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Introduction

Let R be a commutative Noetherian ring and let M 6= 0 be a finite (that is,
finitely generated) R–module. The concept of M–sequences is central for the study
of R–modules by methods of homological algebra. Largely, the usefulness of these
sequences is based on the following properties:
1◦ When a is an ideal in R and M/aM 6= 0, the number

inf {` ∈ Z | Ext`
R(R/a,M) 6= 0},

the so-called a–depth of M , is the maximal length of an M–sequence in a, and
any maximal M–sequence in a is of this finite length.

2◦ If x1, . . . , xn is an M–sequence contained in p ∈ SuppR M , then the sequence
of fractions x1/1, . . . ,

xn/1, in the maximal ideal of Rp, is an Mp–sequence.
In commutative algebra, a wave of work dealing with complexes of modules was

started by A. Grothendieck, see [9]. The underlying idea is the following: Complexes
(that is, complexes of modules) are tacitly involved whenever homological methods
are applied, and since hyperhomological algebra, that is, homological algebra for
complexes, is a very powerful tool, it is better to work consistently with complexes.
Modules are also complexes, concentrated in degree zero, so results for complexes
yield results for modules as special cases.

Like most concepts for modules that of M–sequences can be extended to com-
plexes in several non-equivalent ways; this short paper explores two such possible
extensions: (ordinary) sequences and strong sequences for complexes. Ordinary
sequences have a property corresponding to 1◦, at least over local rings where they
coincide with the regular sequences suggested by H.–B. Foxby in [8, Sec. 12]. But
ordinary sequences may fail to localize properly, whereas strong sequences not only
enjoy the correspondent property of 2◦, but also that of 1◦ in the special case where
R is local and a the maximal ideal.

As a rule, the hyperhomological approach not only reproduces known results for
modules, but also strengthens some of them. In this case we show, among other
things, that also for a non-finite module M the a–depth is an upper bound for the
maximal length of an M–sequence in a, and the a–depth of such a module may be
finite even if M/aM = 0.

1. Conventions, Notation, and Background

Throughout this paper R is a non-trivial, commutative, Noetherian ring. We
work in the derived category of the category of R–modules; this first section fixes
the notation and sums up a few basic results.
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Notation 1.1. As usual, the set of prime ideals containing an ideal a in R is
written V(a); when xxx = x1, . . . , xn is a sequence in R we write V(xxx) for the set of
prime ideals containing xxx. The set of zero-divisors for an R–module M is denoted
by zR M .

The ring R is said to be local if it has a unique maximal ideal m, the residue
field R/m is then denoted by k. In general, for p ∈ Spec R the residue field of the
local ring Rp is denoted by k(p), that is, k(p) = Rp/pp.

Complexes 1.2. An R–complex X is a sequence of R–modules X` and R–linear
maps, so-called differentials, ∂X

` : X` → X`−1, ` ∈ Z. Composition of two consecu-
tive differentials always yields the zero map, i.e. ∂X

` ∂X
`+1 = 0. If X` = 0 for ` 6= 0,

we identify X with the module in degree 0, and an R–module M is considered as
a complex 0 → M → 0 with M in degree 0.

A morphism α : X → Y of R–complexes is a sequence of R–linear maps α` :
X` → Y` satisfying ∂Y

` α` − α`−1∂
X
` = 0 for ` ∈ Z. We say that a morphism is

a quasi-isomorphism if it induces an isomorphism in homology. The symbol ' is
used to indicate quasi-isomorphisms while ∼= indicates isomorphisms of complexes
(and hence modules). For an element r ∈ R the morphism rX : X → X is given by
multiplication by r.

The numbers supremum, infimum, and amplitude: supX =
sup {` ∈ Z | H`(X) 6= 0}, inf X = inf {` ∈ Z | H`(X) 6= 0}, and ampX =
supX − inf X, capture the homological position and size of X. By conven-
tion, sup X = −∞ and inf X = ∞ if X ' 0.

Derived Functors 1.3. The derived category of the category of R–modules is
the category of R–complexes localized at the class of all quasi-isomorphisms (see
[9] and [13]), we denote it by D(R). The symbol ' is used for isomorphisms in
D(R); a morphism of complexs is a quasi-isomorphism exactly if it represents an
isomorphism in the derived category, so this is in agreement with the notation
introduced above.

The full subcategories D+(R), D−(R), Db(R), and D0(R) consist of complexes
X with H`(X) = 0 for, respectively, ` � 0, ` � 0, |`| � 0, and ` 6= 0. By
Df(R) we denote the full subcategory of D(R) consisting of complexes X with
H`(X) a finite R–module for all ` ∈ Z. We also use combined notations: Df

−(R) =
D−(R)∩Df(R), etc. The category of R–modules, respectively, finite R–modules, is
naturally identified with D0(R), respectively, Df

0(R).
The right derived functor of the homomorphism functor for R–complexes is de-

noted by RHomR(−,−), and − ⊗L
R − is the left derived functor of the tensor

product functor for R–complexes; by [2] and [12] no boundedness conditions are
needed on the arguments. That is, for X, Y ∈ D(R) the complexes RHomR(X, Y )
and X ⊗L

R Y are uniquely determined up to isomorphism in D(R), and they have
the expected functorial properties. Note that TorR

` (M,N) = H`(M ⊗L
R N) and

Ext`
R(M,N) = H−`(RHomR(M,N)) for M,N ∈ D0(R) and ` ∈ Z.

Let p ∈ Spec R; by [2, 5.2] there are isomorphisms: (X⊗L
R Y )p ' Xp⊗L

Rp
Yp and

RHomR(Z, Y )p ' RHomRp(Zp, Yp) in D(Rp). The first one always holds, and the
second holds when Y ∈ D−(R) and Z ∈ Df

+(R).
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The next results are standard, cf. [6, (2.1)]. Let X ∈ D+(R) and Y ∈ D−(R),
then RHomR(X, Y ) ∈ D−(R) and there is an inequality:

(1.3.1) supRHomR(X, Y ) ≤ supY − inf X.

Setting i = inf X and s = supY we have Hs−i(RHomR(X, Y )) =
HomR(Hi(X),Hs(Y )); in particular,

(1.3.2) supRHomR(X, Y ) = supY − inf X ⇐⇒ HomR(Hi(X),Hs(Y )) 6= 0.

Let X, Y ∈ D+(R), then X ⊗L
R Y ∈ D+(R) and there is an inequality

(1.3.3) inf (X ⊗L
R Y ) ≥ inf X + inf Y ;

furthermore, with i = inf X and j = inf Y we have

(1.3.4) Hi+j(X ⊗L
R Y ) = Hi(X)⊗R Hj(Y ).

Depth over Local Rings 1.4. Let R be local; in [7, Sec. 3] the depth and (Krull)
dimension of an R–complex X are defined as follows:

depthR X = − supRHomR(k, X), for X ∈ D−(R); and

dimR X = sup {dim R/p− inf Xp | p ∈ Spec R}.
Note that for modules these notions agree with the usual ones.

It follows immediately by 1.3.1 that − supX ≤ depthR X for X ∈ D−(R), and
if s = supX > −∞ the next biconditional holds, cf. 1.3.2.

(1.4.1) depthR X = − supX ⇐⇒ m ∈ AssR Hs(X).

For X ∈ D−(R) and M ∈ Df
0(R) the next equality holds, cf. [7, 3.4].

(1.4.2) − supRHomR(M,X) = inf {depthRp
Xp | p ∈ SuppR M}.

Let X ∈ Df
−(R) and p ∈ Spec R; a complex version of [3, (3.1)], cf. [5, (13.13)],

accounts for the inequality

(1.4.3) depthR X ≤ depthRp
Xp + dim R/p.

Finally, let X 6' 0 belong to Df
−(R) and set s = sup X; applying 1.4.3 to

p ∈ AssR Hs(X) with dim R/p = dimR Hs(X) and using 1.4.1 we obtain the next
inequalities.

(1.4.4) depthR X + supX ≤ dimR Hs(X) ≤ dim R.

2. Ann, Supp, and Ass for Complexes

As for modules, regular elements for complexes are linked to concepts of zero-
divisors and associated prime ideals. These are introduced below within the relevant
setting of support and annihilators.

Weak Notions 2.1. Weak notions of support and annihilators for X ∈ D(R) are
defined by uniting/intersecting the corresponding sets for the homology modules
H`(X), cf. [7, Sec. 2] and [1, Sec. 2]:

SuppR X =
⋃
`∈Z

SuppR H`(X) = {p ∈ Spec R |Xp 6' 0}; and

AnnR X =
⋂
`∈Z

AnnR H`(X) = {r ∈ R | H(rX) = 0}.
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These are complemented by the next definitions. For X 6' 0 in D−(R) we set

assR X = AssR Hsup X(X) and zR X = zR Hsup X(X),

cf. [8, Sec. 12], and for X ' 0 we set assR X = ∅ and zR X = ∅.
The Small Support 2.2. The small, or homological, support for X ∈ D+(R) was
introduced in [7, Sec. 2]:

suppR X = {p ∈ Spec R |Xp ⊗L
Rp

k(p) 6' 0}.
Its principal properties developed ibid. are as follows:

Let X ∈ D+(R). Then

(2.2.1) X 6' 0 ⇐⇒ suppR X 6= ∅;
there is an inclusion

(2.2.2) suppR X ⊆ SuppR X,

and equality holds when X ∈ Df
+(R). For X, Y ∈ D+(R) the next equality holds.

(2.2.3) suppR(X ⊗L
R Y ) = suppR X ∩ suppR Y.

If R is local, the next biconditional holds for X ∈ Db(R).

(2.2.4) m ∈ suppR X ⇐⇒ depthR X < ∞.

Definitions 2.3. Let X ∈ D−(R); we say that p ∈ Spec R is an associated prime
ideal for X if and only if depthRp

Xp = − supXp < ∞, that is,

AssR X = {p ∈ SuppR X | depthRp
Xp + supXp = 0}

= {p ∈ SuppR X | pp ∈ assRp Xp},
cf. 1.4.1. The union of the associated prime ideals forms the set of zero-divisors for
X:

ZR X =
⋃

p∈AssR X

p.

Observations 2.4. Let X ∈ D−(R), p ∈ SuppR X, and set s = supXp (∈ Z); then

p ∈ AssR X ⇐⇒ pp ∈ assRp Xp ⇐⇒ p ∈ AssR Hs(X).

That is, p ∈ AssR X if and only if there exists an m ∈ Z such that p ∈ AssR Hm(X)
and p 6∈ SuppR H`(X) for ` > m. In particular there is an inclusion

(2.4.1) assR X ⊆ AssR X;

and since zR X = ∪ p∈assR X p, also the next inclusion holds.

(2.4.2) zR X ⊆ ZR X.

We also note that AssR X is a finite set for X in Df
b(R).

Modules 2.5. For M ∈ D0(R) the weak notions in 2.1 agree with the classical
notions for modules; furthermore, assR M = AssR M and zR M = ZR M , but
suppR M and SuppR M may differ if M is not finite.

Proposition 2.6. Let X ∈ D−(R); every minimal prime ideal in SuppR X belongs
to AssR X, that is,

MinR X ⊆ AssR X;
and for X ∈ Db(R) also the next inclusion holds.

AssR X ⊆ suppR X.
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Proof. Let X ∈ D−(R) and assume that p is minimal in SuppR X. As SuppRp
Xp =

{pp} it follows that pp ∈ assRp Xp and hence p ∈ AssR X.
Let X ∈ Db(R); the first biconditional in the next chain is 2.2.4.

p ∈ AssR X =⇒ depthRp
Xp < ∞

⇐⇒ pp ∈ suppRp
Xp

⇐⇒ Xp ⊗L
Rp

k(p) 6' 0 ⇐⇒ p ∈ suppR X.

�

Lemma 2.7. Let S be a multiplicative system in R; the following hold for p ∈
Spec R with p ∩ S = ∅:

p ∈ suppR X ⇐⇒ S−1p ∈ suppS−1R S−1X, if X ∈ D+(R); and(a)

p ∈ AssR X ⇐⇒ S−1p ∈ AssS−1R S−1X, if X ∈ D−(R).(b)

Proof. S−1p is a prime ideal in S−1R and

k(S−1p) = (S−1R/S−1p)S−1p
∼= k(p),

so

(S−1X)S−1p ⊗L
(S−1R)S−1p

k(S−1p) ' Xp ⊗L
Rp

k(p); and

RHom(S−1R)S−1p
(k(S−1p), (S−1X)S−1p) ' RHomRp(k(p), Xp).

(a) follows directly from the first isomorphism, and (b) follows from the second by
the definition of depth. �

3. Three Types of Sequences

We are now ready to define sequences — and strong and weak ones — for com-
plexes Y ∈ D−(R). The main results of this section are that strong Y –sequences
localize properly, and that for M ∈ D0(R) the notions of M–sequences and strong
M–sequences both agree with the classical notion for modules.

Koszul Complexes 3.1. For x ∈ R the complex K(x) = 0 → R
x−→ R → 0,

concentrated in degrees 1 and 0, is called the Koszul complex of x. Let xxx =
x1, . . . , xn be a sequence in R, the Koszul complex K(xxx) = K(x1, . . . , xn) of xxx
is the tensor product K(x1) ⊗R · · · ⊗R K(xn). The Koszul complex of the empty
sequence is R.

For Y ∈ D(R) we set K(xxx;Y ) = Y ⊗R K(xxx), and for m ∈ {1, . . . , n} we write
K(xxxm;Y ) for the complex K(x1, . . . , xm ;Y ). We also set K(xxx0;Y ) = Y , corre-
sponding to the empty sequence.

Observations 3.2. In the following xxx = x1, . . . , xn is a sequence in R and Y ∈
D(R).

For m ∈ {0, . . . , n− 1} we have

(3.2.1) K(xxx;Y ) = K(xm+1, . . . , xn ; K(xxxm;Y )),

by associativity of the tensor product. Let p ∈ Spec R and denote by x1/1, . . . ,
xn/1

the sequence of fractions in Rp corresponding to xxx. There is an isomorphism:

(3.2.2) K(x1, . . . , xn ;Y )p
∼= K(x1/1, . . . ,

xn/1 ;Yp).
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For each j the Koszul complex K(xj) is a complex of finite free, in particular
flat, modules, and hence so is K(xxx). Thus, we can identify K(xxx) with K(x1) ⊗L

R

· · · ⊗L
R K(xn) and K(xxx;Y ) with Y ⊗L

R K(xxx). It follows by 1.3.3 and 1.3.4 that

(3.2.3) inf K(xxx) ≥ 0 and H0(K(xxx)) = R/(xxx).

It is well-known (see [1, Sec. 2] or [11, 16.4]) that

(3.2.4) (x1, . . . , xn) ⊆ AnnR K(xxx;Y ).

It is easy to see that SuppR K(xj) = V(xj), and it follows by 2.2.2 and 2.2.3 that
SuppR K(xxx) = suppR K(xxx) = V(xxx). If Y ∈ D+(R) it follows, also by 2.2.3, that

(3.2.5) suppR K(xxx;Y ) = suppR Y ∩V(xxx).

Finally, it follows by the definition of tensor product complexes that
(3.2.6) if Y belongs D−(R), respectively, Df

−(R) then also K(xxx;Y ) ∈ D−(R), re-
spectively, K(xxx;Y ) ∈ Df

−(R); and
(3.2.7) if Y belongs Db(R), respectively, Df

b(R) then also K(xxx;Y ) ∈ Db(R), respec-
tively, K(xxx;Y ) ∈ Df

b(R).
In view of 3.2.6 the next definitions make sense.

Definitions 3.3. Let Y ∈ D−(R). An element x ∈ R is said to be regular for Y if
and only if x 6∈ zR Y and strongly regular for Y if and only if x 6∈ ZR Y .

Let xxx = x1, . . . , xn be a sequence in R. We say that
• xxx is a weak Y –sequence if and only if xj is regular for K(xxxj−1;Y ) for

each j ∈ {1, . . . , n};
• xxx is a Y –sequence if and only if xxx is a weak Y –sequence, and K(xxx;Y ) 6'

0 or Y ' 0; and
• xxx is a strong Y –sequence if and only if xj is strongly regular for

K(xxxj−1;Y ) for each j ∈ {1, . . . , n}, and K(xxx;Y ) 6' 0 or Y ' 0.

Remarks 3.4. For M ∈ D0(R) regular and strongly regular elements are the same,
cf. 2.5, and the definition agrees with the usual definition of M–regular elements,
cf. [11, Sec. 16]. In 3.8 we prove that also the definition of M–sequences agrees
with the classical one.

Let Y ∈ D−(R). By 2.4.2 a strongly regular element for Y is also regular for Y ;
hence any strong Y –sequence is a Y –sequence and, thereby, a weak one.

The empty sequence is a strong Y –sequence for any complex Y ∈ D−(R). A unit
u ∈ R is a strongly regular element for any complex Y ∈ D−(R) and constitutes a
weak Y –sequence, u can, however, not be part of a Y –sequence if Y 6' 0. On the
other hand, if Y ' 0 then any sequence is a strong Y –sequence. Later we supply
an example — 3.13 — to show that a Y –sequence need not be a strong one.

Observation 3.5. Let Y ∈ D−(R), let xxx = x1, . . . , xn be a sequence in R, and
let m ∈ {1, . . . , n − 1}. It follows by 3.2.1 that xxx is a Y –sequence, respectively, a
weak or a strong one, if and only if x1, . . . , xm is a Y –sequence, respectively, a weak
or strong one, and xm+1, . . . , xn is a K(xxxm;Y )–sequence, respectively, a weak or a
strong one.

Lemma 3.6. The following hold for x ∈ R and Y 6' 0 in D−(R):
(a) supK(x;Y ) ≤ supY + 1;
(b) sup K(x;Y ) = supY + 1 if and only if x ∈ zR Y ; and
(c) supK(x;Y ) ≥ supY if xHsup Y (Y ) 6= Hsup Y (Y ).



SEQUENCES FOR COMPLEXES 7

Proof. It is easy to see that K(x;Y ) is the mapping cone for the morphism xY ,
multiplication by x on Y . Thus, K(x;Y ) fits in the exact sequence of complexes

0 → Y → K(x;Y ) → Y [1] → 0,

where Y [1] is a shift of Y : Y [1]` = Y`−1 and ∂
Y [1]
` = −∂Y

`−1. Now, set s = supY
and examine the corresponding long exact sequence of homology modules:

0 → Hs+1(K(x;Y )) → Hs(Y )
xHs(Y )−−−−→ Hs(Y ) → Hs(K(x;Y )) → · · · .

�

Parts (a) and (b) have the following immediate consequence:

Corollary 3.7. Let Y ∈ D−(R); a sequence xxx = x1, . . . , xn in R is a weak Y –
sequence if and only if supK(xxxj ;Y ) ≤ supK(xxxj−1;Y ) for each j ∈ {1, . . . , n}.

Sequences for Modules 3.8. Let M be an R–module; the following hold for a
sequence xxx = x1, . . . , xn in R:

(a) H0(K(xxxj ;M)) = M/(x1, . . . , xj)M for j ∈ {1, . . . , n}.
(b) The next three conditions are equivalent.

(i) xxx is a weak M–sequence.
(ii) K(xxxj ;M) ' M/(x1, . . . , xj)M for each j ∈ {1, . . . , n}.
(iii) xj 6∈ zR M/(x1, . . . , xj−1)M for each j ∈ {1, . . . , n}1.

(c) The next three conditions are equivalent.
(i) xxx is a weak M–sequence, and M/(x1, . . . , xn)M 6= 0 or M = 0.
(ii) xxx is an M–sequence.
(iii) xxx is a strong M–sequence.

Proof. All three assertions are trivial if M = 0, so we assume that M is non-zero
and let xxx = x1, . . . , xn be a sequence in R.

(a): Considering, as always, M as a complex concentrated in degree 0, we see
that

(∗) inf K(xxxj ;M) ≥ 0 for j ∈ {1, . . . , n},
cf. 3.2.3 and 1.3.3, and H0(K(xxxj ;M)) = M ⊗R R/(x1, . . . , xj), cf. 1.3.4.

(b): For each j ∈ {1, . . . , n} we have inf K(xxxj ;M) ≥ 0, cf. (∗), so by 3.7 it follows
that xxx is a weak Y –sequence if and only if K(xxxj ;M) ∈ D0(R) for each j, that is
(by (a)), if and only if K(xxxj ;M) ' M/(x1, . . . , xj)M for each j. This proves the
equivalence of (i) and (ii); that of (ii) and (iii) follows from (a), 3.2.1, and 3.6 by
induction on n.

(c): First note that (i)⇒(ii) by (a); it is then sufficient to prove that (ii) implies
(iii): Suppose xxx is an M–sequence; for j ∈ {1, . . . , n} we have xj 6∈ zR K(xxxj−1;M),
and K(xxxj−1;M) ∈ D0(R) by (b), so zR K(xxxj−1;M) = ZR K(xxxj−1;M), cf. 2.5,
whence xxx is a strong M–sequence. �

Remark 3.9. Let M be a non-zero R–module and let xxx = x1, . . . , xn be a sequence
in R. Classically, cf. [11, Sec. 16], xxx is said to be an M–sequence if and only if
(1) xj 6∈ zR M/(x1, . . . , xj−1)M for j ∈ {1, . . . , n}, and (2) M/(x1, . . . , xn)M 6= 0.
A sequence satisfying only the first condition is called a weak M–sequence, cf. [4,

1For j = 1 this means x1 6∈ zR M .
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1.1.1]. It follows by (b) and (c) in 3.8 that the notions of (weak) M–sequences
defined in 3.3 agree with the classical ones.

Observation 3.10. Let Y 6' 0 belong to D−(R); it follows by 3.6 that a sufficient
condition for x ∈ R to be a Y –sequence is that x is a Hsup Y (Y )–sequence. This
condition is, of course, not necessary, see 5.3 for an example.

Theorem 3.11. Let Y ∈ Db(R) and p ∈ suppR Y ; if xxx = x1, . . . , xn is a strong
Y –sequence in p, then x1/1, . . . ,

xn/1 in the maximal ideal of Rp is a strong Yp–
sequence.

Proof. Let xxx/1 = x1/1, . . . ,
xn/1 denote the sequence of fractions in Rp correspond-

ing to xxx. Since p ∈ suppR K(xxx;Y ) by 3.2.5, it follows by 2.7(a) and 3.2.2 that
pp ∈ suppRp

K(xxx/1 ;Yp); in particular, K(xxx/1 ;Yp) 6' 0. We are now required
to prove that xj/1 6∈ ZRp K(x1/1, . . . ,

xj−1/1 ;Yp) for j ∈ {1, . . . , n}. This fol-
lows by the lemma below as p ∈ SuppR K(xxxj−1;Y ), xj 6∈ ZR K(xxxj−1;Y ), and
ZRp K(xxxj−1;Y )p = ZRp K(x1/1, . . . ,

xj−1/1 ;Yp). �

Lemma 3.12. Let Y belong to D−(R) and p ∈ SuppR Y ; if x ∈ p and x 6∈ ZR Y
then x/1 6∈ ZRp Yp.

Proof. We assume that x/1 ∈ ZRp Yp and want to prove that x belongs to ZR Y .
By assumption x/1 belongs to a prime ideal in AssRp Yp, that is, x/1 ∈ qp for some
q ∈ Spec R contained in p. Then x ∈ q, and q ∈ AssR Y by 2.7(b), so x ∈ ZR Y as
wanted. �

As the next example demonstrates, a Y –sequence does not necessarily localize
properly, not even if R is local and Y ∈ Df

b(R).

Example 3.13. Let R be a local ring, assume that there exist p, q ∈ Spec R such
that p 6⊆ q and q 6⊆ p, and consider the complex Y = 0 → R/q

0−→ R/p → 0. Let
x be an element in p not in q; it follows by 3.6 that x is a Y –sequence, but the
localization of Y at p is the field k(p), and x/1 ∈ Rp is certainly not a k(p)–sequence.

Note that if p ∩ q = 0, then there is no non-empty strong Y –sequence in p.

4. Length of Sequences and Depth of Complexes

In this section we prove that any (strong) sequence can be extended to a maximal
(strong) sequence, and we discuss various upper bounds for the length of such
sequences.

Maximal Sequences 4.1. Let Y 6' 0 belong to D−(R) and let a be an ideal in R.
A sequence xxx = x1, . . . , xn in a is said to be a maximal (strong) Y –sequence in a if
and only if it is a (strong) Y –sequence and not the first part of a longer (strong)
Y –sequence in a.

Lemma 4.2. Let Y 6' 0 belong to D−(R); if xxx = x1, . . . , xn is a Y –sequence then
xn 6∈ (x1, . . . , xn−1).

Proof. By 3.2.4 we have (x1, . . . , xn−1) ⊆ AnnR K(xxxn−1;Y ), hence (x1, . . . , xn−1) ⊆
zR K(xxxn−1;Y ) as K(xxxn−1;Y ) 6' 0, and it follows that xn 6∈ (x1, . . . , xn−1) as desired.

�
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Corollary 4.3. Let Y 6' 0 belong to D−(R) and let a be an ideal in R. Any
Y –sequence, respectively, strong Y –sequence in a can be extended to a maximal
Y –sequence, respectively, a maximal strong Y –sequence in a.

Proof. The assertions follow immediately by 4.2 as R is Noetherian. �

Depth 4.4. Let a be an ideal in R and let aaa = a1, . . . , at be a finite set of generators
for a. By definition, cf. [10, Sec. 2], the a–depth of Y ∈ D(R) is the number

depthR(a, Y ) = t− supK(aaa;Y );

it is, of course, independent of the choice of generating set aaa.
We note that depthR(a, Y ) < ∞ if and only if K(aaa;Y ) 6' 0 for some, equivalently

any, finite set of generators for a. Thus, by 2.2.1 and 3.2.5 we have

(4.4.1) depthR(a, Y ) < ∞ ⇐⇒ suppR Y ∩V(a) 6= ∅,

for Y ∈ Db(R).

Proposition 4.5. Let Y ∈ D−(R), let a be a proper ideal in R, and let M belong
to Df

0(R) with SuppR M = V(a). The following equalities hold:

depthR(a, Y ) = − supRHomR(R/a, Y )

= inf {depthRp
Yp | p ∈ V(a)}

= − supRHomR(M,Y ).

Proof. The first equality is [10, 6.1], the second and third both follow by 1.4.2. �

Remark 4.6. It follows from the first equality in 4.5 that the a–depth for complexes
extends the usual concept of a–depth for modules, cf. [11, 16.7]; furthermore, it
generalizes the concept of depth over local rings, that is, depthR Y = depthR(m, Y )
for Y ∈ D−(R), when R is local with maximal ideal m. By the second equality in
4.5 the next inequality holds for all Y ∈ D−(R) and all p ∈ Spec R.

depthR(p, Y ) ≤ depthRp
Yp.

Part (a) of the next theorem is often referred to as the ‘depth sensitivity of the
Koszul complex’.

Theorem 4.7. Let Y ∈ D(R) and let a be an ideal in R. The following hold:
(a) For any sequence xxx = x1, . . . , xn in a there is an equality:

depthR(a,K(xxx;Y )) = depthR(a, Y )− n.

(b) For any ideal b ⊆ a there is an inequality:

depthR(b, Y ) ≤ depthR(a, Y ).

Proof. Let aaa = a1, . . . , at be a set of generators for a and let xxx = x1, . . . , xn be a
sequence in a. Also xxx,aaa = x1, . . . , xn, a1, . . . , at is a generating set for a, and by
(3.2.1) we have K(xxx,aaa;Y ) = K(aaa; K(xxx;Y )). Hence,

depthR(a, Y ) = n + t− supK(xxx,aaa;Y )

= n + t− supK(aaa; K(xxx;Y ))

= n + depthR(a,K(xxx;Y ));

and this proves (a).



10 LARS WINTHER CHRISTENSEN

To prove (b), let bbb = b1, . . . , bu be a generating set for b, then bbb,aaa =
b1, . . . , bu, a1, . . . , at is a generating set for a. If supK(bbb;Y ) = ∞ the inequality
is trivial, so we assume that K(bbb;Y ) ∈ D−(R). As above we have K(bbb,aaa;Y ) =
K(aaa; K(bbb;Y )), so it follows by 3.6(a) that supK(bbb,aaa;Y ) ≤ supK(bbb;Y ) + t, whence

depthR(a, Y ) = u + t− supK(bbb,aaa;Y )

≥ u + t− (supK(bbb;Y ) + t)

= depthR(b, Y ),

as desired. �

Corollary 4.8. Let Y ∈ D−(R) and let a be a proper ideal in R. If depthR(a, Y ) <
∞ then the following hold for a sequence xxx = x1, . . . , xn in a.

(a) If xxx is a weak Y –sequence then xxx is a Y –sequence.
(b) If xxx is a Y –sequence then xxx is maximal in a if and only if a ⊆ zR K(xxx;Y ).
(c) If xxx is a strong Y –sequence then xxx is maximal in a if and only if a ⊆

ZR K(xxx;Y ).

Proof. Denote by b the ideal generated by xxx. It follows by 4.7(b) that
depthR(b, Y ) < ∞, in particular, K(xxx;Y ) 6' 0, cf. 4.4. The three assertions are
now immediate by the definitions in 3.3. �

Proposition 4.9. Let Y 6' 0 belong to D−(R) and let xxx = x1, . . . , xn be a weak
Y –sequence. The next inequality holds for any ideal a containing xxx.

n ≤ depthR(a, Y ) + supY.

Proof. Let b be the ideal generated by the sequence xxx = x1, . . . , xn in a. By 4.4,
4.7(b), and 3.7 we have

n = depthR(b, Y ) + supK(xxx;Y )

≤ depthR(a, Y ) + supY.

�

Corollary 4.10. Let Y 6' 0 belong to Db(R) and let xxx = x1, . . . , xn be a strong
Y –sequence. The following inequality holds:

(a) n ≤ inf {depthRp
Yp + supYp | p ∈ suppR Y ∩V(xxx)};

and if Y ∈ Df
b(R), also the next inequality holds.

(b) n ≤ inf {dim Rp | p ∈ SuppR Y ∩V(xxx)}.

Proof. Let Y ∈ Db(R) and assume that xxx = x1, . . . , xn is a strong Y –sequence in
p ∈ suppR Y . By 3.11 the sequence x1/1, . . . ,

xn/1 in the maximal ideal of Rp is a
strong Yp–sequence, so by 4.9 we have n ≤ depthRp

Yp + supYp, and this proves
(a). If Y ∈ Df

b(R) then suppR Y = SuppR Y , cf. 2.2.2, and Yp ∈ Df
b(Rp), so (b)

follows from (a) as depthRp
Yp + supYp ≤ dim Rp by 1.4.4. �
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Theorem 4.11. Let Y ∈ Df
−(R) and let a be a proper ideal in R. If

depthR(a, Y ) < ∞ then the following conditions are equivalent for a Y –sequence
xxx = x1, . . . , xn in a:

(i) xxx is a maximal Y –sequence in a.
(ii) a ⊆ zR K(xxx;Y ).
(iii) depthR(a,K(xxx;Y )) + supK(xxx;Y ) = 0.
(iv) depthR(a, Y ) + supK(xxx;Y ) = n.

Proof. We assume that Y ∈ Df
−(R) with depthR(a, Y ) < ∞; the equivalence of (i)

and (ii) is 4.8(b). From 4.7(a) it follows that (iii)⇔ (iv); this leaves us with one
equivalence to prove:

Set K = K(xxx;Y ) and s = supK (∈ Z); by 4.5 and 1.3.1 we have

−depthR(a,K) = supRHomR(R/a,K) ≤ s,

and equality holds if and only if HomR(R/a,Hs(K)) 6= 0, cf. 1.3.2. Since Hs(K) is
a finite module, cf. 3.2.6, it is well-known that HomR(R/a,Hs(K)) 6= 0 if and only
if a ⊆ zR K, and this proves the equivalence of (ii) and (iii). �

Remarks 4.12. Let Y , a, and xxx be as in 4.11. Since K(xxx;Y ) ∈ Df
−(R), cf. 3.2.6,

it follows that

a ⊆ zR K(xxx;Y ) ⇐⇒ a ⊆ p for some p ∈ assR K(xxx;Y ).

This should be compared to (ii) and (iii) in 4.15.
For a finite R–module M and an ideal a in R it follows by 4.4.1 and 2.2.2 that

depthR(a,M) < ∞ ⇐⇒ M/aM 6= 0.

Spelling out 4.11 for modules — as done in 4.14 — we recover the property 1◦

advertised in the introduction. Thus, in a sense, 4.11 describes the corresponding
property for complexes Y ∈ Df

−(R); but unless R is local (see 5.4) the length of a
maximal Y –sequence need not be a well-determined integer:

Let Y and a be as in 4.11. If depthR(a, Y ) + supY = 0 then a ⊆ zR Y , so the
empty sequence is the only Y –sequence in a. If depthR(a, Y ) + sup Y = 1 then all
maximal Y –sequences in a are of length 1, but if depthR(a, Y ) + supY > 1 there
can be maximal Y –sequences in a of different length. This is illustrated by the
example below.

Example 4.13. Let k be a field, set R = k[U, V ], and consider the R–complex
Y = 0 → R/(U −1) → 0 → k → 0 concentrated in degrees 2, 1, and 0. Let a be the
maximal ideal a = (U, V ), then depthR(a, Y ) = 2− 2 = 0 and it is straightforward
to check that U as well as V,U is a maximal Y –sequence in a.

Corollary 4.14. Let M be a finite R–module and let a be a proper ideal in R. If
depthR(a,M) < ∞ then the next four conditions are equivalent for an M–sequence
xxx = x1, . . . , xn in a.

(i) xxx is a maximal M–sequence in a.
(ii) a ⊆ zR M/(x1, . . . , xn)M .
(iii) depthR(a,M/(x1, . . . , xn)M) = 0.
(iv) depthR(a,M) = n.
In particular, the maximal length of an M–sequence in a is a well-determined

integer: depthR(a,M) = inf {` ∈ Z | Ext`
R(R/a,M) 6= 0}, and all maximal M–se-

quences in a have this length.
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Proof. By 3.8 we have K(xxx;M) ' M/(x1, . . . , xn)M 6= 0, in particular,
supK(xxx;M) = 0. The equivalence of the four conditions now follows from 4.11,
and the last assertions are immediate, cf. 4.5. �

Other well-known characterizations of maximal sequences for finite modules are
recovered by reading M/(x1, . . . , xn)M for K(xxx;M) in the next theorem.

Theorem 4.15. Let Y ∈ Df
b(R) and let a be a proper ideal in R. If depthR(a, Y ) <

∞ then the next four conditions are equivalent for a strong Y –sequence xxx =
x1, . . . , xn in a.

(i) xxx is a maximal strong Y –sequence in a.
(ii) a ⊆ ZR K(xxx;Y ).
(iii) a ⊆ p for some p ∈ AssR K(xxx;Y ).
(iv) There is a prime ideal p ∈ SuppR Y containing a such that the strong Yp–

sequence x1/1, . . . ,
xn/1 in Rp is a maximal Yp–sequence.

Proof. The equivalence (i)⇔ (ii) is immediate as depthR(a, Y ) < ∞, cf. 4.8(c).
(ii) ⇔ (iii): Clearly, (iii) implies (ii). On the other hand, K(xxx;Y ) ∈ Df

b(R)
by 3.2.7, so ZR K(xxx;Y ) = ∪ p∈AssR K(xxx;Y ) p is a finite union, cf. 2.4. Thus, if a ⊆
ZR K(xxx;Y ) then a must be contained in one of the prime ideals p ∈ AssR K(xxx;Y ).

(iii)⇔ (iv): Let p be a prime ideal in SuppR Y containing a, then depthRp
Yp <

∞, cf. 2.2.2 and 2.2.4, and by 3.11 the sequence of fractions xxx/1 = x1/1, . . . ,
xn/1 in

Rp is a strong Yp–sequence. By 3.2.2 there is an equality:

depthRp
K(xxx;Y )p + supK(xxx;Y )p = depthRp

K(xxx/1 ;Yp) + supK(xxx/1 ;Yp).

By 4.11 and the definition of associated prime ideals it now follows that xxx/1 is a
maximal Yp–sequence if and only if p ∈ AssR K(xxx;Y ). �

5. Local Rings

In this section R is local with maximal ideal m and residue field k = R/m. We
focus on (strong) sequences for complexes in Df

−(R) and strengthen some of the
results from the previous section. The results established here are essentially those
lined out by H.–B. Foxby in [8, Sec. 12], exceptions are 5.7 and 5.9.

Proposition 5.1. Let Y 6' 0 belong to Df
−(R); the following hold for a sequence

xxx = x1, . . . , xn in m:
(a) There are inequalities

supK(xxx;Y ) ≥ · · · ≥ supK(xxxj ;Y ) ≥ supK(xxxj−1;Y ) ≥ · · · ≥ supY ;

in particular, K(xxx;Y ) 6' 0.
(b) The next three conditions are equivalent.

(i) xxx is a weak Y –sequence.
(ii) xxx is a Y –sequence.
(iii) supK(xxx;Y ) = supY .

(c) If xxx is a Y –sequence then so is any permutation of xxx.

Proof. (a): The inequalities hold by Nakayama’s lemma and 3.6(c); in particular
we have supK(xxx;Y ) ≥ supY > −∞, so K(xxx;Y ) 6' 0.
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(b): It follows by 3.7 that xxx is a weak Y –sequence if and only if equality holds
in each of the inequalities in (a). This proves the equivalence of (i) and (iii); also
(i)⇔ (ii) is immediate by (a).

(c): By commutativity of the tensor product the number supK(xxx;Y ) is unaf-
fected by permutations of xxx, so the last assertion follows by (b). �

The next corollary is an immediate consequence of 5.1(a). The example below
shows that the equality sup K(xxx;Y ) = supY need not hold, not even for strong
Y –sequence, if Y does not have finite homology modules.

Corollary 5.2. Let a be a proper ideal in R. If Y ∈ Df
−(R) then

depthR(a, Y ) < ∞ ⇐⇒ Y 6' 0.

Example 5.3. Let R be a local integral domain, not a field, and let B = R(0) 6= R

be the field of fractions. Consider the complex Y = 0 → B
0−→ R → 0. For any

p ∈ Spec R we have supYp = supY , so AssR Y = assR Y = AssR B = {0}. Let
x 6= 0 be an element in the maximal ideal of R, it follows that x 6∈ ZR Y and
K(x;Y ) ' R/(x) 6= 0, so x is a strong Y –sequence, but supK(x;Y ) < supY .

Theorem 5.4. Let Y 6' 0 belong to Df
−(R) and let a be a proper ideal in R. The

next four conditions are equivalent for a Y –sequence xxx = x1, . . . , xn in a.
(i) xxx is a maximal Y –sequence in a.
(ii) a ⊆ zR K(xxx;Y ).
(iii) depthR(a,K(xxx;Y )) + supY = 0.
(iv) depthR(a, Y ) + supY = n.
In particular, the maximal length of a Y –sequence in a is a well-determined

integer: depthR(a, Y ) + sup Y , and all maximal Y –sequences in a have this length.

Proof. By 5.2 and 5.1 we have depthR(a, Y ) < ∞ and supK(xxx;Y ) = supY , so the
equivalence is a special case of 4.11, and the last assertions follow. �

Corollary 5.5. Let Y 6' 0 belong to Df
−(R); the integer

depthR Y + supY

is the maximal length of a Y –sequence, and any maximal Y –sequence is of this
length. Furthermore, the following inequalities hold:

depthR Y + supY ≤ dimR Hsup Y (Y ) ≤ dim R.

Proof. A Y –sequence must be contained in m, and the first part is 5.4 applied to
a = m. The inequalities are 1.4.4. �

Corollary 5.6. Let Y 6' 0 belong to Df
−(R) and M ∈ Df

0(R). The maximal length
of a Y –sequence in AnnR M is a well-determined integer n:

n = − supRHomR(M,Y ) + supY

= inf {depthRp
Yp | p ∈ V(AnnR M)}+ supY ;

and any maximal Y –sequence in AnnR M is of this length.

Proof. It follows by 5.4 that a Y –sequence xxx = x1, . . . , xn in AnnR M is maxi-
mal if and only if n = depthR(AnnR M,Y ) + supY . As M is finite SuppR M =
V(AnnR M), and the desired equalities follow by 4.5. �



14 LARS WINTHER CHRISTENSEN

It follows from the last remark in 3.13 that 5.6 has no counterpart for strong
sequences, but 5.5 does have one:

Corollary 5.7 (to 4.15). Let Y 6' 0 belong to Df
b(R). A maximal strong Y –

sequence is a maximal Y –sequence; in particular, the maximal length of a strong
Y –sequence is a well-determined integer n:

n = depthR Y + supY ≤ dimR Hsup Y (Y ) ≤ dim R;

and any maximal strong Y –sequence is of this length.

Proof. Let xxx = x1, . . . , xn be a maximal strong Y –sequence, that is, maximal in m.
Since depthR Y < ∞ by 5.2 it follows by 4.15 that xxx is a maximal Y –sequence, and
the desired equality and inequalities follow from 5.5. �

The number depthR Y + supY provides an upper bound for the length of a Y –
sequence, even if Y does not have finite homology modules, cf. 4.9. In view of 5.5 it
is natural to ask if also dim R is a bound. If dim R = 0 it obviously is, cf. 1.4.1, and
so it is if dim R = 1 and depthR Hsup Y (Y ) < ∞ (this follows by [10, 2.3]); but the
next example shows that the answer is negative. For bounded complexes, however,
a bound involving dim R is available, see 5.9.

Example 5.8. Let k be a field and consider the local ring R = k[[U, V ]]/(UV ) with
dim R = 1. The residue classes u and v of, respectively, U and V generate prime
ideals in R; we set Y = 0 → R(v)

0−→ R/(u) → 0. Multiplication by u on R(v) is an
isomorphism, v is a R/(u)–sequence, and it follows that u, v is a Y –sequence.

Corollary 5.9 (to 4.9). Let Y ∈ Db(R) and let xxx = x1, . . . , xn be a weak Y –
sequence in m. If m ∈ suppR Y then xxx is a Y –sequence, and

n ≤ depthR Y + supY ≤ dimR Y + supY ≤ dim R + amp Y.

Proof. It follows by 2.2.4 that depthR Y < ∞, so xxx is a Y –sequence by 4.8(a).
The first inequality is a special case of 4.9. The inequality depthR Y ≤ dimR Y
holds by [7, 3.9]; this gives the second inequality, and the third one follows as
dimR Y ≤ dim R− inf Y by the definition of dimension. �

We close with an example, illustrating an application of sequences for complexes.

Example 5.10 (Parameter Sequences). In the following we assume that R admits
a dualizing complex D, cf. [9], and let xxx = x1, . . . , xn be a sequence in R. For Y 6' 0
in Df

b(R) it follows by 3.2.7, 3.6, and well-known properties of dualizing complexes
that

dimR K(xxx;Y ) = dimR Y − n ⇐⇒ xxx is a RHomR(Y, D)–sequence;

and by [7, 3.12] there is an equality:

dimR K(xxx;Y ) = sup {dimR(Y ⊗L
R H`(K(xxx)))− ` | ` ∈ Z}.

Let M be a finite R–module; we say that xxx is an M–parameter sequence if and
only if dimR M/(x1, . . . , xn)M = dimR M − n, that is, if and only if xxx is part of
a system of parameters for M . It follows by the definition of Krull dimension,
Nakayama’s lemma, and 3.2.3 that

dimR K(xxx;M) = sup {dimR(M ⊗L
R H`(K(xxx)))− ` | ` ∈ Z}

= sup {dimR(M ⊗R H`(K(xxx)))− ` | ` ∈ Z}
= dimR M/(x1, . . . , xn)M.
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Thus, xxx is an M–parameter sequence if and only if xxx is a RHomR(M,D)–sequence.
In particular, any M–sequence is a RHomR(M,D)–sequence. Only if M is Cohen–
Macaulay will RHomR(M,D) have homology concentrated in one degree, that is,
be equivalent to a module up to a shift.
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