Math 3351, Test # 1, Name _____

1. Given
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 4 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

(a) Find the **Reduced** Row Echelon Form of \boldsymbol{A}

(b) Find the $Rank(\mathbf{A}) =$ _____

(c) Find a Basis for the Row Space of $\boldsymbol{A}.$

- 2. Given the two systems: (a) $\begin{cases} x-y = 5\\ 2x+3y = 0 \end{cases}$; (b) $\begin{cases} x -y = 1\\ x +z = 1 \end{cases}$
 - (a) (i) Write in matrix form Ax = b and write [A|b]; (ii) Determine whether each system is consistent or inconsistent; (iii) Decide if b is in the range space of A; (iv) If the system is consistent use row reduction to find all solutions.

(b) (i) Write in matrix form Ax = b and write [A|b]; (ii) Determine whether each system is consistent or inconsistent; (iii) Decide if b is in the range space of A; (iv) If the system is consistent use row reduction to find all solutions.

- 3. Given the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$.
 - (a) Find the determinant of \boldsymbol{A} .

(b) Find the inverse of A.

4. Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- 5. Solve the Initial Value Problem $\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ with $\begin{bmatrix} x \\ y \end{bmatrix} (0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 - (a) Find the eigenvalues and eigenvectors for \boldsymbol{A} .

(b) Find the general solution.

(c) Solve the initial value problem.