1 Math 4350 Lecture 6 -2/6/2020 Limit Theorems Continued

Theorem 1 If (x_n) converge to x and for all n sufficiently large we have $x_n \ge 0$ then $\lim x_n = x \ge 0$.

Proof. Suppose that x < 0. Then let $\epsilon = -x > 0$ and so the is an N such that for all $n \ge N$ we have $x_n \ge 0$ and

 $x - \epsilon < x_n < x + \epsilon = x + (-x) = 0$

In particular, $x_N < 0$ which is a contradiction.

Corollary 2 If (x_n) and (y_n) converge to x and y respectively and for all n sufficiently large $x_n \leq y_n$ then $x \leq y$

Proof. We do this in class but it is pretty obvious. Just consider $z_n = y_n - x_n$ and use the previous theorem.

Remark 3 What happens if we try to replace the inequalities above by strict inequalities?

Theorem 4 If (x_n) converges to x and for all n sufficiently large $x_n \in [a, b]$ then $x \in [a, b]$

We prove this in class and you can find the proof in the book as well. Can you do it without looking?

A very useful theorem that you may remember from basic calculus class is the **Squeeze Theorem**:

Theorem 5 Suppose we have sequences $(x_n), (y_n)$ and (z_n) and that

$$x_n \leq y_n \leq z_n \text{ for all } n \in \mathbb{N}$$

Then if $\lim x_n = \lim z_n$ we also have that $\lim_{n \to \infty} y_n$ exist and

$$\lim x_n = \lim y_n = \lim z_n$$

Proof. Sketch: Let $w = \lim x_n = \lim y_n$. For large enough n we have

$$-\epsilon < x_n - w < \epsilon$$

and
 $-\epsilon < x_n - w < \epsilon$

Now subtract w through the inequalities $x_n \leq y_n \leq z_n$ to get

$$x_n - w \leq y_n - w \leq z_n - w$$

and so
 $-\epsilon < y_n - w < \epsilon$

Which is $|y_n - w| < \epsilon$ for all sufficiently large n.

Example 6 For example since $-\frac{1}{n} \leq \frac{\sin(n)}{n} \leq \frac{1}{n}$ we easily get $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0$

Example 7 Notice that $\lim(a+b/n) = \lim a + \lim b/n = a + 0$ so for example $\lim_{n\to\infty} \frac{2n+1}{n+5} = 2$ since $\frac{2}{1} = \frac{\lim(2+1/n)}{\lim(1+5/n)} = \lim_{n\to\infty} \frac{2+1/n}{1+5/n} = \lim_{n\to\infty} \frac{2n+1}{n+5}$ (we used the quotient theorem)

Example 8 A slightly trickier than the example above is the following: $\lim_{n\to\infty} \left(\frac{2n}{n^2+1}\right) =$?

Notice that although $\frac{2n}{n^2+1} = \frac{2n}{n+1/n}$ this doesn't do us any good. Instead we try

$$\frac{2n}{n^2+1} = \frac{2/n}{1+1/n^2}$$

then since $\lim 2/n = 0$ and $\lim (1 + 1/n^2) = 0$ (why?) we have $\lim_{n \to \infty} \left(\frac{2n}{n^2 + 1}\right) = \lim_{n \to \infty} \frac{2/n}{1 + 1/n^2} = \frac{\lim_{n \to \infty} 2/n}{\lim_{n \to \infty} (1 + 1/n^2)} = 0/1 = 0$ These inequalities give a more logical flow written in reverse order. That was we don't write equalities before we no the limits exist.

Example 9 Later we show that if $\lim x_n = x$ and $x_n \ge 0$ for all n then $\lim \sqrt{x_n} = \sqrt{x}$

Try this on your own. This may be on an exam!

(

Exercise 10 Use $||x_n| - |x|| \le |x_n - x|$ to prove that if $\lim_{n\to\infty} x_n = x$ then $\lim_{n\to\infty} |x_n| = |x|$ (we assumed this result last lecture).

Recall that we mentioned the following in class and just above. Did you try to prove it?

Theorem 11 If $\lim_{n\to\infty} x_n = x$ and $x_n \ge 0$ for all (sufficiently large) *n* then $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{x}$

Proof. The case x = 0 is special. In this case we use the fact that for all sufficiently large n we have

$$0 \le x_n = x_n - 0 < \epsilon^2$$

to conclude that for all such n we also have $0 \le \sqrt{x_n} < \epsilon$ where we have used the proven fact that $\sqrt{preserves}$ order. Thus for all sufficiently large n we have $0 \le |\sqrt{x_n} - 0| = \sqrt{x_n} < \epsilon$.

Now for the case x > 0 (why is < 0 impossible?) we have

$$\sqrt{x_n} - \sqrt{x} = \frac{\sqrt{x_n} + \sqrt{x}}{\sqrt{x_n} + \sqrt{x}} (\sqrt{x_n} - \sqrt{x}) = \frac{x_n - x}{\sqrt{x_n} + \sqrt{x}}$$

and $\sqrt{x_n} + \sqrt{x} \ge \sqrt{x} > 0$ so that $(\sqrt{x_n} + \sqrt{x})^{-1} \le (\sqrt{x})^{-1}$ giving

$$\left|\sqrt{x_n} - \sqrt{x}\right| \le \frac{|x_n - x|}{\sqrt{x_n} + \sqrt{x}} \le \frac{1}{\sqrt{x}} |x_n - x|$$

and the result follows easily (from 3.1.10 for example)

Theorem 12 If (x_n) is a sequence of positive real numbers and $\lim_{n\to\infty} \left(\frac{x_{n+1}}{x_n}\right) = L < 1$ then $\lim_{n\to\infty} (x_n) = 0$

Proof. We know by now that $L \ge 0$. Let $\epsilon = r - L$ where 0 < r < L. Now there is a K > 0 such that whenever $n \ge K$ we have

$$\left|\frac{x_{n+1}}{x_n} - L\right| < \epsilon = r - L$$

and so $\frac{x_{n+1}}{x_n} < L + \epsilon = L + (r - L) = r$. So for $n \ge K$ we have

$$0 < x_{n+1} < x_n r < x_{n-1} r^2 < \dots < x_K r^{n-K+1}$$
 (think about this!)

If we set $C = x_K/r^K$ then $0 < x_{n+1} < Cr^{n+1}$. But since 0 < r < 1 we know that $\lim_{n\to\infty} r^{n+1} = 0$ and the result follows by squeezing.

Example 13 For example try $x_n = n/2^n$.

2 Monotone Sequences

Definition 14 A sequence of real numbers (a_n) is said to be **Increasing** if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$. Similarly, a sequence of real numbers (a_n) is said to be **Decreasing** if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence is said to be **Monotone** or **Monotonic** if it is either increasing or decreasing

Theorem 15 (Monotone Convergence Theorem) A monotone sequence of real numbers is convergent if and only if it is bounded. If (x_n) is bounded and increasing then $\lim_{n\to\infty} x_n = \sup\{x_n\}$ and if it is bounded and decreasing then $\lim_{n\to\infty} x_n = \inf\{x_n\}$.

Consider the case of a increasing sequence (x_n) . By assumption, $\{x_n\}$ is nonempty and bounded above. By the least-upper-bound property or completeness property of real numbers, $c = \sup\{x_n\}$ exists and is finite. Now, for every $\epsilon > 0$, there exists N such that $N > c - \epsilon$, since otherwise $c - \epsilon$ would be an upper bound of which contradicts to the definition of c. Then since (x_n) is increasing, and c is its upper bound, for every n > N, we have $|c - x_n| \le |c - x_N| < \epsilon$

Thus $c = \sup\{x_n\}$ is the limit of the sequence.

The decreasing case is similar.