Math 3351, Test \# 1, Name

1. Given $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 0 & 4 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.
(a) Find the Reduced Row Echelon Form of \boldsymbol{A}
(b) Find the $\operatorname{Rank}(\boldsymbol{A})=$
(c) Find a Basis for the Row Space of \boldsymbol{A}.
2. Given the two systems: (a) $\left\{\begin{aligned} x-y=5 \\ 2 x+3 y=0\end{aligned}\right.$; (b) $\begin{cases}x-y=1 \\ x+z=1\end{cases}$
(a) (i) Write in matrix form $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and write $[\boldsymbol{A} \mid \boldsymbol{b}]$; (ii) Determine whether each system is consistent or inconsistent; (iii) Decide if \boldsymbol{b} is in the range space of \boldsymbol{A}; (iv) If the system is consistent use row reduction to find all solutions.
(b) (i) Write in matrix form $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and write $[\boldsymbol{A} \mid \boldsymbol{b}]$; (ii) Determine whether each system is consistent or inconsistent; (iii) Decide if \boldsymbol{b} is in the range space of \boldsymbol{A}; (iv) If the system is consistent use row reduction to find all solutions.
3. Given the matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]$
(a) Find the determinant of \boldsymbol{A}.
(b) Find the inverse of \boldsymbol{A}.
4. Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$.
5. Solve the Initial Value Problem $\frac{d}{d t}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ with $\left[\begin{array}{l}x \\ y\end{array}\right](0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(a) Find the eigenvalues and eigenvectors for \boldsymbol{A}.
(b) Find the general solution.
(c) Solve the initial value problem.
