Getting started with Sundance

Kevin Long

June 21, 2012

In this document we show the support code common to many examples, and then walk
through the development of a program to solve Laplace’s equation.

Contents
1 Boilerplate code 2
1.1 A minimalistexample o 0L 2
1.2 Miscellaneous preliminaries 3
1.2.1 Reading parameters from command-line arguments 3
1.2.2 Reading parameters from XML files 5
1.2.3 Readingasolver fromanXMLfile, 6
2 Example: Laplace’s equation on a 3D plate with a hole
21 Weakform
3 Programming Laplace’s equation 7
3.1 Overview of problem setup and solution 7
32 Gettingamesh. 9
3.3 Defining geometric subdomains. L 9
3.4 Defining symbolic expressions 10
3.41 Testand unknown functions 10
3.4.2 Differential operators o L oL 11
3.5 Equations and boundary conditions, 11
3.5.1 Numerical integrationrules 11
352 Integrals 11
3.5.3 Essential boundary conditions 12

1

3.6 Creating and solving a linear problem 12

3.6.1 Gettingasolver L L 12

3.6.2 Doingthesolve 13

3.7 Visualizationoutput L oo L 13
3.8 DPostprocessing e 13
3.8.1 Flux calculation and definite integrals 13

3.8.2 Moments and coordinate functions 14

4 Exercises 16

1 Boilerplate code

A dull but essential first step is to show the skeleton C++ common to nearly every Sundance
program:

#include "Sundance.hpp"
int main(int argc, voidx*x argv)

{
try
{
Sundance::init(argc, argv);
/+* code body goes here x/
}
catch(exception& e)
{
Sundance:: handleException(e);
}

Sundance:: finalize ();

These lines control initialization and result gathering for profiling timers, initializing and
tinalizing MPI if MPI is being used, and other administrative tasks. The body of the code
goes in place of the comment code body goes here.

1.1 A minimalist example

An example of the boilerplate code plus a small amount of code body is in the source file
Skeleton.cpp. This program simply does a few MPI calls to get the processor rank and the
total number of processors, does a simple sanity check, and ends. Here’s the code body.

/* The main simulation code goes here. In this example, all we do
x is to print some information about the processor ranks. x/
MPIComm comm = MPIComm:: world () ;

/+* Print a header from the root processor only. Although this executes on
x all processors, anything written to the output stream Qut::root()

* is ignored on all non—root processors (rank != 0).

x After writing, synchronize to keep this message from getting jumbled

* together with the subsequent messages. */

Out::root() << "Example: getting started" << endl;

comm.synchronize () ;

/* Every processor now speaks up and identifies itself x/

int myRank = comm.getRank();

int nProc = comm.getNProc();

Out::o0s() << "Processor " << myRank << " of " << nProc << " checking in" << endl

/x Test success or failure. Most examples you'll see will do this

x as part of the Trilinos regression testing system.

x If you write a simulation code that won't become part of Trilinos,
x you often can bypass this step.

x Here the test is a trival one: every processor’'s rank must be

x smaller than the total number of processors. If this fails,
x your MPIl installation is probably broken!
* %/
S

undance:: passFailTest (myRank < nProc);

Output from a run on four processors is shown.

Simulation built using Sundance version 2.4.0 (10 June 2012)

Sundance is copyright

(C) 2005—2012 Sandia National Laboratories

(C) 2007—2012 Texas Tech University

and is licensed under the GNU Lesser General Public License, version 2.1

Example: getting started

p=0 | Processor 0 of 4 checking in
p=3 | Processor 3 of 4 checking in
p=1 | Processor 1 of 4 checking in
p=2 | Processor 2 of 4 checking in
test PASSED

1.2 Miscellaneous preliminaries

If you want to get on with solving differential equations, skip ahead to section 2.

1.2.1 Reading parameters from command-line arguments

If you want to get on with solving differential equations, skip ahead to section 2.

Sometimes you’ll want to set program options using command-line arguments. The Teuchos
CommandLineProcessor system provides a number of utitilies for parsing command-line
arguments; Sundance provides a simplified interface to that.

Example program: CommandLineOptions.cpp.

Here’s the code body. Notice that the setting up of command-line option parsing must be done
before the call to Sundance::init(). This is one of the very few cases where code should precede
the init () call.

// Declare variables whose values are to be read from the command line
// Set default values

int somelnt = 137;

double someDouble = 3.14159;
string someString = "blue";
bool someBool = false;

// Register option names, variables, and help string with
// the command—line processor

Sundance ::setOption("integer", somelnt, "An integer");

Sundance ::setOption("alpha", someDouble, "A double");

Sundance ::setOption("color", someString, "What is your favorite color?");
Sundance ::setOption("lie", "truth", someBool, "I am lying.");

// Now call init
Sundance::init(&argc, &argv);

Out::root() << "User input:" << endl;

Out::root() << "An integer: " << somelnt << endl;

Out::root() << "A double—precision number: " << someDouble << endl;
Out::root() << "Favorite color: " << someString << endl;
Out::root() << "I am lying: " << someBool << endl;

With ./Sundance_CommandLineOptions.exe and no command-line arguments, the default
values are used:

User input:

An integer: 137

A double—precision number: 3.14159
Favorite color: blue

| am lying: O

test PASSED

With the command line . /Sundance_CommandLineOptions.exe --color=red, the string ar-
gument is set to red

User input:

An integer: 137

A double—precision number: 3.14159
Favorite color: red

| am lying: O

test PASSED

A few further points about command-line parsing are:

¢ Command-line options should use the format --name=value when values are given, or
simply --name when no value is needed.

e To see all command-line options and their default values, run your program with the
--help option.

o To access the lower-level command-line processor object, use the function Sundance: : c1p ()
which returns the command-line processor to be used during the call to init (). See
the Teuchos documentation for information about low-level command-line handling
capabilities.

1.2.2 Reading parameters from XML files

When you write an applications code you’ll often want to read problem parameters from a
data file. XML together with the Trilinos ParameterList utility is a convenient way to do
this. Even in toy example problems, most Trilinos solvers are initialized through ParameterList
objects and it’s convenient to read these from an XML file.

In the example program XMLParameterList.cpp a ParameterList is read from an XML file.
The default filename is paramExample.xml but an alternate filename can be given as a com-
mand line option --xml-file=[filename].

Here’s the contents of the XML file

<l—— An example parameter list in XML format —>
<ParameterList>
<ParameterList name="Widget">
<Parameter name="Region" type="int" value="1"/>
<Parameter name="Material" type="string" value="Kryptonite"/>
<Parameter name="Density" type="double" value="3.14159"/>
</ParameterList>
<ParameterList name="Gizmo">
<Parameter name="Region" type="int" value="2"/>
<Parameter name="Material" type="string" value="Dilithium"/>
<Parameter name="Density" type="double" value="2.718"/>
</ParameterList>
</ParameterList>

The body of the code is shown next. The ParameterXMLFileReader object does the XML
parsing, returning a ParameterList object via the getParameters() function.

/+* Read the XML filename as a command—Iline option x/
string xmlFilename = "paramExample.xml";
Sundance ::setOption ("xml—file", xmlFilename, "XML filename");

/+* Initialize x/
Sundance::init(&argc, &argv);

/+* Read a parameter list from the XML file x/
ParameterXMLFileReader reader(xmlFilename);
ParameterList params = reader.getParameters();

/+x Get the parameters for the "Widget" sublist x/

const ParameterlList& widget = params.sublist ("Widget");

Out::root() << "widget region label: " << widget.get<int>("Region") << endl;
Out::root() << "widget material: " << widget.get<string >("Material") << endl;
Out::root() << "widget density: " << widget.get<double>("Density") << endl;

/+ Get the parameters for the "Gizmo" sublist x/

const ParameterList& gizmo = params.sublist ("Gizmo");

Out::root() << "gizmo region label: " << gizmo.get<int>("Region") << endl;
Out::root() << "gizmo material: " << gizmo.get<string >("Material") << endl;
Out::root() << "gizmo density: " << gizmo.get<double>("Density") << endl;

See the Teuchos documentation for more information on the use of parameter lists.

1.2.3 Reading a solver from an XML file

One of the most common uses of XML and ParameterList objects is to configure linear
and nonlinear solvers. The LinearSolverBuilder object can create a variety of linear solver
types (including Amesos, Aztec, Belos, and Playa solvers) through a single function call to
the static member createMember (), as shown in the next two code fragments.

The createMember () function can be given an XML filename,

LinearSolver <double> solver = LinearSolverBuilder:: createSolver("mySolver.xml");

or a parameter list,

ParameterList solverParams = biglList.sublist("LinearSolver");
LinearSolver <double> solver = LinearSolverBuilder:: createSolver(solverParams);

2 Example: Laplace’s equation on a 3D plate with a hole

With those preliminaries out of the way, let’s solve a differential equation. Out first example
will be to solve a linear boundary value problem in 3D: Laplace’s equation

Vu =0

on a thin square plate with a circular through-hole in the center. The geometry of this plate
is shown in figures 1 and 2. For boundary conditions, we will specify Dirichlet conditions
on one surface,

u =0 on the west edge of the plate

inhomogeneous Neumann conditions on the opposite surface,

S—Z =1 on the east edge of the plate

and homogeneous Neumann conditions

on all other surfaces.

2.1 Weak form

The Galerkin weak form of this problem is
/ vp-wm—/ vdA=0 Vv H}
Q east

where H} is the subspace of H! such that
u =0 onwest.

In our program we’ll represent this weak form in terms of symbolic expression objects called
Exprs. As a basis for both the unknown function u and the test function v, we will use the
tirst-degree Lagrange functions on tetrahedral elements. On the surfaces where homoge-
neous Neumann BCs hold, the surface integral is zero, and the BCs are imposed weakly
by simply omitting those integrals. The integrals will be computed using Gauss-Dunavant
quadrature.

The resulting system of equations
Ku =b

is linear and must be solved with some linear solver algorithm. Sundance interfaces with
linear solvers through the Playa LinearSolver interface; most Trilinos solver libraries have
an adapter letting them be used through Playa.

The solution vector is returned wrapped in an Expr object of subtype DiscreteFunction.
As such, it can be used in other symbolic expressions, for example, expressions that define
post-processing steps such as flux calculations. Finally, it may be given to a FieldWriter
object that writes the solution to an output file in a format such as VIK or Exodus.

3 Programming Laplace’s equation

3.1 Overview of problem setup and solution

Before diving into code, let’s take a coarse-grained look at the steps involved in setting up
and solving a linear boundary value problem.

B e
B e N
B T
P e RS s
gE R e
SR oy P e
LR r e g
P Eperenrasbas oty
e e e i R s
G e e e
e e e ARG R o
e Sy
e ST At e s e
e SRRy
e s A A v S v AR ST ST AT ey
e
N s e e
s S
e e s et
¥ 27 e AL Pave TR e Ay
e A Ve Ve Y AV A Y Y ey
R T A A AT e T T
R AP A IAA AT AN
R e T
e e P APV e A v
£ LA S A AN O
T Ay A e T e A P
AT A A P A e v A
AT AV P P R A e v
by AR e A
X IAAT AN AT
N ASTTAADT AN
b A DA PO
A AV
S
s Vavay

Figure 1: 3D view of meshed plate with hole

West East

South

Figure 2: Schematic of labeled surfaces on the plate with hole

1. Do initialization steps
Create the objects that define the problem’s geometry
Create the symbolic objects that will be used in the equation specification

Define the weak form and boundary conditions

AR B

Create a “problem” object that encapsulates the equations, boundary conditions, and
geometry along with a specification of ordering of unknowns

Create a solver object

N

Solve the problem

o

Do postprocessing and/or visualization output

9. Do finalization steps

In more complex problems there may be loops over one or more of these steps; for example,
a time integration will involve a loop over many solution steps, with visualization output
being done at selected intervals.

3.2 Getting a mesh

Sundance uses a Mesh object to represent a discretization of the problem’s geometric do-
main. There are many ways of getting a mesh; simple meshes might be built on the fly at
runtime, more complex meshes will need to be build offline and read from a file. There
are then numerous mesh file formats. To accomodate the diversity of mesh creation mecha-
nisms, Sundance uses an abstract MeshSource interface. Different mesh creation modes are
represented as subtypes that implement this abstract interface.

Sundance is designed to work with different mesh underlying implementations, the choice
of which is done by specifying a MeshType object.

In this example we read a mesh that’s been stored in the Exodus format. The file is named
plateWithHole.exo.

MeshType meshType = new BasicSimplicialMeshType();
MeshSource meshReader = new ExodusMeshReader("plateWithHole", meshType);
Mesh mesh = mesher. getMesh () ;

3.3 Defining geometric subdomains

We'll need to specify subsets of the mesh on which equations or boundary conditions are
defined. In many FEA codes this is done by explicit definition of element blocks, node sets,
and side sets. Rather than working with sets explicitly at the user level, we instead work
with filtering rules that produce sets of cells. These rules are represented by CellFilter

objects. You can think of a cell filter as an operator that acts on a mesh and returns a set of
cells.

First we define a cell filter that identifies all cells of maximal dimension:

/+x Filter subtype MaximalCellFilter selects all cells having dimension equal to
the spatial dimension of the mesh x/
CellFilter interior = new MaximalCellFilter();

Next we define filters that identify the various boundary surfaces. In this example, bound-
ary surfaces are specified by labels assigned to the mesh cells during the process of mesh

generation. The labeledSubset () member function finds those cells having a specified la-
bel.

/* DimensionalCellFilter selects all cells of a specified dimension. Here we
select all 2D faces. Boundary conditions will be applied on certain subsets
of these. x/

CellFilter edges = new DimensionalCellFilter(2);

CellFilter south = edges.labeledSubset(1);

CellFilter east = edges.labeledSubset(2);

CellFilter north = edges.labeledSubset(3);

CellFilter west = edges.labeledSubset(4);

CellFilter hole = edges.labeledSubset(5);

CellFilter down = edges.labeledSubset (6) ;

CellFilter up = edges.labeledSubset(7);

See figure 2 for a schematic of the various boundary surfaces. In subsequent examples we
will see other mechanisms for identifying cells.

3.4 Defining symbolic expressions

An equation is built out of mathematical expressions. Expressions, represented by Expr
objects, can be combined using arithmetic operators, function composition, and differential
operators. Expressions can be aggregated into lists.

An Expr object is a RCH to an expression subtype.
3.4.1 Test and unknown functions

Unknown and test functions are a vital part of every weak form. Each unknown or test
function needs to have a basis function specified through choice of a BasisFamily object.

/+x Create an object representation of the first—degree Lagrange basis x/
BasisFamily basis = new Lagrange(1);

The basis object is given as an argument to the test and unknown function constructors, as
shown.

10

Expr u = new UnknownFunction(basis, "u");

Expr v = new TestFunction(basis, "v");

The string arguments ““v’’ and “‘v" are optional and are used only in labeling these functions
in diagnostic output. Any label can be used. There is no need for the string’s value to be
identical to the name of the C++ variable.

3.4.2 Differential operators

Differential operators are also represented as Expr objects. The next code fragment shows the
construction of partial derivative operators and their aggregation into a gradient operator.

/+* Create differential operators and coordinate functions. Directions are
x indexed starting from zero. The List () function can collect

* expressions into a vector. x/

Expr dx = new Derivative (0); /+* The operator
Expr dy = new Derivative (1); /x The operator
Expr dz = new Derivative(2); /+* The operator
Expr grad = List(dx, dy, dz); /+* The operator

¥l
*
~

3.5 Equations and boundary conditions
3.5.1 Numerical integration rules

Integrals appearing in weak forms and in postprocessing steps are done by quadrature.
The family of quadrature rules to be used is specified by selection of a QuadratureFamily
object. Different terms can use different quadrature rules. Here we create two Gaussian
quadrature objects, one of order 1 (for use in integrating Vv - Vu) and one of order 2 (for use
in integrating vu on the boundary).

/+x We need a quadrature rule for doing the integrations x/
QuadratureFamily quadl = new GaussianQuadrature(1);
QuadratureFamily quad2 = new GaussianQuadrature(2);

These objects are called quadrature families rather than quadrature rules because they aren’t
just quadrature rules; rather, they can produce different quadrature rules for cells of different
dimensions. For example, the Gaussian quadrature family will produce a Gauss-Legendre
rule when used on a one-dimensional cell, or a 2D or 3D Gauss-Dunavant rule when used
on a two-dimensional cell.

3.5.2 Integrals

We now have everything needed to write the weak form: a domain of integration, an inte-
grand, and a specification of quadrature.

11

/+* Write the weak form x/
Expr eqn = Integral(interior , (gradxu)=*(gradxv), quadl);

3.5.3 Essential boundary conditions

Imposition of Dirichlet boundary conditions can be a tricky aspect of finite element methods.
In this example, we use the most straightforward approach, which is to replace the rows
associated with boundary nodes by the boundary condition. Division of these terms by #,
the local cell diameter, is done so that the terms

/Vv-VudV
Q

and

/ hloudA
west

scale identically with k; this helps the conditioning of the resulting linear system of equa-
tions.

Expr h = new CellDiameterExpr () ;
Expr bc = EssentialBC(west, vxu/h, quad2);

3.6 Creating and solving a linear problem

Everything is in place to build the linear problem object. Here’s the constructor.

LinearProblem prob(mesh, eqn, bc, v, u, vecType);

Don’t confuse the Sundance LinearProblem object with the LinearProblem objects in Epetra
and Belos; it is quite different. The Sundance LP object is responsible for building a system
of equations. The Epetra and Belos LP objects are encapsulations of a system of equations
provided by a user.

Implementation note: LinearProblem is a lightweight user interface to a lower-level Assem-
bler object that actually does the work of building matrices and vectors. Assembler is also
used under the hood for the assembly of Jacobians and residuals for nonlinear problems
and for the calculation of functional values and gradients. LinearProblem ensures that the
Assembler is constructed properly, controls the call to Assembler for building the matrix
and vector, invokes the linear solver and checks for convergence, and wraps the solution
vector in a DiscreteFunction object so that it can be used in symbolic specification of future
problems.

3.6.1 Getting a solver

The solver object can be created in a number of ways; most often it will be read from an XML
tile as described above.

12

3.6.2 Doing the solve

Invocation of the solver is simple:

Expr soln = prob.solve(solver);

The result, soln, is an expression with derived type DiscreteFunction. As an Expr, it can be
used in further symbolic calculations; some simple examples are shown below in the section
on postprocessing.

While this is the simplest way to invoke the solver, there are two issues with this syntax in
complex problems in which multiple solves or error handling may be needed.

e If a problem occurs, the only feedback to the user is a thrown exception.

e A new discrete function object, soln, is created for every solve. While the price of
allocation is relatively small, it is nonetheless an efficiency loss.

There is a version of the solve() function that returns diagnostics and writes the solution
into an existing discrete function. This alternate version is described in the more advanced
documentation.

3.7 Visualization output

To see the solution, use a FieldWriter to send to file. In 2D or 3D, the file formats currently
supported are VIK and Exodus. Here we write to a VIK file.

/x Write the results to a VIK file x/

FieldWriter w = new VTKWriter("PoissonDemo3D");
w.addMesh (mesh) ;

w.addField ("soln", new ExprFieldWrapper(soln[0]));
w.write () ;

3.8 Postprocessing
In real applications you'll want to do some computations to analyze the solution. This sec-

tion gives several examples of postprocessing computations using the solution expression
soln.

3.8.1 Flux calculation and definite integrals
The first example is the computation of the flux

/ n-VudA.
00

With no internal source, the flux should be zero to within O (h); this provides a minimal va-
lidity check on the solution.We set up an expression for the flux, then call the evaluateIntegral ()
function to compute it.

13

Figure 3: Solution of Laplace’s equation on the holed plate.

Expr n = CellNormalExpr (3, "n");
CellFilter wholeBdry = east+west+north+south+up+down+hole;

Expr fluxExpr = Integral(wholeBdry, (nxgrad)xsoln, quad2);
double flux = evaluatelntegral (mesh, fluxExpr);
Out::o0s() << "numerical flux =" << flux << endl;

3.8.2 Moments and coordinate functions

In the next example, we compute the center-of-mass position of the body (2,

.
X =——— [xdQ
MTVQ) Ja

and similarly for ycp and zcpy.

Position-dependent functions can be written using coordinate expressions.While used only
in a postprocessing step here, you'll often use coordinate functions when setting up position-
dependent sources and boundary conditions. Here’s the construction of the coordinate ex-
pressions,

Expr x = new CoordExpr(0);
Expr y = new CoordExpr(1);
Expr z = new CoordExpr(2);

and their use in the integrals for the CM position.

Expr volExpr = Integral(interior, 1.0, quad2);
Expr xCMExpr = Integral (interior , x, quad2);
Expr yCMExpr = Integral (interior , y, quad2);
Expr zCMExpr = Integral (interior , z, quad2);

14

double vol = evaluatelntegral(mesh, volExpr);
double xCM = evaluatelntegral (mesh, xCMExpr);
double yCM = evaluatelntegral (mesh, yCMExpr)
double zCM = evaluatelntegral (mesh, zCMExpr);

Out::o0s() << "centroid = (" << xtM << ", " << y(M << ", " << zCM << ")" << endl;

We next compute the first Fourier sine coefficient of the solution on the surface of the hole,

B fhole usin ¢ dQ)

A .
! fhole sin2 (P dQ

/x Compute sing from Cartesian coordinates (x,y) */
Expr r = sqrt(x*xx + yxy);
Expr sinPhi = y/r;

/x Define expressions for the Fourier coefficients x/
Expr fourierSinlExpr = Integral(hole, sinPhixsoln, quad2);
Expr fourierDenomExpr = Integral (hole, sinPhixsinPhi, quad2);

/% Evaluate the integrals x/
double fourierSinl = evaluatelntegral(mesh, fourierSinlExpr);
double fourierDenom = evaluatelntegral(mesh, fourierDenomExpr);

/x Write the results x/
Out::o0s() << "fourier sin m=1l = " << fourierSinl /fourierDenom << endl;

As the final postprocessing example, we compute the L? norm of the solution u,

Jul =/ [w22
@)

Expr L2NormExpr = Integral(interior , solnxsoln, quad2);
double [2Norm methodl = sqrt(evaluatelntegral (mesh, L2NormExpr));
Out::os() << "method #1: ||soln]|| = " << I2Norm _methodl << endl;

Norm computation is a common enough operation that Sundance provides several built-in
functions to compute various norms. For example, the previous computation can be carried
out more compactly through the code

double [2Norm method2 = L2Norm(mesh, interior , soln, quad);
Out::os() << "method #2: ||soln|| = " << I2Norm _method2 << endl;

Similar functions exist for the computation of the H! norm and H! seminorm.

15

4 Exercises

1. Change the BC on the hole to

ou 5
%—x.

In a postprocessing step, compute and compare the fluxes

Qhole = /hole n- Vu dA

Qo\hole = /Q\hole n-VudA.

Verity that the net flux is zero.
2. Define an expression that will compute the average element diameter.

3. By running on a sequence of refined meshes, verify that the computations of the flux
and of the first Fourier momentA; are converging at the correct rates.

16

