1 Math 4350 Lecture 6 -2/6/2020 Limit Theorems Continued

Theorem 1 If $\left(x_{n}\right)$ converge to x and for all n sufficiently large we have $x_{n} \geq 0$ then $\lim x_{n}=x \geq 0$.

Proof. Suppose that $x<0$. Then let $\epsilon=-x>0$ and so the is an N such that for all $n \geq N$ we have $x_{n} \geq 0$ and

$$
x-\epsilon<x_{n}<x+\epsilon=x+(-x)=0
$$

In particular, $x_{N}<0$ which is a contradiction.
Corollary 2 If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converge to x and y respectively and for all n sufficiently large $x_{n} \leq y_{n}$ then $x \leq y$

Proof. We do this in class but it is pretty obvious. Just consider $z_{n}=y_{n}-x_{n}$ and use the previous theorem.

Remark 3 What happens if we try to replace the inequalities above by strict inequalities?

Theorem 4 If $\left(x_{n}\right)$ converges to x and for all n sufficiently large $x_{n} \in[a, b]$ then $x \in[a, b]$

We prove this in class and you can find the proof in the book as well. Can you do it without looking?

A very useful theorem that you may remember from basic calculus class is the Squeeze Theorem:

Theorem 5 Suppose we have sequences $\left(x_{n}\right),\left(y_{n}\right)$ and $\left(z_{n}\right)$ and that

$$
x_{n} \leq y_{n} \leq z_{n} \text { for all } n \in \mathbb{N}
$$

Then if $\lim x_{n}=\lim z_{n}$ we also have that $\lim _{n \rightarrow \infty} y_{n}$ exist and

$$
\lim x_{n}=\lim y_{n}=\lim z_{n}
$$

Proof. Sketch: Let $w=\lim x_{n}=\lim y_{n}$. For large enough n we have

$$
\begin{aligned}
-\epsilon< & x_{n}-w<\epsilon \\
& \text { and } \\
-\epsilon< & x_{n}-w<\epsilon
\end{aligned}
$$

Now subtract w through the inequalities $x_{n} \leq y_{n} \leq z_{n}$ to get

$$
\begin{aligned}
x_{n}-w \leq & y_{n}-w \leq z_{n}-w \\
& \text { and so } \\
-\epsilon< & y_{n}-w<\epsilon
\end{aligned}
$$

Which is $\left|y_{n}-w\right|<\epsilon$ for all sufficiently large n.

Example 6 For example since $-\frac{1}{n} \leq \frac{\sin (n)}{n} \leq \frac{1}{n}$ we easily get $\lim _{n \rightarrow \infty} \frac{\sin (n)}{n}=$ 0

Example 7 Notice that $\lim (a+b / n)=\lim a+\lim b / n=a+0$ so for example $\lim _{n \rightarrow \infty} \frac{2 n+1}{n+5}=2$ since $\frac{2}{1}=\frac{\lim (2+1 / n)}{\lim (1+5 / n)}=\lim _{n \rightarrow \infty} \frac{2+1 / n}{1+5 / n}=\lim _{n \rightarrow \infty} \frac{2 n+1}{n+5}$ (we used the quotient theorem)

Example 8 A slightly trickier than the example above is the following: $\lim _{n \rightarrow \infty}\left(\frac{2 n}{n^{2}+1}\right)=$?
Notice that although $\frac{2 n}{n^{2}+1}=\frac{2 n}{n+1 / n}$ this doesn't do us any good. Instead we try

$$
\frac{2 n}{n^{2}+1}=\frac{2 / n}{1+1 / n^{2}}
$$

then since $\lim 2 / n=0$ and $\lim \left(1+1 / n^{2}\right)=0$ (why?) we have $\lim _{n \rightarrow \infty}\left(\frac{2 n}{n^{2}+1}\right)=$ $\lim _{n \rightarrow \infty} \frac{2 / n}{1+1 / n^{2}}=\frac{\lim _{n \rightarrow \infty} 2 / n}{\lim _{n \rightarrow \infty}\left(1+1 / n^{2}\right)}=0 / 1=0$
These inequalities give a more logical flow written in reverse order. That was we don't write equalities before we no the limits exist.

Example 9 Later we show that if $\lim x_{n}=x$ and $x_{n} \geq 0$ for all n then $\lim \sqrt{x_{n}}=\sqrt{x}$

Try this on your own. This may be on an exam!
Exercise 10 Use $\| x_{n}|-|x|| \leq\left|x_{n}-x\right|$ to prove that if $\lim _{n \rightarrow \infty} x_{n}=x$ then $\lim _{n \rightarrow \infty}\left|x_{n}\right|=|x|$ (we assumed this result last lecture).

Recall that we mentioned the following in class and just above. Did you try to prove it?

Theorem 11 If $\lim _{n \rightarrow \infty} x_{n}=x$ and $x_{n} \geq 0$ for all (sufficiently large) n then $\lim _{n \rightarrow \infty} \sqrt{x_{n}}=\sqrt{x}$

Proof. The case $x=0$ is special. In this case we use the fact that for all sufficiently large n we have

$$
0 \leq x_{n}=x_{n}-0<\epsilon^{2}
$$

to conclude that for all such n we also have $0 \leq \sqrt{x_{n}}<\epsilon$ where we have used the proven fact that $\sqrt{ }$ preserves order. Thus for all sufficiently large n we have $0 \leq\left|\sqrt{x_{n}}-0\right|=\sqrt{x_{n}}<\epsilon$.

Now for the case $x>0$ (why is <0 impossible?) we have

$$
\sqrt{x_{n}}-\sqrt{x}=\frac{\sqrt{x_{n}}+\sqrt{x}}{\sqrt{x_{n}}+\sqrt{x}}\left(\sqrt{x_{n}}-\sqrt{x}\right)=\frac{x_{n}-x}{\sqrt{x_{n}}+\sqrt{x}}
$$

and $\sqrt{x_{n}}+\sqrt{x} \geq \sqrt{x}>0$ so that $\left(\sqrt{x_{n}}+\sqrt{x}\right)^{-1} \leq(\sqrt{x})^{-1}$ giving

$$
\left|\sqrt{x_{n}}-\sqrt{x}\right| \leq \frac{\left|x_{n}-x\right|}{\sqrt{x_{n}}+\sqrt{x}} \leq \frac{1}{\sqrt{x}}\left|x_{n}-x\right|
$$

and the result follows easily (from 3.1.10 for example)
Theorem 12 If $\left(x_{n}\right)$ is a sequence of positive real numbers and $\lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{x_{n}}\right)=$ $L<1$ then $\lim _{n \rightarrow \infty}\left(x_{n}\right)=0$

Proof. We know by now that $L \geq 0$. Let $\epsilon=r-L$ where $0<r<L$. Now there is a $K>0$ such that whenever $n \geq K$ we have

$$
\left|\frac{x_{n+1}}{x_{n}}-L\right|<\epsilon=r-L
$$

and so $\frac{x_{n+1}}{x_{n}}<L+\epsilon=L+(r-L)=r$. So for $n \geq K$ we have

$$
0<x_{n+1}<x_{n} r<x_{n-1} r^{2}<\cdots<x_{K} r^{n-K+1} \text { (think about this!) }
$$

If we set $C=x_{K} / r^{K}$ then $0<x_{n+1}<C r^{n+1}$. But since $0<r<1$ we know that $\lim _{n \rightarrow \infty} r^{n+1}=0$ and the result follows by squeezing.

Example 13 For example try $x_{n}=n / 2^{n}$.

2 Monotone Sequences

Definition $14 A$ sequence of real numbers $\left(a_{n}\right)$ is said to be Increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$. Similarly, a sequence of real numbers $\left(a_{n}\right)$ is said to be Decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence is said to be Monotone or Monotonic if it is either increasing or decreasing

Theorem 15 (Monotone Convergence Theorem) A monotone sequence of real numbers is convergent if and only if it is bounded. If $\left(x_{n}\right)$ is bounded and increasing then $\lim _{n \rightarrow \infty} x_{n}=\sup \left\{x_{n}\right\}$ and if it is bounded and decreasing then $\lim _{n \rightarrow \infty} x_{n}=\inf \left\{x_{n}\right\}$.

Consider the case of a increasing sequence $\left(x_{n}\right)$. By assumption, $\left\{x_{n}\right\}$ is nonempty and bounded above. By the least-upper-bound property or completeness property of real numbers, $c=\sup \left\{x_{n}\right\}$ exists and is finite. Now, for every $\epsilon>0$, there exists N such that $N>c-\epsilon$, since otherwise $c-\epsilon$ would be an upper bound of which contradicts to the definition of c. Then since $\left(x_{n}\right)$ is increasing, and c is its upper bound, for every $n>N$, we have $\left|c-x_{n}\right| \leq\left|c-x_{N}\right|<\epsilon$

Thus $c=\sup \left\{x_{n}\right\}$ is the limit of the sequence.
The decreasing case is similar.

