Some Review Problems

- 1. Find the position vector $\vec{R}(t)$ and acceleration vector $\vec{A}(t)$ given the velocity of a moving particle $\vec{V}(t) = \vec{i} + 4\pi \cos(2\pi t)\vec{k}$ and initial position $\vec{R}(2) = \vec{j}$.
- 2. Find the unit tangent vector $\vec{T}(t)$ and principal unit normal vector $\vec{N}(t)$ for the curve given by $\vec{R}(t) = 3\sin(4t)\vec{i} - 2\vec{j} - 3\cos(4t)\vec{k}.$
- 3. (a) Find the curvature and radius of curvature of the plane curve given by the equation $y = x + e^{x-2}$ at the point $P_0(x_0, y_0)$ on this curve where $x_0 = 2$.
 - (b) Use the cross derivative formula to find the curvature of the curve $\vec{R}(t) = (1-t)\vec{i} t^2\vec{j} + t\vec{k}$.
- 4. Find the tangential component of acceleration A_T and normal component of acceleration A_N of an object's acceleration $\vec{A}(t)$ if the position vector is $\vec{R}(t) = e^{-t}\vec{i} - e^t\vec{k}$. Evaluate A_T and A_N at t = 0.
- 5. Find the limit: $\lim_{(x,y)\to(2,1)} \frac{x^4-16y^4}{x^2-4y^2}$. Show the limit does not exist: $\lim_{(x,y)\to(0,0)} \frac{3xy}{x^2+y^2}$
- (a) Determine the first order partial derivatives f_x and f_y and the second order partial derivatives f_{xx} , f_{xy} , and f_{yy} of the function $f(x,y) = e^{xy}\cos(y)$.
 - (b) Find the total differential of this function f(x,y) at the point (1,0).
 - (c) Approximate the increment $\Delta f(1.01, -0.02)$.
- 7. Write the equation for the tangent plane to the surface given by the function $z = f(x,y) = \frac{4}{x^2 + y^2 6}$ at the point $P_0(x_0, y_0, z_0)$ on this surface with $x_0 = 1, y_0 = -1$.
- (a) Apply the chain rule for two independent parameters to find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$, where

$$z = \tan\left(\frac{y}{x}\right)$$
 and $x = uv$, $y = \frac{u}{v}$

(b) Assume z is an implicit function of x and y, z = f(x, y). If $x^2 - 2yz + z^3 = 10$ use implicit differentiation and the chain rule to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

Answers:

(b)
$$\Re = \frac{\sqrt{8}}{(a+4t^2)^{3/2}}$$

4.
$$A_T = \frac{-e^{2t} + e^{2t}}{\sqrt{e^{-2t} + e^{2t}}}$$
, $A_N = \frac{2}{\sqrt{e^{-2t} + e^{2t}}}$ At $t = 0$, $A_T = 0$, $A_N = \sqrt{2}$

- 5. Limit = 8, Limit does not exist since for y=mx $L = \frac{3m}{1+m^2}$, for different m, the Limit is not unique.

 6. (a) $f_x = ye^{xy}\cos(y)$, $f_y = xe^{xy}\cos(y) + e^{xy}\sin(y)$, $f_{xx} = y^2e^{xy}\cos(y)$, $f_{xy} = e^{xy}(\cos(y) + xy\cos(y) + y\sin(y))$ (b) $df = ye^{xy}\cos(y)dx + (xe^{xy}\cos(y) e^{xy}\sin(y))dy = dy$ $f_{yy} = e^{xy}(x^2\cos(y) 2x\sin(y) \cos(y))$
- - (c) $\Delta f \approx df = f_x \Delta x + f_u \Delta y = \Delta y = -0.02$

7.
$$2+1=-\frac{1}{2}(\chi-1)+\frac{1}{2}(\chi+1)$$

7.
$$Z+1=-\frac{1}{2}(\chi-1)+\frac{1}{2}(\chi+1)$$
8. (a) $Z_{\mu}=-\frac{1}{2}sec^{2}(\frac{1}{\chi})v+\frac{1}{\chi}sec^{2}(\frac{1}{\chi})\frac{1}{v}$, $Z_{\nu}=-\frac{1}{2}sec^{2}(\frac{1}{\chi})u-\frac{1}{\chi}sec^{2}(\frac{1}{\chi})(\frac{1}{v^{2}})$

(b)
$$Z_{\chi} = \frac{2\chi}{2y - 3z^2}$$
, $Z_{y} = \frac{2z}{3z^2 - 2y}$

Review for Exam # 1, Math 2350-H02 Chapters 10.1-10.5, 11.1-11.5

Review: Homework and Webwork Problems.

Topics: Vector-valued functions and curves in space: $\vec{F}(t) = f_1(t)\vec{i} + f_2(t)\vec{j} + f_3(t)\vec{k}$. Dot product is a scalar: $\vec{F}(t) \cdot \vec{G}(t)$. Cross product is a vector: $\vec{F}(t) \times \vec{G}(t)$, $\lim_{t \to t_0} \vec{F}(t)$, $\lim_{t \to t_0} \vec{F}(t) \times \vec{G}(t)$, other limits.

Position vector:
$$\vec{R}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$
. (1)

Velocity vector: $\vec{V}(t) = \vec{R}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}$.

Acceleration vector: $\vec{A}(t) = \vec{R}''(t) = x''(t)\vec{i} + y''(t)\vec{j} + z''(t)\vec{k}$.

Speed: $\|\vec{V}(t)\| = \frac{ds}{dt}$, Direction of motion: $\frac{V(t)}{\|V(t)\|}$. If $\vec{V}(t_0) \neq \vec{0}$, then $\vec{V}(t_0)$ is tangent to the graph of $\vec{R}(t)$ at $t = t_0$.

$$\int \vec{F}(t) dt = \left(\int f_1(t) dt + c_1\right) \vec{i} + \left(\int f_2(t) dt + c_2\right) \vec{j} + \left(\int f_3(t) dt + c_3\right) \vec{k}.$$

Motion of a projectile: $x(t) = (v_0 \cos(\alpha))t$, $y(t) = -\frac{1}{2}gt^2 + (v_0 \sin(\alpha))t + s_0$, where v_0 = initial speed, α = angle of elevation, $s_0 = \text{initial height}$, and g = acceleration due to gravity, e.g., $32 \text{ f/s}^2 \text{ or } 9.8 \text{ m/s}^2$.

Time of flight: T_f when y = 0. Range of flight: $R_f = v_0 \cos(\alpha) T_f$.

Unit Tangent vector: $\vec{T}(t) = \frac{R'(t)}{\|\vec{R}'(t)\|}$. Principal Unit Normal vector: $\vec{N}(t) = \frac{T'(t)}{\|\vec{T}'(t)\|}$.

Given the position vector $\vec{R}(t)$ in (1), the arclength from t_0 to t is $s(t) = \int_{t_0}^{t} \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2 + \left(\frac{dz}{du}\right)^2} dt$.

Curvature: $\kappa = \left\| \frac{d\vec{T}}{ds} \right\| = \frac{\|\vec{T}'(t)\|}{\|\vec{R}'(t)\|} = \frac{\|\vec{R}'(t) \times \vec{R}''(t)\|}{\|\vec{R}'(t)\|^3}$. Plane curve: $\kappa = \frac{|f''(x)|}{[1 + (f'(x))^2]^{3/2}}$

Radius of curvature, Center of curvature. What is the curvature of a circle of radius r? What type of curve has a curvature $\kappa = 0$?

Tangent and Normal components of Acceleration: $\vec{A}(t) = A_T \vec{T} + A_N \vec{N}$,

$$A_T = \frac{d^2s}{dt^2} = \frac{\vec{R}'(t) \cdot \vec{R}''(t)}{\|\vec{R}'(t)\|}, \quad A_N = \kappa \left(\frac{ds}{dt}\right)^2 = \frac{\|\vec{R}'(t) \times \vec{R}''(t)\|}{\|\vec{R}'(t)\|}$$
$$\|\vec{A}(t)\|^2 = A_T^2 + A_N^2$$

Give an example of a curve with $A_T = 0$. An example with $A_N = 0$.

Functions of several variables: $z = f(x, y) = \text{surface in space } \mathbf{R}^3$; $w = g(x, y, z) = \text{hypersurface in } \mathbf{R}^4$. $f(x, y) = \frac{1}{2}$ constant = level curve in the x-y plane. g(x, y, z) = constant = level surface in space. Sketch level curves and level surfaces, Domain and Range of functions. Limits: $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$. Show a limit does not exist. Determine values (x, y) in the plane where f(x, y) is continuous.

Partial differentiation: $\frac{\partial f}{\partial x} = f_x$, $\frac{\partial f}{\partial y} = f_y$, Higher order derivatives, $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, $f_{xy} = \frac{\partial^2 f}{\partial y \partial x}$, $f_{yx} = \frac{\partial^2 f}{\partial x \partial y}$, etc.

Tangent plane to z = f(x, y) at a point $P_0(x_0, y_0, z_0)$: $z - z_0 = f_x(x - x_0) + f_y(y - y_0)$, where the partials are evaluated at (x_0, y_0) ; Incremental Approximation at $P(x_0, y_0)$: $\Delta f = f(x + \Delta x, y + \Delta y) - f(x, y) \approx f_x \Delta x + f_y \Delta y$, where the partials are evaluated at (x_0, y_0) ; Total differential for $f(x, y, z) : df = f_x dx + f_y dy + f_z dz$; Differentiability of a function f, differentiability implies continuity.

Chain rule for z = f(x, y), $x \equiv x(t)$, $y \equiv y(t)$ $z \equiv f(x(t), y(t))$: $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$. For z = f(x, y), $x \equiv x(u, v)$, $y \equiv y(u, v)$, z = f(x(u, v), y(u, v)): $\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$, $\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$.

Implicit differentiation: F(x, y(x)) = c: $F_x + F_y \frac{dy}{dx} = 0$ which means $\frac{dy}{dx} = -\frac{F_x}{F_x}$

Higher order differentiation with implicit differentiation and the chain rule.

Additional Problems: Chapter 10: Practice Problems p. 680 # 24-30, Supplementary Problems pp. 680-682, # 3,11,17, 25,37,41,56, 61. Chapter 11: Practice Problems pp. 770-771 # 31, 32, 34, 35, 36. Supplementary Problems p. 771-773 # 1, 5, 6, 11, 15, 17, 19, 21, 23, 26, 31.