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1 Bratu’s equation

Bratu’s problem is to solve the nonlinear equation

−∇2u = λeu + f (x) in Ω (1)

with boundary conditions such as
u = 0 on ∂Ω.

In one dimension with f = 0, the equation can be solved in closed form by an energy
method. Otherwise, it is not generally tractable in closed form. However, we can always
construct a solution by the method of manufactured solutions (MMS). In this set of examples,
we’ll produce an exactly solvable problem by the MMS, then proceed to solve it using a
number of different methods.
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1.1 Manufacturing a problem to match a solution

The MMS is very simple. Define a problem domain Ω, and pick any convenient function û
defined on that domain. Suppose R is the operator appearing in the equation under consid-
eration; in the case of the Bratu problem, R (u) = −∇2u− λeu. Construct the equation

R (u) = R (û)

and boundary conditions of a form appropriate to the problem of interest. For example,
construct Robin boundary conditions as

αu + β
∂u
∂n

= αû + β
∂û
∂n

.

More generally, if the boundary conditions are nonlinear (such as radiative boundary con-
ditions in heat transfer), construct manufactured boundary conditions

B (u) = B (û)

where B is the nonlinear operator appearing in the BCs.

By construction, u = û is an exact solution to the manufactured boundary value problem.
Note that the solution may not be unique.

1.1.1 A manufactured Bratu’s problem in 1D

We’ll work on Ω = [0, 1] with homogeneous Dirichlet boundary conditions. The function
û (x) = sin (πx) obeys the boundary conditions. Compute

R (û) = −û′′ − λeû

= π2û− λeû

and then we’ve found a problem for which our solution is exact:

−u′′ − λeu − π2 sin (πx) + λesin(πx) = 0

u (0) = u (1) = 0.

1.2 Weak form

Derivation of the Galerkin weak form proceeds as usual, resulting in

ˆ 1

0
v′u′ − vλeu − vR (û) dx = 0 ∀v ∈ H1

0 .

We’ll look at two different nonlinear solvers applied to the Bratu problem: fixed-point itera-
tion and Newton’s method.
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2 Solution by fixed-point iteration

The simplest approach to solving Bratu’s problem is fixed-point iteration on the sequence of
linear problems

−∇2un − λeun−1 = R (û) in Ω

un = 0 on Γ

in which we have replaced the nonlinear term λeu by its value at the previous iterate, λeun−1 .
We iterate until

‖un − un−1‖ ≤ ε

for some specified tolerance ε and norm ‖·‖. The new features of this problem are

1. We need a way to represent the previous solution un−1 as a symbolic object. There is
an object type, DiscreteFunction, designed for exactly this purpose.

2. We won’t store all the previous solutions: we only need one, which we’ll call uPrev.
After each step, we’ll write the solution into uPrev, and

3. In order to check convergence, we need to specify how to compute a norm.

The program for this algorithm can be found in the source file FixedPointBratu1D.cpp.

The lagged function un−1 is represented as a discrete function uPrev. A discrete function
is based on a DiscreteSpace object, which encapsulates a mesh, one or more basis families,
and a specification of the linear algebra representation to be used.

Di s c r e t eSpa c e d i s cSpac e (mesh , b a s i s , vecType ) ;

Expr uPrev = new D i s c r e t e Fun c t i o n ( d i s cSpace , 0 . 5 ) ;

Expr uCur = copyD i s c r e t eFun c t i o n ( uPrev ) ;

The discrete function has been initialized to the constant value 0.5.

With the discrete function ready, we can write the weak form and the linear problem. Notice
the use of the lagged function uPrev in the nonlinear term.

Expr eqn = I n t e g r a l ( i n t e r i o r ,

( grad ∗v ) ∗( grad ∗v ) − v∗ lambda∗ exp ( uPrev ) − v∗R) , quad ) ;

Expr bc = Es s en t i a lBC ( bdry , v∗u , quad ) ;

L inea rProb l em prob (mesh , eqn , bc , v , u , vecType ) ;

The square of the norm ‖un − un−1‖ can be written in terms of a Functional. Note the use of
the unknown function u in the definition of the functional. A FunctionalEvaluator object
is created to evaluate the functional at the point u=uCur.

Expr normSqExpr = I n t e g r a l ( i n t e r i o r , pow(u−uPrev , 2 . 0 ) , quad2 ) ;

Fun c t i o n a l normSqFunc (mesh , normSqExpr , vecType ) ;

F u n c t i o n a l E v a l u a t o r normSqEval = normSqFunc . e v a l u a t o r (u , uCur ) ;
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We now write the fixed-point iteration loop, which involves the norm check and the updat-
ing of the solution vector.

Out : : r o o t ( ) << "Fixed−po i n t i t e r a t i o n " << end l ;

i n t max I t e r s = 20 ;

Expr s o l n ;

bool conve rged = f a l s e ;

f o r ( i n t i =0; i<max I t e r s ; i++) {

/∗ s o l v e f o r the next i t e r a t e , to be w r i t t e n i n t o uCur ∗/
prob . s o l v e ( l i n S o l v e r , uCur ) ;

/∗ e v a l u a t e the norm o f ( uCur−uPrev ) u s i n g

∗ the Fun c t i o n a l E v a l u a t o r d e f i n e d above ∗/
double de l taU = s q r t ( normSqEval . e v a l u a t e ( ) ) ;

Out : : r o o t ( ) << " I t e r=" << setw (3) << i << " | | De l ta u | |= " << setw (20)

<< de l taU << end l ;

/∗ check f o r conve rgence ∗/
i f ( de l taU < convTol ) {

s o l n = uCur ;

conve rged = true ;

break ;

}

/∗ get the v e c t o r from the c u r r e n t d i s c r e t e f u n c t i o n ∗/
Vector<double> uVec = ge tD i s c r e t e Fun c t i o nVe c t o r ( uCur ) ;

/∗ copy the v e c t o r i n t o the p r e v i o u s d i s c r e t e f u n c t i o n ∗/
s e tD i s c r e t e F u n c t i o nV e c t o r ( uPrev , uVec ) ;

}

TEUCHOS_TEST_FOR_EXCEPTION( ! converged , s t d : : runt ime_er ro r ,

" F i xed po i n t i t e r a t i o n d id not conve rge a f t e r " << max I t e r s << "

i t e r a t i o n s " ) ;

If the algorithm has converged, the expression soln now contains the approximate solution.
It can be written to a file, or used in postprocessing calculations.

3 Solution by Newton’s method

When it works, fixed-point iteration converges linearly. Newton’s method can converge
quadratically.

In Newton’s method for solving a nonlinear equation F(u) = 0, we linearize the problem
about an estimated solution un−1,

F(un−1) +
∂F
∂u

∣∣∣∣
un−1

(un − un−1) = 0.

This linear equation is solved for w = (un − un−1), and then un = un−1 + w is the next
estimate for the solution. Given certain conditions on the Jacobian ∂F

∂u and an initial guess
sufficiently close to the solution, the algorithm will converge quadratically. Without a good
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initial guess, the method can converge slowly or not at all. High-quality nonlinear solvers
will have a method for improving global convergence. One class of globalization methods,
the line search methods, limit the size of the step, i.e., they update the solution estimate by

un = un−1 + αw

for some α ∈ (0, 1] chosen to ensure improvement in the solution. Refer to a text on nonlinear
solvers (e.g. Dennis and Schnabel, or Kelley) for information on globalization methods.

Our example problem is to solve

F(u) = −∇2u− λeu − R (û) = 0.

The derivative ∂F
∂u is the Frechet derivative, computed implicitly through the Gateaux differ-

ential
dwF =

∂F
∂u

w.

Note that the Gateaux differential is exactly what appears in the equation for the Newton
step, so we can write the linearized problem as

F(un−1) + dwF(un−1) = 0.

The Gateaux differential is defined by

dwF(un−1) = lim
ε→0

F(un−1 + εw)− F(un−1)

ε

from which the usual rules of calculus can be derived. For our example problem, we find

dwF(un−1) = −λeun−1w−∇2w.

Therefore the linearized equation for the Newton step w is[
−∇2un−1 − λeun−1

]
+
[
−∇2w− λeun−1w

]
− R (û) = 0.

The linearized boundary conditions are

un−1 + w = 0.

While we can do linearization by hand, it is difficult and error-prone for complicated prob-
lems. Sundance has a built-in automated differentiation capability so that linearized equa-
tions can be derived automatically from a symbolic specification of the nonlinear equations.
We will show examples of Newton’s method with hand-coded linearized equations and
with automated linearization.

3.1 Newton’s method with hand-coded derivatives

This example is found in the source file HandLinearizedNewtonBratu1D.cpp.

We set up a LinearProblem object for the linearized equations. The unknown function is
the step w. The previous iterate un is represented by a DiscreteFunction. We do Newton
iteration without line search. The convergence test simply uses the norm of the step vector
w, which is not the same as the norm of the discrete function w that uses that vector, but
the difference is unimportant unless the mesh is significantly non-uniform. The method is
considered converged when ‖w‖2 goes below a specified tolerance convTol.
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Di s c r e t eSpa c e d i s cSpac e (mesh , b a s i s , vecType ) ;

Expr uPrev = new D i s c r e t e Fun c t i o n ( d i s cSpace , 0 . 5 ) ;

Expr s t epVa l = copyD i s c r e t eFun c t i o n ( uPrev ) ;

Expr eqn = I n t e g r a l ( i n t e r i o r , ( grad ∗v ) ∗( grad ∗w) + ( grad ∗v ) ∗( grad ∗uPrev )
− v∗ lambda∗ exp ( uPrev ) ∗(1.0+w) − v∗R, quad4 ) ;

Expr h = new Ce l lD i ame t e rExp r ( ) ;

Expr bc = Es s en t i a lBC ( l e f t+r i g h t , v ∗( uPrev+w) /h , quad2 ) ;

L inea rProb l em prob (mesh , eqn , bc , v , w, vecType ) ;

L i n e a r S o l v e r <double> l i n S o l v e r = L i n e a r S o l v e r B u i l d e r : : c r e a t e S o l v e r ( "amesos . xml" )

;

Out : : r o o t ( ) << "Newton i t e r a t i o n " << end l ;

i n t max I t e r s = 20 ;

Expr s o l n ;

bool conve rged = f a l s e ;

f o r ( i n t i =0; i<max I t e r s ; i++) {

/∗ s o l v e f o r the Newton s t ep ∗/
prob . s o l v e ( l i n S o l v e r , s t e pVa l ) ;

/∗ check the norm o f the s t ep v e c t o r ∗/
Vector<double> stepVec = ge tD i s c r e t e Fun c t i o nVe c t o r ( s t e pVa l ) ;

double de l taU = stepVec . norm2 ( ) ;

Out : : r o o t ( ) << " I t e r=" << setw (3) << i << " | | De l ta u | |= " << setw (20) <<

de l taU << end l ;

/∗ update the s o l u t i o n ∗/
addVecToDi sc re teFunct ion ( uPrev , s tepVec ) ;

/∗ i f converged , b reak ∗/
i f ( de l taU < convTol ) {

s o l n = uPrev ;

conve rged = true ;

break ;

}

}

TEUCHOS_TEST_FOR_EXCEPTION( ! converged , s t d : : runt ime_er ro r ,

"Newton i t e r a t i o n d id not conve rge a f t e r " << max I t e r s << " i t e r a t i o n s " ) ;

Newton’s method is done. The remainder of the code is for output and postprocessing.

3.2 Newton’s method with automated derivatives

One of the most useful features of Sundance is its built-in automatic differentiation capabil-
ity. You can write a nonlinear PDE as a Sundance Expr, and Sundance will do the Newton
linearization for you.

We start by writing the fully nonlinear weak form for the unknown u,
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Expr eqn = I n t e g r a l ( i n t e r i o r , ( grad ∗u ) ∗( grad ∗v ) − v∗ lambda∗ exp ( u ) − v∗R, quad ) ;

Notice that the nonlinear part is not “lagged.” Write boundary conditions as well,

Expr bc = Es s en t i a lBC ( bdry , v∗u/h , quad ) ;

Now we use these to construct a NonlinearProblem object,

Non l i nea rProb l em prob (mesh , eqn , bc , v , u , uPrev , vecType ) ;

As in the previous examples, uPrev is a discrete function containing the initial guess. Unlike
previous examples, uPrev does not appear in the weak form; it is given as an argument to
the nonlinear problem constructor.

Now we can write the Newton loop. We obtain the discrete Jacobian J as a LinearOperator

and the discrete residual F as a Playa Vector through a member function of the NonlinearProblem.
We then solve the equation Jw = −F(un−1) for the step vector w. The convergence check
and update to uPrev are done as before.

Out : : r o o t ( ) << "Newton i t e r a t i o n " << end l ;

i n t max I t e r s = 20 ;

Expr s o l n ;

bool conve rged = f a l s e ;

L i n ea rOpe ra to r<double> J = prob . a l l o c a t e J a c o b i a n ( ) ;

Vector<double> re s i dVe c = J . range ( ) . createMember ( ) ;

Vector<double> stepVec ;

f o r ( i n t i =0; i<max I t e r s ; i++) {

prob . s e t I n i t i a l G u e s s ( uPrev ) ;

prob . computeJacob ianAndFunct ion ( J , r e s i dVe c ) ;

l i n S o l v e r . s o l v e ( J , −1.0∗ r e s i dVec , s tepVec ) ;

double de l taU = stepVec . norm2 ( ) ;

Out : : r o o t ( ) << " I t e r=" << setw (3) << i << " | | De l ta u | |= " << setw (20) <<

de l taU << end l ;

addVecToDi sc re teFunct ion ( uPrev , s tepVec ) ;

i f ( de l taU < convTol ) {

s o l n = uPrev ;

conve rged = true ;

break ;

}

}

TEUCHOS_TEST_FOR_EXCEPTION( ! converged , s t d : : runt ime_er ro r ,

"Newton i t e r a t i o n d id not conve rge a f t e r " << max I t e r s << " i t e r a t i o n s " ) ;

7



3.3 Black-box Newton-Armijo method with automated derivatives

Finally, we show the most streamlined method for setting up and solving a nonlinear prob-
lem, found in the source file FullyAutomatedNewtonBratu1D.cpp. The example uses a
packaged nonlinear solver. Here’s the meat. Simply write the nonlinear equation in bound-
ary conditions in weak form, provide a discrete function for the initial guess, create a non-
linear problem, and hand of to a Playa NonlinearSolver for solution. Playa currently sup-
ports the NOX nonlinear solvers as well as its own native nonlinear solvers. In this example
Playa’s Newton-Armijo solver is used, with parameters set in the file playa-newton-amesos.xml.

Di s c r e t eSpa c e d i s cSpac e (mesh , b a s i s , vecType ) ;

Expr uPrev = new D i s c r e t e Fun c t i o n ( d i s cSpace , 0 . 5 ) ;

Expr eqn = I n t e g r a l ( i n t e r i o r , ( grad ∗v ) ∗( grad ∗u ) − v∗ lambda∗ exp ( u ) − v∗R, quad4 ) ;

Expr h = new Ce l lD i ame t e rExp r ( ) ;

Expr bc = Es s en t i a lBC ( l e f t+r i g h t , v∗u/h , quad2 ) ;

Non l i nea rProb l em prob (mesh , eqn , bc , v , u , uPrev , vecType ) ;

Non l i n e a r So l v e r <double> s o l v e r = Non l i n e a r S o l v e r B u i l d e r : : c r e a t e S o l v e r ( " p laya−
newton−amesos . xml" ) ;

Out : : r o o t ( ) << "Newton s o l v e " << end l ;

S o l v e r S t a t e <double> s t a t e = prob . s o l v e ( s o l v e r ) ;

TEUCHOS_TEST_FOR_EXCEPTION( s t a t e . f i n a l S t a t e ( ) != SolveConverged , s t d : :

runt ime_er ro r ,

" Non l i n e a r s o l v e f a i l e d to conve rge : message=" << s t a t e . f i n a lMsg ( ) ) ;

Unless your problem needs special handling, the fully automated approach is usually the
most efficient and robust against user error.

4 Continuation on a parameter

Bratu’s problem becomes more strongly nonlinear as the parameter |λ| increases. A reason-
able strategy in such problems, called continuation, is to begin with a parameter setting for
which the problem is exactly or nearly linear, then solve a sequence of problems in which
the parameter is adjusted systematically for each new solve. This can be helpful in problems
where the nonlinear solver has a small radius of convergence.

Source code is in ContinuationBratu1D.cpp.

The key is to write the adjustable parameter as a Parameter object rather than a double.
The parameter value can be modified externally by calling the setParameterValue member
function (as shown in the loop below) and the change in the parameter is automatically
reflected in the shallow copies of the parameter stored within a problem’s expressions.

Expr lambda = new Sundance : : Parameter ( 0 . 0 ) ;
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The continuation loop is shown below; in each iteration, a new value of λ is chosen, and
then a nonlinear solve is carried out at that value. The result (stored in the discrete function
uPrev) is then used as the initial guess for the next continuation step.

f o r ( i n t n=0; n<nSteps ; n++) {

double lambdaVal = n∗ lambdaMax /( nSteps −1.0) ;
/∗ update the v a l u e o f the paramete r ∗/
lambda . s e tPa ramete rVa lue ( lambdaVal ) ;

Out : : r o o t ( ) << " c o n t i n u a t i o n s t ep n=" << n << " o f " << nSteps << " , lambda="

<< lambdaVal << end l ;

S o l v e r S t a t e <double> s t a t e = prob . s o l v e ( s o l v e r ) ;

TEUCHOS_TEST_FOR_EXCEPTION( s t a t e . f i n a l S t a t e ( ) != SolveConverged , s t d : :

runt ime_er ro r ,

" Non l i n e a r s o l v e f a i l e d to conve rge : message=" << s t a t e . f i n a lMsg ( ) ) ;

Expr s o l n = uPrev ;

/∗ === So l u t i o n output code omi t ted === ∗/
}

This example shows only the simplest continuation method: increasing the parameter in
uniform steps. More sophisticated strategies are possible.

5 Exercises

1. Write a solver for Bratu’s equation with no forcing ( f = 0 ) on the unit square with
boundary conditions u = 0. Use continuation to explore the behavior as λ is increased
from zero. Over what range of parameters are you able to find a solution?

2. The continuation example above was built around the fully-automated Newton’s method.
However, continuation strategies could be used with any of the other approaches con-
sidered here, such as fixed-point methods or a hand-coded Newton’s method. Modify
one of those examples to implement a continuation strategy.

3. Consider the steady-state radiation diffusion equation,

∇2
(

u4
)
= 0

on the unit square with boundary conditions

u = (1 + sin (πx))1/4 along the line y = 1

u = 1 elsewhere on Γ.

(a) Derive a weak form of the problem

(b) Derive a linearized weak form for the Newton step w = un − un−1.

(c) Suppose you were to use an initial guess u0 = 0 in Newton’s method. What
would happen, and why?

(d) Write a program to set up and solve this problem using Newton’s method.
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