Numerical Analysis of PDE I, Spring 2024, HW#5.

Assignment day: March 24th, 2024

Ignacio Tomas¹, Department of Mathematics and Statistics, Texas Tech University.

Problem #1. Applications of Deny-Lions. Prove the following Poincare-like inequalities invoking the Deny-Lions lemma:

 $\begin{aligned} \|u\|_{H^{1}(\Omega)} &\leq c_{p} \left(\|\nabla u\|_{L^{2}(\Omega)} + |\int_{\partial\Omega} u \,\mathrm{d}\boldsymbol{s}| \right) \\ \|u\|_{H^{1}(\Omega)} &\leq c_{p} \left(\|\nabla u\|_{L^{2}(\Omega)} + |\int_{\Omega} u \,\mathrm{d}\boldsymbol{x}| \right) \\ \|u\|_{H^{1}(\Omega)} &\leq c_{p} \left(\|\nabla u\|_{L^{2}(\Omega)} + |\int_{\Omega_{0}} u \,\mathrm{d}\boldsymbol{x}| \right) \end{aligned}$

where Ω_0 is any subset of Ω of positive measure.

Problem #2. Proper mapping for $H(\operatorname{div}, \Omega)$ functions. Consider the scalar-valued function $v(\boldsymbol{x})$ that is related to the function $\hat{v}(\hat{\boldsymbol{x}})$ by the relationship $v(\boldsymbol{T}_{K}(\hat{\boldsymbol{x}})) = \hat{v}(\hat{\boldsymbol{x}})$, where $\boldsymbol{T}_{K}(\hat{\boldsymbol{x}}) : \hat{K} \to K$. Assume that the mapping is affine, that is $\boldsymbol{T}_{K}(\hat{\boldsymbol{x}})) = A_{K}\hat{\boldsymbol{x}} + b_{K}$ and that det $A_{K} > 0$. Then we have that $\boldsymbol{x} = \boldsymbol{T}_{K}(\hat{\boldsymbol{x}})$ and $\nabla_{\hat{\boldsymbol{x}}}\boldsymbol{x} = A_{K}$. The relationship $v(\boldsymbol{T}_{K}(\hat{\boldsymbol{x}})) = \hat{v}(\hat{\boldsymbol{x}})$ is often called the pullback map, and preserves a few important properties. In particular, if $q(\boldsymbol{x})$ vanishes on the boundary of K, then $\hat{q}(\hat{\boldsymbol{x}}) := q(\boldsymbol{T}_{K}(\hat{\boldsymbol{x}}))$ vanishes on the boundary of \hat{K} (and converse). However, we might be interested in mappings that preserve other important properties. Let $\boldsymbol{v}(\boldsymbol{x}) : \mathbb{R}^{d} \to \mathbb{R}^{d}$ be a vector-valued function. Consider the mapping for vector-valued functions defined by $\boldsymbol{v}(\boldsymbol{T}_{K}(\hat{\boldsymbol{x}})) = \frac{1}{\det A_{K}}A_{K}\hat{\boldsymbol{v}}(\hat{\boldsymbol{x}})$, which is known as the contravariant Piola transform. Then:

- 1. Using the chain rule show that $\nabla_{\boldsymbol{x}} v = A_K^{-\top} \nabla_{\widehat{\boldsymbol{x}}} \widehat{v}$.
- 2. Show that div $\boldsymbol{v}(\boldsymbol{x}) = \frac{1}{\det A_K} \widehat{\operatorname{div}} \widehat{\boldsymbol{v}}(\widehat{\boldsymbol{x}})$, where $\widehat{\operatorname{div}}$ is the divergence with respect to $\widehat{\boldsymbol{x}}$. *Hint:* do not try to prove this identity as a sheer brute-force chain-rule rule exercise. Instead consider proving that $\int_K \operatorname{div} \boldsymbol{v}(\boldsymbol{x}) q(\boldsymbol{x}) d\boldsymbol{x} = \int_{\widehat{K}} \widehat{\operatorname{div}} \widehat{\boldsymbol{v}}(\widehat{\boldsymbol{x}}) q(\boldsymbol{T}_K(\widehat{\boldsymbol{x}})) d\widehat{\boldsymbol{x}}$ for all $q(\boldsymbol{x}) \in \mathcal{C}_0^{\infty}(K)$. Note that $\boldsymbol{v}(\boldsymbol{x})$ is mapped using the contravariant map, while $q(\boldsymbol{x})$ is mapped using the pullback transform. You will have to use the result of Part 1.
- 3. Multiply both sides of the identity div $\boldsymbol{v}(\boldsymbol{x}) = \frac{1}{\det A_K} \widehat{\operatorname{div}} \, \widehat{\boldsymbol{v}}(\widehat{\boldsymbol{x}})$ by the measure of volume $d\boldsymbol{x}$ and integrate in K: What do you get?

Note. The contravariant Piola-transform is important for the implementation of $H(\operatorname{div}, \Omega)$ finite elements. The contravariant transform does the right job even if $T_K(\hat{x})$ is non-affine. On the other hand, the pullback map cannot be used to map div-conforming elements since it does not preserve the divergence or normal components of v(x).

¹https://www.math.ttu.edu/~igtomas/, igtomas@ttu.edu

Problem #3. Condition numbers. Let $\mathbf{A} \in \mathbb{R}^{N \times N}$ be nonsingular symmetric matrix. The condition number of \mathbf{A} in the 2-norm is $\kappa(\mathbf{A}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$. This number dictates the performance iterative solvers. Show that:

- (a) If **A** is symmetric positive definite, then $\kappa(\mathbf{A}) = \frac{\lambda_{\max}}{\lambda_{\min}}$, where λ_{\max} (resp λ_{\min}) is the largest (resp smallest) eigenvalue of **A**.
- (b) The condition number of the mass matrix $\mathbf{M} \in \mathbb{R}^{N \times N}$ with entries given by $\mathbf{M}_{ij} = \int_{\Omega} \phi_i(\boldsymbol{x}) \phi_j(\boldsymbol{x}) d\boldsymbol{x}$ over a quasi-uniform triangulation \mathcal{T}_h of size h satisfies $\kappa(\mathbf{M}) = \mathcal{O}(1)$. *Hint: use the results of Problem #3 from Homework #4.*
- (c) The condition number of the stiffness matrix **K** with entries $\mathbf{K}_{ij} = \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j d\boldsymbol{x}$ for the case of vanishing Dirichlet boundary conditions over a quasi-uniform triangulation \mathcal{T}_h of size h satisfies $\kappa(\mathbf{K}) = \mathcal{O}(h^{-2}) = \mathcal{O}(N^{\frac{2}{d}})$ where N is the total number of degree of freedom. Hint: use the results of Problem #3 from Homework #4.

Problem #4. Consistency of quadrature under lumping. Let $a(u, v) = (c\nabla u, \nabla v)_{L^2(\Omega)}$, where $c(\boldsymbol{x}) \in C^2(\Omega)$ and $F(v) = (f, v)_{L^2(\Omega)}$ denote the "exact" bilinear form and right hand side functional. Consider the three-point quadrature rule

$$q_K(g) = \frac{1}{3}|K|\sum_{i=1}^3 g(\boldsymbol{x}_i)$$

where $g \in C^0(K)$ and $\{x_1, x_2, x_3\}$ are the vertex coordinates of the triangle K, in order to approximate the integral $\int_K g \, dx$. Indeed, this quadrature formula is a generalization of the trapezoidal rule. Using similar techniques to those of problem #5 in homework #4 we can easily prove that:

$$|q_K(g) - \int_K g \, \mathrm{d}\boldsymbol{x}| \le ch^2 |g|_{W^{2,1}(K)}$$
 (*)

Consider the functionals $a_{h,K}(u,v)$ and $F_{h,K}(v)$ defined in each element as

$$a_{h,K}(u,v) := q_K(uv) \text{ and } F_{h,K}(v) := q_K(fv)$$

such that $a_h(u, v) = \sum_{K \in \mathcal{T}_h} a_{h,K}(u, v)$ and $F_h(v) = \sum_{K \in \mathcal{T}_h} F_{h,K}(v)$. Let \mathbb{V}_h be defined by $\mathbb{V}_h = \{ v \in \mathcal{C}(\Omega) \mid v|_K \in \mathbb{P}_1(K) \; \forall K \in \mathcal{T}_h \}$

$$c_{1}|v_{h}|_{H^{1}(\Omega)} \leq a_{h}(v_{h}, v_{h}) \leq c_{2}|v_{h}|_{H^{1}(\Omega)}$$
$$|a_{h}(v_{h}, w_{h}) - a(v_{h}, w_{h})| \leq ch^{2}||a||_{\mathcal{C}^{2}(\Omega)}|v_{h}|_{H^{1}(\Omega)}|w_{h}|_{H^{1}(\Omega)}$$
$$|F_{h}(v_{h}) - F(v_{h})| \leq ch^{2}||f||_{H^{2}(\Omega)}|v_{h}|_{H^{1}(\Omega)}$$

for all $v_h, w_h \in \mathbb{V}_h$, where the constants are independent or v_h and w_h .

Hint. First important observation is that the functional $q_K(g)$ is exact for all $g \in \mathbb{P}_1(K)$. The second important observation is that if $v_h|_K \in \mathbb{P}_1(K)$ therefore $\nabla v_h|_K \in [\mathbb{P}_0(K)]^d$. The proofs of the second and third inequalities will require using the error estimate (*). At some point of the proof you will have to use the fact that the elementwise hessian of functions in the space \mathbb{V}_h is zero.