
CHANGE OF BASIS

Let V and W be vector spaces, and let T : V −→ W be a linear transformation. Given
bases S and B for V and W , the transformation T is represented by a matrix A; that is

A[v]S = [T (v)]B .

For another choice of bases, S ′ and B′, the transformation is represented by a matrix A′.
If P is the transition matrix from S ′ to S and Q is the transition matrix from B′ to B, i.e.

[v]S = P [v]S′ and [w]B = Q[w]B′ ,

then A′ is determined by A via the formula

A′ = Q−1AP .
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