

M>u
p , so the desired inequality d > depthRp−

widthRp
Mp follows from (2). It remains to prove that equality holds for some prime.

Consider (1) for u = d− 1 and choose by (2) a prime p with

d = depthRp − widthRp
M>d−1

p .

The second inequality in the next display is (3) applied to the complex M6d−2.

d− 2 > inj dimRM
6d−2 > depthRp − widthRp

M6d−2
p .

Eliminating d and depthRp between the two displays one gets the inequality

widthRp
M>d−1

p 6 widthRp
M6d−2

p − 2 .

Finally, one gets widthRp
Mp = widthRp

M>d−1
p from the exact sequence of Tor

groups associated to (1). �

We now aim for a characterization of complexes of finite injective dimension that
does not require homological boundedness. It is based on the following observation,
of independent interest.
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Lemma 5.3. Let M be an R-complex and m a maximal ideal in R. The localization
maps ρ : M →Mm and σ : R→ Rm induce quasi-isomorphisms

RHomR(k(m), ρ) : RHomR(k(m),M)
'−−→ RHomR(k(m),Mm) and

k(m)⊗L
R RHomR(σ,M) : k(m)⊗L

R RHomR(Rm,M)
'−−→ k(m)⊗L

RM .

Proof. In the derived category of R, consider the distinguished triangle

M
ρ−−→Mm −→ C −→ ΣM .

The induced morphism k(m)⊗L
R ρ is a quasi-isomorphism, so k(m)⊗L

R C is acyclic.
Then RHomR(k(m), C) is also acyclic, by [3, Theorem 4.13], whence the map
RHomR(k(m), ρ) is a quasi-isomorphism, as claimed.

In the same vein, the distinguished triangle R → Rm → D → ΣR induces a
distinguished triangle

RHomR(D,M) −→ RHomR(Rm,M)
RHomR(σ,M)−−−−−−−−−−→M −→ Σ RHomR(D,M) .

By adjunction RHomR(k(m),RHomR(σ,M)) is a quasi-isomorphism, so that

RHomR(k(m),RHomR(D,M))

is acyclic. Thus the complex k(m) ⊗L
R RHomR(D,M) is acyclic by [3, Theorem

4.13], which justifies the second of the desired quasi-isomorphisms. �

Proposition 5.4. Let M be an R-complex and m a maximal ideal in R. If one has
ExtnR(k(m),M) = 0 for some n > dimRm + sup H∗(Mm), then ExtiR(k(m),M) = 0
holds for all i > n and there are equalities

sup Ext∗R(k(m),M) = depthRm − widthRm
Mm

= depthRm − widthRm
RHomR(Rm,M) .

Proof. The first isomorphism below is by Lemma 5.3; the second is by adjunction.

Ext∗R(k(m),M) ∼= Ext∗R(k(m),Mm) ∼= Ext∗Rm
(k(m),Mm) .

In view of these isomorphisms and the assumption on n, Proposition 3.2 now yields

sup Ext∗R(k(m),M) = depthRm − widthRm
Mm < n .

It remains to observe that the width of Mm and RHomR(Rm,M) coincide, by the
second quasi-isomorphism in Lemma 5.3. �

Corollary 5.5. Let R be an artinian ring and M an R-complex. If there exists an
integer n > sup H∗(M) such that

ExtnR(k(p),M) = 0 holds for every prime ideal p in R ,

then the injective dimension of M is less than n.

Proof. Every prime ideal p in R is maximal and there are inequalities

n > sup H∗(M) > sup H∗(Mp) = dimRp + sup H∗(Mp) .

Thus the claim follows from (5.1) and Proposition 5.4. �
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Remark 5.6. In the sequel we require the invariant

splf R = sup{proj dimR F | F is a flat R-module}.

Every flat R-module is projective if and only if R is artinian, so splf R > 0 holds if
dimR > 0, and from work of Jensen [11, Proposition 6] and Raynaud and Gruson
[15, thm. II.3.2.6] one gets the upper bound splf R 6 dimR. A result of Gruson and
Jensen [10, Theorem 7.10] yields another bound on the invariant splf R: If R has
cardinality at most ℵm for some natural number m, then one has splf R 6 m + 1.
Thus for countable rings, and for 1-dimensional rings, the bound in the theorem
below is n > dimR+ sup H∗(M).

Theorem 5.7. Let R be a commutative noetherian ring with dimR > 1 and M an
R-complex. If there exists an integer n > dimR− 1 + splf R+ sup H∗(M) such that

ExtnR(k(p),M) = 0 holds for every prime ideal p in R ,

then the injective dimension of M is less than n.

Proof. Fix a prime ideal p and consider the Rp-complex N := RHomR(Rp,M).
One has

Hi(N) = ExtiR(Rp,M) = 0 for i > proj dimRRp + sup H∗(M) ,

and standard adjunction yields

Ext∗R(k(p),M) ∼= Ext∗Rp
(k(p), N) .

Since Rp is a flat R-module, proj dimRRp is at most splf R. Given this, (2.7) yields

Hi
pRp

(N) = 0 for i > dimRp + splf R+ sup H∗(M) .

Thus, if n > dimRp + splf R+ sup H∗(M) holds, then Proposition 3.2 yields

sup Ext∗R(k(p),M) = depthRp − widthRp
N < n .

The same equality also holds when n < dimRp + splf R+ sup H∗(M), for then the
assumption on n forces dimRp = dimR, so p is a maximal ideal and so Proposi-
tion 5.4 applies. Now the desired conclusions follows from (5.1). �

Remark 5.8. As noted in Remark 5.6, one has splf R ≤ dimR. Thus Theorem 1.3
is a consequence of Corollary 5.5 and Theorem 5.7.

Confer the following result and Proposition 5.2.

Corollary 5.9. For every R-complex of finite injective dimension one has

inj dimRM = sup
p∈SpecR

{depthRp − widthRp
RHomR(Rp,M)} .

Proof. Given Lemma 5.3, the desired equality is restatement of Proposition 5.2 in
case R is artinian. If R is not artinian, then one has dimR > 1 and the equality is
immediate from (5.1) and the last display in the proof of Theorem 5.7. �

Remark 5.10. Let R be a complete local domain of positive dimension. One has
widthR(0)

R(0) = 0, but the complex RHomR(R(0), R) is acyclic, see [3, Exam-

ple 4.20], so widthR(0)
RHomR(R(0), R) = ∞. We do not know how the numbers

widthRp
Mp and widthRp

RHomR(Rp,M) from Proposition 5.2 and Corollary 5.9
compare in general.
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6. Examples

In this section we describe examples to illustrate that, for complexes whose
cohomology is not bounded below, finiteness of injective dimension does not behave
well under localization or passage to torsion subcomplexes. This builds on [4].

Remark 6.1. Let R be a ring. A complex I of injective R-modules is semi-injective
if and only if for each (equivalently, for some) integer n the quotient complex I6n

is semi-injective. This is immediate from the exact sequence of complexes

0 −→ I>n −→ I −→ I6n −→ 0

since I>n is always semi-injective.

Remark 6.2. Let (R,m, k) be a local ring and E be the injective envelope of k.
One has (EN)p 6= 0 for every prime ideal in R. Indeed, the claim is trivial if R is
artinian. If R is not artinian, then one can choose an element e = (en)n∈N in EN

with mn ⊆ (0 : en) 6⊇ mn−1. The map R → EN given by 1 7→ e is injective by
Krull’s intersection theorem, so R is a submodule of EN.

Example 6.3. Let (R,m, k) be a local ring such that (0 : x) = (x) holds for some
x ∈ m; set S = R/(x). The complex

· · · x−−→ R
x−−→ R

x−−→ R −→ 0

concentrated in nonnegative degrees has homology S in degree 0 and zero elsewhere.
Dualizing with respect to E, the injective envelope of k over R, yields a complex

I := 0 −→ E
x−−→ E

x−−→ E
x−−→ · · ·

of injective R-modules. It is the minimal injective resolution of ES := HomR(S,E)
over R. By periodicity, every injective syzygy of ES is ES . Consider the complex
J =

∏
n>0 ΣnI, which is a semi-injective resolution of

∏
n>0 ΣnES .

Claim. The complex M := J60 has injective dimension 0, whereas for each prime
ideal p 6= m, one has that inj dimRp

Mp is infinite.

Indeed, since J is semi-injective, so is M , by Remark 6.1. Since the cohomology
module H0(M) ∼= (ES)N is nonzero, it follows that inj dimRM = 0 holds.

Fix a prime ideal p 6= m. For i < 0 one has Hi(M) = Hi(J) = ES and,
therefore, Hi(Mp) = Hi(M)p = 0. This justifies the first quasi-isomorphism in the
computation below; the rest are standard.

RHomRp
(k(p),Mp) ' RHomRp

(k(p), ((ES)N)p)

' RHomR(R/p, (ES)N)p

' (RHomR(R/p, ES)N)p

' (HomR(R/p, I)N)p

∼=
((∐

i>0

Σ−i HomR(R/p, E)
)N)

p

∼=
∐
i>0

Σ−i(HomR(R/p, E)N)p .

The first isomorphism holds because x = 0 in R/p, for x2 = 0, and hence the
induced differential on the complex HomR(R/p, I) is zero.
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The module ER/p := HomR(R/p, E) is the injective envelope of k over the
domain R/p. The computation above shows that for every i > 0 there is an
isomorphism as R/p-modules

ExtiRp
(k(p),Mp) ∼= ((ER/p)N)(0) .

Thus Remark 6.2 yields ExtiRp
(k(p),Mp) 6= 0 for all i > 0; hence inj dimRp

Mp is
infinite, as claimed.

Example 6.4. Let k be a field and R := k[|x, y|]/(x2). Since (0 : x) = (x), we
are in the situation considered in the previous example. Let M be the complex
of injectives with injective dimension zero constructed there. We claim that the
injective dimension of the complexes My and Γ(y)M are infinite.

Indeed, observe that My
∼= Mp where p is the prime ideal (x) of R, so inj dimRMy

is infinite, by the claim in the previous example. Since C(y) ⊗R M is quasi-
isomorphic to Γ(y)M and there is an exact sequence

0 −→ Σ−1My −→ C(y)⊗RM −→M −→ 0,

it follows that the injective dimension of Γ(y)M is infinite as well.
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