
1 Math 4350 Lecture 6 -2/6/2020
Limit Theorems Continued

.

Theorem 1 If (xn) converge to x and for all n su¢ ciently large we have xn � 0
then limxn = x � 0:

Proof. Suppose that x < 0. Then let � = �x > 0 and so the is an N such that
for all n � N we have xn � 0 and

x� � < xn < x+ � = x+ (�x) = 0

In particular, xN < 0 which is a contradiction.

Corollary 2 If (xn) and (yn) converge to x and y respectively and for all n
su¢ ciently large xn � yn then x � y

Proof. We do this in class but it is pretty obvious. Just consider zn = yn � xn
and use the previous theorem.

Remark 3 What happens if we try to replace the inequalities above by strict
inequalities?

Theorem 4 If (xn) converges to x and for all n su¢ ciently large xn 2 [a; b]
then x 2 [a; b]

We prove this in class and you can �nd the proof in the book as well. Can
you do it without looking?
A very useful theorem that you may remember from basic calculus class is

the Squeeze Theorem:

Theorem 5 Suppose we have sequences (xn); (yn) and (zn) and that

xn � yn � zn for all n 2 N

Then if limxn = lim zn we also have that limn!1 yn exist and

limxn = lim yn = lim zn

Proof. Sketch: Let w = limxn = lim yn:For large enough n we have

�� < xn � w < �
and

�� < xn � w < �
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Now subtract w through the inequalities xn � yn � zn to get

xn � w � yn � w � zn � w
and so

�� < yn � w < �

Which is jyn � wj < � for all su¢ ciently large n:

Example 6 For example since � 1
n �

sin(n)
n � 1

n we easily get limn!1
sin(n)
n =

0

Example 7 Notice that lim(a+ b=n) = lim a+ lim b=n = a+ 0 so for example
limn!1

2n+1
n+5 = 2 since 2

1 =
lim(2+1=n)
lim(1+5=n) = limn!1

2+1=n
1+5=n = limn!1

2n+1
n+5 (we

used the quotient theorem)

Example 8 A slightly trickier than the example above is the following: limn!1

�
2n
n2+1

�
=

?
Notice that although 2n

n2+1 =
2n

n+1=n this doesn�t do us any good. Instead we try

2n

n2 + 1
=

2=n

1 + 1=n2

then since lim 2=n = 0 and lim
�
1 + 1=n2

�
= 0 (why?) we have limn!1

�
2n
n2+1

�
=

limn!1
2=n

1+1=n2 =
limn!1 2=n

limn!1(1+1=n2)
= 0=1 = 0

These inequalities give a more logical �ow written in reverse order. That was
we don�t write equalities before we no the limits exist.

Example 9 Later we show that if limxn = x and xn � 0 for all n then
lim

p
xn =

p
x

Try this on your own. This may be on an exam!

Exercise 10 Use jjxnj � jxjj � jxn � xj to prove that if limn!1 xn = x then
limn!1 jxnj = jxj (we assumed this result last lecture).

Recall that we mentioned the following in class and just above. Did you try
to prove it?

Theorem 11 If limn!1 xn = x and xn � 0 for all (su¢ ciently large) n then
limn!1

p
xn =

p
x

Proof. The case x = 0 is special. In this case we use the fact that for all
su¢ ciently large n we have

0 � xn = xn � 0 < �2
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to conclude that for all such n we also have 0 � pxn < � where we have used
the proven fact that p preserves order. Thus for all su¢ ciently large n we have
0 �

��pxn � 0�� = pxn < �:
Now for the case x > 0 (why is < 0 impossible?) we have

p
xn �

p
x =

p
xn +

p
x

p
xn +

p
x
(
p
xn �

p
x) =

xn � xp
xn +

p
x

and
p
xn +

p
x �

p
x > 0 so that

�p
xn +

p
x
��1 � (px)�1 giving

��pxn �px�� � jxn � xjp
xn +

p
x
� 1p

x
jxn � xj

and the result follows easily (from 3.1.10 for example)

Theorem 12 If (xn) is a sequence of positive real numbers and limn!1

�
xn+1
xn

�
=

L < 1 then limn!1 (xn) = 0

Proof. We know by now that L � 0. Let � = r � L where 0 < r < L: Now
there is a K > 0 such that whenever n � K we have����xn+1xn

� L
���� < � = r � L

and so xn+1
xn

< L+ � = L+ (r � L) = r. So for n � K we have

0 < xn+1 < xnr < xn�1r
2 < � � � < xKrn�K+1 (think about this!)

If we set C = xK=rK then 0 < xn+1 < Crn+1: But since 0 < r < 1 we know
that limn!1 r

n+1 = 0 and the result follows by squeezing.

Example 13 For example try xn = n=2n:

2 Monotone Sequences

De�nition 14 A sequence of real numbers (an) is said to be Increasing if
an � an+1 for all n 2 N. Similarly, a sequence of real numbers (an) is said to
be Decreasing if an � an+1 for all n 2 N. A sequence is said to beMonotone
or Monotonic if it is either increasing or decreasing

Theorem 15 (Monotone Convergence Theorem) A monotone sequence of
real numbers is convergent if and only if it is bounded. If (xn) is bounded and
increasing then limn!1 xn = supfxng and if it is bounded and decreasing then
limn!1 xn = inffxng:
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Consider the case of a increasing sequence (xn). By assumption, {xn} is non-
empty and bounded above. By the least-upper-bound property or completeness
property of real numbers, c = supfxng exists and is �nite. Now, for every � > 0,
there exists N such that N > c � � , since otherwise c � � would be an upper
bound of which contradicts to the de�nition of c. Then since (xn) is increasing,
and c is its upper bound, for every n > N , we have jc� xnj � jc� xN j < �
Thus c = supfxng is the limit of the sequence.
The decreasing case is similar.
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