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Abstract. A 2009 paper by Iacob and Iyengar characterizes noetherian reg-

ular rings in terms of properties of complexes of projective modules, flat mo-

dules, and injective modules. We show that the relevant properties of such
complexes are equivalent without reference to regularity of the ring and that

they characterize coherent regular rings and von Neumann regular rings.

Introduction

In this short paper R denotes an associative unital ring. An R-module is a left
R-module, and right R-modules are considered modules over the opposite ring R◦.

Following Bertin [2] and Glaz [9] we say that R is left/right regular if every
finitely generated left/right ideal in R has finite projective dimension. We note
that this definition is broader than the one used by Iacob and Iyengar [10], which
implicitly includes the assumption that R is left/right noetherian.

As a corollary to our first main result, Theorem 2.1, we obtain the following:

Theorem 0. Let R be right coherent. The following conditions are equivalent.

(i) R is right regular.

(ii) Every complex of finitely generated free R-modules is semi-projective.

(iii) Every complex of projective R-modules is semi-projective.

(iv) Every complex of injective R◦-modules is semi-injective.

(v) Every complex of flat R-modules is semi-flat.

(vi) Every acyclic complex of projective R-modules is contractible.

(vii) Every acyclic complex of injective R◦-modules is contractible.

(viii) Every acyclic complex of flat R-modules is pure acyclic.

In fact, Theorem 2.1 shows that any right regular ring satisfies the conditions above.
The equivalence of the conditions in Theorem 0 was proved for commutative

noetherian rings by Christensen, Foxby, and Holm [5]. Beyond that realm it applies,
for example, to von Neumann regular rings; see Example 2.5.

The equivalence of some of the conditions in Theorem 0 was proved already in
[10], see Remark 1.7. Recently the equivalence of (i) and (iii)–(viii) was proved by
Gillespie and Iacob [8]; see Remark 4.4. Our proofs do not rely on these works.
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In Sections 3 and 4 we characterize right regularity of a right coherent ring R in
terms of properties of complexes of flat-cotorsion R-modules and complexes of fp-
injective R◦-modules. One upshot is that the equivalence of conditions (ii)–(viii)
in Theorem 0 can be established without invoking (i), the right regularity of the
ring; this is part of our second main result, Theorem 4.2.
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1. Complexes of projective, injective, and flat modules

We start by recalling some facts about complexes of projective and flat modules.
For convenience we give references to [5], which the reader may also consult for any
unexplained notation or terminology.

1.1. Recall from [5, Prop. 5.2.10] that a complex P of projective R-modules is
semi-projective if and only if HomR(P,A) is acyclic for every acyclic R-complex A.

For every R-complex X there is an exact sequence of R-complexes

(1.1.1) 0 −→ A −→ P −→ X −→ 0

where P is semi-projective and A is acyclic.

(a) For an acyclic complex P of projective R-modules the next conditions are
equivalent. (See [5, Prop. 4.3.29 and Cor. 5.5.26].)

(i) P is semi-projective.

(ii) P is contractible.

(iii) P is pure acyclic.

(b) If in an exact sequence 0 → P ′ → P → P ′′ → 0 of complexes of projective
R-modules two of the complexes are semi-projective, then so is the third.

1.2. Recall from [5, Prop. 5.4.9] that a complex F of flat R-modules is semi-flat if
and only if A⊗R F is acyclic for every acyclic R◦-complex A.

(a) An acyclic complex of flat R-modules is pure acyclic if and only if it is semi-
flat. (See [5, Thm. 5.5.22].)

(b) If in an exact sequence 0 → F ′ → F → F ′′ → 0 of complexes of flat R-modules
two of the complexes are semi-flat, then so is the third.

(c) A complex of projective R-modules is semi-flat if and only if it is semi-
projective. (See [5, Cor. 5.4.10 and Thm. 5.5.27].)

1.3 Proposition. The following conditions are equivalent.

(P0) Every complex of finitely generated free R-modules is semi-projective.

(P1) Every complex of projective R-modules is semi-projective.

(P2) Every acyclic complex of projective R-modules is contractible.

(P3) Every acyclic complex of projective R-modules is semi-projective.

(F1) Every complex of flat R-modules is semi-flat.

(F2) Every acyclic complex of flat R-modules is pure acyclic.

(F3) Every acyclic complex of flat R-modules is semi-flat.
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Proof. First we argue that conditions (P0)–(P3) are equivalent. In view of 1.1(a)
and the fact that free modules are projective, the following implications are clear:

(P0) ⇐= (P1) =⇒ (P2) =⇒ (P3) ,

which leaves two implications to prove.
(P3) =⇒ (P1): Let X be a complex of projective R-modules and consider the

exact sequence 0 → A → P → X → 0 from (1.1.1). It follows that A is a complex of
projective R-modules and, thus, semi-projective, so X is semi-projective by 1.1(b).

(P0) =⇒ (P1): Let S be a set of representatives for the isomorphism classes of
bounded above complexes of finitely generated free R-modules; it generates a cotor-
sion pair (⊥(S⊥), S⊥) in the category of R-complexes. By work of Bravo, Gillespie,
and Hovey [3, Thm. A.3] the left-hand class ⊥(S⊥) consists of all complexes of
projective R-modules. Thus, if every complex in S is semi-projective, then every
acyclic R-complex belongs to S⊥, whence every complex of projective R-modules
is semi-projective.

Condition (F1) evidently implies (F3). By 1.2(a) conditions (F2) and (F3) are
equivalent, and by 1.1(a) they imply (P2). This leaves one implication to prove.

(P1) =⇒ (F1): Let F be a complex of flat R-modules; by work of Neeman [11,
Thm. 8.6] there is an exact sequence

0 −→ A −→ P −→ F −→ 0

where P is a complex of projective R-modules and A is a pure acyclic complex of
flat R-modules. By assumption P is semi-projective and hence semi-flat, see 1.2(c).
The complex A is semi-flat by 1.2(a), so F is semi-flat by 1.2(b). □

1.4. Recall from [5, Prop. 5.3.16] that a complex I of injective R◦-modules is semi-
injective if and only if HomR◦(A, I) is acyclic for every acyclic R◦-complex A.

For every R◦-complex X there is an exact sequence of R◦-complexes

(1.4.1) 0 −→ X −→ I −→ A −→ 0

where I is semi-injective and A is acyclic.

(a) For an acyclic complex I of injective R◦-modules the following conditions are
equivalent. (See [5, Prop. 4.3.29] and Bazzoni, Cortés-Izurdiaga, and Estrada
[1, Props. 2.4(1) and 4.8(1)].)

(i) I is semi-injective.

(ii) I is contractible.

(iii) I is pure acyclic.

(b) If in an exact sequence 0 → I ′ → I → I ′′ → 0 of complexes of injective
R◦-modules, two of the complexes are semi-injective, then so is the third.

1.5 Proposition. The following conditions are equivalent.

(I1) Every complex of injective R◦-modules is semi-injective.

(I2) Every acyclic complex of injective R◦-modules is contractible.

(I3) Every acyclic complex of injective R◦-modules is semi-injective.

Proof. By 1.4(a) conditions (I2) and (I3) are equivalent, and (I1) evidently implies
(I3). For the converse let X be a complex of injective R◦-modules and consider
the exact sequence 0 → X → I → A → 0 from (1.4.1). It follows that A is
a complex of injective R◦-modules and, therefore, semi-injective, so X is semi-
injective by 1.4(b). □
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1.6 Remark. The conditions (I1)–(I3) imply the conditions from Proposition 1.3.
To see this it suffices to verify that (I3) implies (F2): Let F be an acyclic complex
of flat R-modules. The character complex HomZ(F,Q/Z) is an acyclic complex of
injective R◦-modules and, therefore, contractible, whence F is pure acyclic.

1.7 Remark. The equivalence of some of the conditions above are known from the
literature. Conditions (P1), (P2), (F1), and (F2) are equivalent by [10, Props. 3.1,
3.3, and 3.4]. Conditions (I1) and (I2) are equivalent by [10, Prop. 2.1].

Under the assumption that R is commutative and noetherian, the equivalence
of (P0) and (P1) was proved in [5, Thm. 20.2.12]. Tereshkin [13] has informed us
that he knows of the equivalence for any ring, as proved in Proposition 1.3, from
private communication with Positselski. The argument he implied is different from
the one we give here.

2. Regular rings

2.1 Theorem. Consider the following conditions on R.

(i) R is right regular.

(ii) Every finitely generated right ideal in R has finite flat dimension.

(iii) One/all of conditions (I1)–(I3) from 1.5 hold.

(iv) One/all of conditions (P0)–(P3) and (F1)–(F3) from 1.3 hold.

(v) Every R◦-module with a degreewise finitely generated projective resolution
has finite projective dimension.

The following implications hold,

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) ,

and if R is right coherent then (v) implies (i), i.e. the conditions are equivalent.

Proof. Evidently (i) implies (ii), and (iii) implies (iv) by Remark 1.6 .
(ii)=⇒(iii): By Proposition 1.5 it suffices to show that R satisfies (I2). Let I

be an acyclic complex of injective R◦-modules and set J =
∏

n∈Z Σ
nI. It is also an

acyclic complex of injective R◦-modules, and one has Zn(J) ∼= Zn−1(J) for every
n ∈ Z, so it follows from [1, Prop. 4.8(3)] that the cycle modules Zn(J) are injective.
Each cycle module Zn(I) is a direct summand of Zn(J) and hence injective, so I is
contractible.

(iv)=⇒(v): By Proposition 1.3 it suffices to show that (P0)–(P3) imply that
every R◦-module with a degreewise finitely generated projective resolution has finite

projective dimension. Let L
≃−−→ M be such a module and resolution. Further, let

E be a faithfully injective R-module and P
≃−−→ E a projective resolution. The

complex L∗ = HomR◦(L,R) of finitely generated free R-modules is by (P0) semi-
projective; this explains the first and third isomorphisms in the computation below.
Further, L∗ is by [11, Prop. 7.12] a compact object in the homotopy category of
projective R-modules; this explains the second isomorphism.

H0(HomR(L
∗,
∐

n∈Z Σ
nE)) ∼= H0(HomR(L

∗,
∐

n∈Z Σ
nP ))

∼=
∐

n∈Z H0(HomR(L
∗,ΣnP ))

∼=
∐

n∈Z H0(HomR(L
∗,ΣnE))

∼=
∐

n∈Z Hn(HomR(L
∗, E))

∼=
∐

n∈Z HomR(Hn(L
∗), E) .
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At the same time, the canonical embedding
∐

n∈Z Σ
nE →

∏
n∈Z Σ

nE is an isomor-
phism, so one has

H0(HomR(L
∗,
∐

n∈Z Σ
nE)) ∼= H0(HomR(L

∗,
∏

n∈Z Σ
nE))

∼=
∏

n∈Z H0(HomR(L
∗,ΣnE))

∼=
∏

n∈Z Hn(HomR(L
∗, E))

∼=
∏

n∈Z HomR(Hn(L
∗), E) .

As the relevant Hom, homology, and shift functors preserve (co)products in the
sense of [5, 3.1.8 and 3.1.20], it follows that the canonical embedding∐

n∈Z HomR(Hn(L
∗), E) −→

∏
n∈Z HomR(Hn(L

∗), E)

is an isomorphism. Thus, HomR(Hn(L
∗), E) and, therefore, Hn(L

∗) is non-zero for
only finitely many n ∈ Z. Thus, for n ≪ 0 the complex 0 → Zn(L

∗) → (L∗)n → · · ·
is acyclic, so splicing it with a projective resolution of Zn(L

∗) yields an acyclic
complex of projective R-modules. By (P3) it is contractible, so for n ≪ 0 the R-
module Zn(L

∗) is projective. As one has L ∼= HomR(L
∗, R) the R◦-module Zn(L)

is projective for n ≫ 0, so M has finite projective dimension.
(v)=⇒(i): Assume that R is right coherent and let a ⊂ R be a finitely generated

right ideal. The quotient R/a is a finitely presented R◦-module, and every such
module has a degreewise finitely generated projective resolution. It follows that
R/a and, therefore, a has finite projective dimension. □

Without the coherence assumption the last implication proved above may fail.

2.2 Example. Let k be a field. The local ring R = k[x1, x2, . . .]/(x1, x2, . . .)
2 with

maximal ideal m = (x1, x2, . . .) is not coherent; indeed the kernel m of the canonical
map R ↠ (x1) is not finitely generated. By [3, Prop. 2.5] the only R-modules that
admit a degreewise finitely generated projective resolution are the finitely generated
free R-modules. However, R is not a regular ring: The proof of [3, Prop. 2.5] shows
that every non-free finitely presented R-module has projective dimension at least 2.
Yet, the existence of any R-module of finite projective dimension at least 1 implies
the existence of an injective homomorphism ∂ : P ↪→ Q of free R-modules. As R is
perfect, one can assume that the image of ∂ is contained in mQ, see [5, Thms. B.55
and B.60], which forces the existence of a non-free finitely presented R-module of
projective dimension 1; a contradiction. Thus, every non-projective R-module has
infinite projective dimension.

The example above suggests that coherence is the “minimal” condition on R that
makes all five conditions in Theorem 2.1 equivalent. In the proof of Theorem 2.1,
the argument for the implication (iv)=⇒(v) relies on Neeman’s [11, Prop. 7.12],
which is also used in [10, 3.5]. Let us, therefore, record that this implication, under
the coherence assumption, has a more elementary proof.

2.3 Remark. Let R be right coherent and assume that it satisfies Theorem 2.1(iv).
Let M be a finitely presented R◦-module, and N an R-module with a semi-flat

resolution F
≃−−→ N . The canonical embedding Φ:

∐
n∈Z Σ

nF →
∏

n∈Z Σ
nF is a

quasi-isomorphism since the homology of either complex equals N in each degree.
The mapping cone of Φ is by (F2) pure acyclic, so M ⊗R Φ is a quasi-isomorphism
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as well; this explains the third isomorphism below.∐
n∈Z Tor

R
n (M,N) ∼=

∐
n∈Z H0(M ⊗R ΣnF )

∼= H0(M ⊗R

∐
n∈Z Σ

nF )

∼= H0(M ⊗R

∏
n∈Z Σ

nF )

∼=
∏

n∈Z H0(M ⊗R ΣnF ) ∼=
∏

n∈Z Tor
R
n (M,N)

As in the proof of Theorem 2.1 it follows that TorRn (M,N) is nonzero for only finitely
many n whence M , being finitely presented, has finite projective dimension. Thus
R satisfies Theorem 2.1(v).

The proof of Theorem 2.1 suggests that the equivalence, for a right coherent
ring, of all ten conditions from Propositions 1.3 and 1.5 “factors through” the right
regularity property of the ring, but their equivalence can, in fact, be established
without reference to this property; see Remark 3.3 and Theorem 4.2.

As an application of Theorem 2.1 we offer a short proof of a result already proved
by Glaz [9, Thm. 6.2.5] in the commutative case.

2.4 Proposition. Let R ⊆ S be right coherent rings such that S is faithfully flat
as an R◦-module. If S is right regular, then R is right regular.

Proof. Let F be an acyclic complex of flat R-modules. As S is right regular, the
acyclic complex S ⊗R F of flat S-modules is pure acyclic by Theorem 2.1; this is
condition (F2). The character complex

HomZ(S ⊗R F ,Q/Z) ∼= HomR(F,HomZ(S,Q/Z))
is contractible. By [5, Prop. 1.3.49] the R-module HomZ(S,Q/Z) is faithfully in-
jective, so F is pure acyclic, whence R is right regular by Theorem 2.1. □

2.5 Example. Let R be von Neumann regular, that is, every R-module is flat.
It follows that a product of flat R-modules is flat, whence R is right coherent.
Flatness of every R-module also means that R satisfies condition (F2), whence R is
right regular by Theorem 2.1. As von Neumann regularity is a left–right symmetric
property, R is also left coherent and left regular.

A von Neumann regular ring is a special case of a right coherent ring of finite
weak global dimension; any such ring evidently satisfies condition (F2) and is thus
right regular. Finkel Jones and Teply [6] give examples of such rings. Glaz [9,
Sect. 6.2] shows that the polynomial algebra in countably many variables over a
field is a coherent regular ring of infinite weak global dimension.

2.6 Corollary. The following conditions are equivalent.

(i) R is von Neumann regular.

(ii) Every complex of finitely presented R-modules is semi-projective.

(iii) Every R-complex is semi-flat.

(iv) Every acyclic R-complex is pure acyclic.

Proof. Condition (iii) implies (iv) by 1.2(a).
(i)=⇒(ii): Every R-module is flat, so every finitely presented R-module is pro-

jective. Further, R is per Example 2.5 right regular, so by Theorem 2.1 every
complex of projective R-modules is semi-projective.



ACYCLIC COMPLEXES AND REGULAR RINGS 7

(ii)=⇒(iii): An R-complex is a filtered colimit of complexes of finitely presented
R-modules, see [5, Prop. 3.3.21], i.e. a filtered colimit of semi-flat R-complexes, see
1.2(c), and hence semi-flat by [5, Prop. 5.4.13].

(iv)=⇒(i): Let M be an R-module. There is a projective R-module P and an
exact sequence 0 → K → P → M → 0; as it is pure, M is flat. □

3. Complexes of flat-cotorsion modules

A cotorsion pair (X,Y) in the category Mod(R) of R-modules induces two cotorsion
pairs (X-ac, semi-Y) and (semi-X,Y-ac) in the category of R-complexes; this was
proved by Gillespie [7, Prop. 3.6]. Here the class X-ac consists of acyclic complexes
X with cycle modules Zn(X) from X, while semi-Y consists of complexes Y of mo-
dules from Y with the property that HomR(X,Y ) is acyclic for every complex X in
X-ac. Similarly Y-ac consists of acyclic complexes Y with cycle modules Zn(Y ) from
Y, and semi-X consists of complexes X of modules from X with the property that
HomR(X,Y ) is acyclic for every complex Y from Y-ac. If the cotorsion pair (X,Y)
is complete and hereditary, then the induced cotorsion pairs are both complete; see
Yang and Liu [14, Thm. 3.5].

Let Prj(R), Inj(R), Flat(R), and Cot(R) be the classes of projective, injective,
flat, and cotorsion R-modules. For each of the cotorsion pairs (Prj(R),Mod(R))
and (Mod(R), Inj(R)) only one of the induced cotorsion pairs in the category of
R-complexes is of interest, and they yield the notions of semi-projective and semi-
injective complexes. We proceed to recall the key properties of the cotorsion pairs
induced by the complete hereditary cotorsion pair (Flat(R),Cot(R)) in Mod(R). A
module in Flat(R) ∩ Cot(R) is called flat-cotorsion.

3.1 Lemma. For every R-complex X there are exact sequences of R-complexes

(3.1.1) 0 −→ C ′ −→ F −→ X −→ 0 and 0 −→ X −→ C −→ F ′ −→ 0 .

Here F is semi-flat and C ′ is an acyclic complex of cotorsion modules, while C is a
complex of cotorsion modules, and F ′ is acyclic and semi-flat.

(a) An R-complex is semi-flat if and only if it belongs to semi-Flat(R), and a
complex in Flat(R)-ac is a pure acyclic complex of flat R-modules.

(b) Every complex of cotorsion R-modules belongs to semi-Cot(R) and every
acyclic complex of cotorsion R-modules belongs to Cot(R)-ac.

(c) For an acyclic complex F of flat-cotorsion R-modules the next conditions are
equivalent.

(i) F is semi-flat.

(ii) F is contractible.

(iii) F is pure acyclic.

Proof. An acyclic complex with flat cycle modules is a pure acyclic complex of flat
R-modules, and such a complex is semi-flat by 1.2(a). The remaining assertions
in parts (a) and (b) hold by [1, Thm. 1.3] and [4, Prop. 1.6]. It follows that the
exact sequences in (3.1.1) are standard approximation sequences associated to the
induced cotorsion pairs. In part (c) conditions (i) and (iii) are equivalent by 1.2(a).
Evidently, (ii) implies (iii), and the converse follows from part (b). Indeed, in a
pure acyclic complex of flat modules the cycle modules are flat and by (b) they are
cotorsion as well. □
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3.2 Proposition. The following conditions are equivalent and equivalent to con-
ditions (P0)–(P3) and (F1)–(F3) from 1.3.

(FC1) Every complex of flat-cotorsion R-modules is semi-flat.

(FC2) Every acyclic complex of flat-cotorsion R-modules is contractible.

(FC3) Every acyclic complex of flat-cotorsion R-modules is semi-flat.

Proof. By Lemma 3.1(c) conditions (FC2) and (FC3) are equivalent; (FC1) clearly
implies (FC3). For the converse let X be a complex of flat-cotorsion R-modules and
consider the exact sequence 0 → C ′ → F → X → 0 from (3.1.1). It follows that
C ′ is a complex of flat-cotorsion modules and, hence, semi-flat, so X is semi-flat
by 1.2(b). Thus, conditions (FC1)–(FC3) are equivalent. Evidently (F1) implies
(FC1). For the converse let X be a complex of flat R-modules and consider the
exact sequence 0 → X → C → F ′ → 0 from (3.1.1). It follows that C is a complex
of flat-cotorsion modules and, hence, semi-flat. Now X is semi-flat by 1.2(b). □

3.3 Remark. Assume that R is right coherent. For an acyclic complex I of in-
jective R◦-modules, the character complex HomZ(I,Q/Z) is an acyclic complex of
flat-cotorsion R-modules. If it is contractible, then I is pure acyclic and, therefore,
contractible by 1.4(a). Thus (FC2) implies (I2), i.e. conditions (P0)–(P3), (F1)–(F3),
(I1)–(I3), and (FC1)–(FC3) are per Remark 1.6 and Proposition 3.2 equivalent.

We can now add a condition to the characterization of von Neumann regular
rings. Over such a ring every cotorsion module is injective, so (v) below can be
seen as the counterpart to (I2) in the characterization of regular rings.

3.4 Corollary. The next condition is equivalent to conditions (i)–(iv) from 2.6.

(v) Every acyclic complex of cotorsion R-modules is contractible.

Proof. Recall the equivalent conditions (i)– (iv) from Corollary 2.6.
(v)=⇒(iii): Let M be an R-complex. For every acyclic complex C of cotorsion

R-modules the complex HomR(M,C) is acyclic, so M is semi-flat by Lemma 3.1(a).
(i)=⇒(v): Every R-module is flat, and R is right coherent and right regular by

Example 2.5, so every acyclic complex of cotorsion R-modules is a complex of flat-
cotorsion modules and hence contractible by Theorem 2.1 and Proposition 3.2. □

4. Complexes of fp-injective modules

Recall that an R◦-module E is fp-injective if Ext1R◦(F,E) = 0 holds for every
finitely presented R◦-module F . The fp-injective R◦-modules constitute the right-
hand class of a cotorsion pair; the modules in the left-hand class are known as fp-
projective. If R is right coherent, then this cotorsion pair, (FpPrj(R◦),FpInj(R◦)),
is complete and hereditary and in many ways dual to (Flat(R),Cot(R)). In the next
lemma we collect the key properties of the induced cotorsion pairs in the category
of R-complexes. We refer to complexes in semi-FpInj(R◦) as semi-fp-injective and
to modules in FpPrj(R◦) ∩ FpInj(R◦) as fp-pro-injective.

4.1 Lemma. Let R be right coherent. For every R◦-complex X there are exact
sequences of R◦-complexes

(4.1.1) 0 −→ X −→ E −→ P ′ −→ 0 and 0 −→ E′ −→ P −→ X −→ 0 .

Here E is semi-fp-injective and P ′ is an acyclic complex of fp-projective modules,
while P is a complex of fp-projective modules and E′ is acyclic and semi-fp-injective.
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(a) Every complex of fp-projective R◦-modules belongs to semi-FpPrj(R◦) and
every acyclic complex of fp-projective R◦-modules is in FpPrj(R◦)-ac.

(b) An acyclic complex of fp-injective R◦-modules is pure acyclic if and only if it
is semi-fp-injective.

(c) If in an exact sequence 0 → E′ → E → E′′ → 0 of complexes of fp-injective
R◦-modules two of the complexes are semi-fp-injective, then so is the third.

(d) For an acyclic complex E of fp-pro-injective R◦-modules the next conditions
are equivalent.

(i) E is semi-fp-injective.

(ii) E is contractible.

(iii) E is pure acyclic.

Proof. It follows from parts (a) and (b) that the exact sequences in (4.1.1) are
standard approximation sequences associated to the induced cotorsion pairs.

The assertions in part (a) were proved by Šaroch and Štov́ıček [12, Example 4.3].
(b): Let E be an acyclic complex of fp-injective R◦-modules. If E is semi-fp-

injective, then each cycle module Zn(E) is fp-injective, see Gillespie [7, Cor. 3.13(5)]
and, therefore, E is pure acyclic. Conversely, if E is pure acyclic, then the cycle
modules Zn(E) are fp-injective and E is semi-fp-injective by [7, Lem. 3.10].

(c): Let P be an acyclic complex of fp-projective R◦-modules. There is an
induced exact sequence

0 −→ HomR◦(P,E′) −→ HomR◦(P,E) −→ HomR◦(P,E′′) −→ 0

and if two of these complexes are acyclic, then so is the third.
(d): Let E be an acyclic complex of fp-pro-injective R◦-modules. Conditions (i)

and (iii) are equivalent by (b), and every contractible complex is pure acyclic. If
E is pure acyclic, then the cycle modules Zn(E) are fp-injective, and by part (a)
they are fp-projective as well, so E is contractible. □

4.2 Theorem. Let R be right coherent. The following conditions are equivalent,
and equivalent to conditions (P0)–(P3), (F1)–(F3), (I1)–(I3), and (FC1)–(FC3) from
1.3, 1.5, and 3.2.

(fpI1) Every complex of fp-injective R◦-modules is semi-fp-injective.

(fpI2) Every acyclic complex of fp-injective R◦-modules is pure acyclic.

(fpI3) Every acyclic complex of fp-injective R◦-modules is semi-fp-injective.

(fpPI1) Every complex of fp-pro-injective R◦-modules is semi-fp-injective.

(fpPI2) Every acyclic complex of fp-pro-injective R◦-modules is contractible.

(fpPI3) Every acyclic complex of fp-pro-injective R◦-modules is semi-fp-injective.

Proof. First we argue that the six conditions (fpI1)–(fpI3) and (fpPI1)–(fpPI3) are
equivalent. By Lemma 4.1(b,d) one has

(fpI1) =⇒ (fpI2) =⇒ (fpI3) and (fpPI1) =⇒ (fpPI2) =⇒ (fpPI3) ,

which leaves two implications to prove.
(fpI3) =⇒ (fpPI1): Let X be a complex of fp-pro-injective R◦-modules and con-

sider the exact sequence 0 → X → E → P ′ → 0 from (4.1.1). It follows that P ′

is a complex of fp-injective R◦-modules and, therefore, semi-fp-injective, so X is
semi-fp-injective by Lemma 4.1(c).
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(fpPI3) =⇒ (fpI1): Let X be a complex of fp-injective R◦-modules and consider
the exact sequence 0 → X → E → P ′ → 0 from (4.1.1). It follows that P ′ is an
acyclic complex of fp-pro-injective R◦-modules and, therefore, semi-fp-injective, so
X is semi-fp-injective by Lemma 4.1(c).

To finish, it suffices by Remark 1.6 and Proposition 3.2 to prove two implications.
(fpI2) =⇒ (I2): Let I be an acyclic complex of injective R◦-modules. It is pure

acyclic by (fpI2) and hence contractible by 1.4(a).
(FC2) =⇒ (fpI2): Let E be an acyclic complex of fp-injective R◦-modules. The

character complex HomZ(E,Q/Z) is an acyclic complex of flat-cotorsion R-modules
and hence contractible, so E is pure acyclic. □

4.3 Corollary. Let R be right coherent; it is right regular if and only if one/all of
the nineteen conditions (P0)–(P3), (F1)–(F3), (I1)–(I3), (FC1)–(FC3), (fpI1)–(fpI3),
and (fpPI1)–(fpPI3) from 1.3, 1.5, 3.2, and 4.2 hold.

Proof. Combine Theorems 2.1 and 4.2. □

4.4 Remark. Gillespie and Iacob [8, Thms. 4.3–4.6] characterize right coherent
right regular rings in terms of the equivalence of conditions (P1), (P2), (F1), (F2),
(I1), (I2), (fpI1), and (fpI2) from 1.3, 1.5, and 4.2, among other conditions not
considered here.

Finally we can add conditions to the characterization of von Neumann regular
rings. Over such a ring every fp-projective module is projective, so (vii) below can
be seen as the counterpart to (P2) in the characterization of regular rings.

4.5 Corollary. The following conditions are equivalent and equivalent to condi-
tions (i)–(v) from 2.6 and 3.4.

(vi) Every R-complex is semi-fp-injective.

(vii) Every acyclic complex of fp-projective R-modules is contractible.

Proof. Recall the equivalent conditions (i)– (v) from Corollaries 2.6 and 3.4.
(i)=⇒(vii): A finitely presented R-module is by Corollary 2.6 projective, so

every R-module is fp-injective. Thus, an fp-projective module is an fp-pro-injective
R-module. Further, R is by Example 2.5 left coherent and left regular, so every
acyclic complex of fp-pro-injective R-modules is contractible by Corollary 4.3.

(vii)=⇒(vi): Let M be an R-complex. A complex P in FpPrj(R)-ac is, in par-
ticular, an acyclic complex of fp-projective R-modules and, therefore, contractible.
Thus HomR(P,M) is acyclic, whence M is semi-fp-injective.

(vi)=⇒(i): As every R-module is fp-injective, every finitely presented R-module
is projective. Since a module is a filtered colimit of its finitely presented submodules,
it follows that every R-module is flat, so R is von Neumann regular. □
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