
Sundance Examples: Linear PDE

Kevin Long

June 21, 2012

1 Example: a parameter sweep

A common task is to solve a problem with several values of a parameter. For example, we
might be interested in the problem

−∇ ·
[(

1 +
ξ

10
ex
)
∇u

]
− f = 0

on the unit square with boundary conditions

u = 0 on east and west edges

∂u
∂n

= 0 on north and south edges.

To investigate how the solution change as the parameter ξ is changed we sweep over an
interval [0, ξmax] using some number Nstep of samples.

The obvious approach to programming this is to encapsulate the entire problem in a function
with ξ as an input argument, and then call that function for each ξ in a loop. The trouble is
that the linear problem and all its internal data structures must be rebuilt on each call.

A better solution is to build the equation set and problem once and for all, writing the ad-
justable parameter ξ not as a double-precision number but as a special expression type,
Parameter. The value of the parameter can be changed between solves, allowing the same
problem object to be reused for multiple solves at multiple parameter values. How does it
work? Simple: the parameter value is shallow copied when given to the weak form and
other expressions, so any change made later by the user is immediately and transparently
reflected in all copies.

The full source code for this example is in ParameterSweep.cpp. In the following, we omit
parts of the code not relevant to the parameter sweep such as construction of the mesh and
cell filters, construction of unknown functions, reading of the solver file, and so on. All those
details are of course shown in the full source code.

The Parameter expression is constructed as follows.

/∗ Def i n e the paramete r ∗/
Expr x i = new Sundance : : Parameter (0 . 0) ;

1

The namespace qualification is used to distinguish Sundance::Parameter from Teuchos::Parameter.
In this problem, the value 0.0 given to the parameter constructor is unimportant, as it will
be changed during the sweep.

With the parameter expression ready, we proceed to setting up a problem that uses it. For
validation purposes, our example problem will have an exact solution which, unsurpris-
ingly, depends on the paremeter value. We define the exact solution here, and then provide
a parameter-depended forcing function f that produces that solution.

/∗ Cons t ru c t a f o r c i n g term to p r o v i d e an exac t s o l u t i o n ∗/
Expr uEx = x∗(1.0− x) ∗(1.0+ x i ∗ exp (x)) ;
Expr f = −(−20 − exp (x) ∗ x i ∗(1 + 32∗ x + 10∗ x∗x + exp (x)∗(−1 + 2∗x ∗(2 + x)) ∗ x i))

/ 1 0 . 0 ;

Now we write the weak form, again using the parameter.

/∗ Def i n e the weak form ∗/
Expr eqn = I n t e g r a l (i n t e r i o r , (1 . 0 + 0.1∗ x i ∗ exp (x)) ∗(grad ∗v) ∗(grad ∗u) − f ∗v ,

quad) ;

Next we set up the linear problem. Also, to visualize the exact solution we’ll create a pro-
jector object that projects it onto a discrete space. The projector is given the expression uEx,
which in turn contains a shallow copy of the parameter xi. Therefore, just as with the linear
problem the internal state of the projector is always consistent with the current parameter
value.

/∗ We can now s e t up the l i n e a r problem . Thi s can be r eu s ed

∗ f o r d i f f e r e n t paramete r v a l u e s . ∗/
L inea rProb l em prob (mesh , eqn , bc , v , u , vecType) ;

/∗ make a p r o j e c t o r f o r the exac t s o l u t i o n . Ju s t l i k e the

∗ problem , t h i s can be r eu s ed f o r d i f f e r e n t paramete r v a l u e s . ∗/
Di s c r e t eSpa c e ds (mesh , new Lagrange (1) , vecType) ;

L 2P r o j e c t o r p r o j (ds , uEx) ;

With the problem and projector constructed, we’re ready to loop over parameter values. The
setParameterVal member function is used to update the parameter’s numerical value.

/∗ Set up the sweep from x i=0 to x i=xiMax i n nSteps s t e p s . ∗/
i n t nSteps = 10 ;

double xiMax = 2 . 0 ;

/∗ Do the sweep ∗/
f o r (i n t n=0; n<nSteps ; n++) {

/∗ Update the paramete r v a l u e ∗/
double x i V a l = xiMax∗n/(nSteps − 1 . 0) ;

x i . s e tPa ramete rVa lue (x i V a l) ;

Out : : r o o t () << " s t ep n=" << n << " o f " << nSteps << " x i=" << x iVa l ;

2

/∗ So l v e the problem . The updated paramete r v a l u e i s a u t oma t i c a l l y used . ∗/
s t a t e = prob . s o l v e (s o l v e r , s o l n) ;

TEUCHOS_TEST_FOR_EXCEPTION(s t a t e . f i n a l S t a t e () != SolveConverged , s t d : :

runt ime_er ro r ,

" s o l v e f a i l e d ! ") ;

/∗ P r o j e c t the exac t s o l u t i o n onto a d i s c r e t e space f o r v i z . The updated

∗ paramete r v a l u e i s a u t oma t i c a l l y used . ∗/
Expr uEx0 = p r o j . p r o j e c t () ;

/∗ === output and v a l i d a t i o n code omi t ted === ∗/
}

Notice that the same problem and projector objects were reused at each iteration.

Other applications of Parameter include:

• Continuation methods for nonlinear equations (see the document on nonlinear prob-
lems). Use a Paremeter for the continuation variable.

• In transient problems, the time variable can be defined as a Parameter allowing the
same problems to be reused at every timestep.

• Multidimensional sampling methods such as Monte Carlo, latin hypercube, and sparse
quadrature. In these problems, more than one Parameter object might be used.

2 Example: Coupled problems in 2D

2.1 Problem formulation

We solve the coupled equations

−∇2u1 + u2 = 0

−∇2u2 + x = 0

on the unit square with boundary conditions

u1(0, y) = u1(1, y) = 0

u2(0, y) = u2(1, y) = 0

∂u1

∂n
=

∂u2

∂n
= 0 on north and south boundaries.

The exact solution is
u1 (x) =

1
360

(
3x5 − 10x3 + 7x

)
u2 (x) =

1
6

(
x3 − x

)
3

2.1.1 Weak equation

The Galerkin weak form isˆ
Ω
∇v1 · ∇u1 + v1u2 +∇v2 · ∇u2 + v2x dΩ = 0

augmented by essential boundary conditions. We’ll discretize u1 with P3 and u2 with P2.

2.2 Programming the problem

2.2.1 Meshing a rectangle

2.2.2 Coordinate-based cell filters

2.2.3 Writing the equations

2.2.4 Forming the coupled linear problem

2.2.5 Postprocessing and validation

3 Example: Convective cooling with ideal flow

4 Example sequence: Several formulations of Stokes flow

4.1 Driven cavity, vorticity-streamfunction formulation

4.2 Couette flow, pressure-stabilized equal-order discretization

4.3 Couette flow, mixed discretization and block preconditioning

4

