Numerical Analysis of PDE I, Spring 2024, HW\#5.

Assignment day: March 24th, 2024
Ignacio Tomas ${ }^{1}$, Department of Mathematics and Statistics, Texas Tech University.

Problem \#1. Applications of Deny-Lions. Prove the following Poincare-like inequalities invoking the Deny-Lions lemma:

$$
\begin{aligned}
\|u\|_{H^{1}(\Omega)} & \leq c_{p}\left(\|\nabla u\|_{L^{2}(\Omega)}+\left|\int_{\partial \Omega} u \mathrm{~d} \boldsymbol{s}\right|\right) \\
\|u\|_{H^{1}(\Omega)} & \leq c_{p}\left(\|\nabla u\|_{L^{2}(\Omega)}+\left|\int_{\Omega} u \mathrm{~d} \boldsymbol{x}\right|\right) \\
\|u\|_{H^{1}(\Omega)} & \leq c_{p}\left(\|\nabla u\|_{L^{2}(\Omega)}+\left|\int_{\Omega_{0}} u \mathrm{~d} \boldsymbol{x}\right|\right)
\end{aligned}
$$

where Ω_{0} is any subset of Ω of positive measure.

Problem \#2. Proper mapping for $H($ div, $\Omega)$ functions. Consider the scalar-valued function $v(\boldsymbol{x})$ that is related to the function $\widehat{v}(\widehat{\boldsymbol{x}})$ by the relationship $v\left(\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})\right)=\widehat{v}(\widehat{\boldsymbol{x}})$, where $\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}}): \widehat{K} \rightarrow K$. Assume that the mapping is affine, that is $\left.\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})\right)=A_{K} \widehat{\boldsymbol{x}}+b_{K}$ and that $\operatorname{det} A_{K}>0$. Then we have that $\boldsymbol{x}=\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})$ and $\nabla_{\widehat{\boldsymbol{x}}} \boldsymbol{x}=A_{K}$. The relationship $v\left(\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})\right)=\widehat{v}(\widehat{\boldsymbol{x}})$ is often called the pullback map, and preserves a few important properties. In particular, if $q(\boldsymbol{x})$ vanishes on the boundary of K, then $\widehat{q}(\widehat{\boldsymbol{x}}):=q\left(\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})\right)$ vanishes on the boundary of \widehat{K} (and converse). However, we might be interested in mappings that preserve other important properties. Let $\boldsymbol{v}(\boldsymbol{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a vector-valued function. Consider the mapping for vector-valued functions defined by $\boldsymbol{v}\left(\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})\right)=$ $\frac{1}{\operatorname{det} A_{K}} A_{K} \widehat{\boldsymbol{v}}(\widehat{\boldsymbol{x}})$, which is known as the contravariant Piola transform. Then:

1. Using the chain rule show that $\nabla_{x} v=A_{K}^{-\top} \nabla_{\widehat{x}} \widehat{v}$.
2. Show that $\operatorname{div} \boldsymbol{v}(\boldsymbol{x})=\frac{1}{\operatorname{det} A_{K}} \widehat{\operatorname{div}} \widehat{\boldsymbol{v}}(\widehat{\boldsymbol{x}})$, where $\widehat{\operatorname{div}}$ is the divergence with respect to $\widehat{\boldsymbol{x}}$.

Hint: do not try to prove this identity as a sheer brute-force chain-rule rule exercise. Instead consider proving that $\int_{K} \operatorname{div} \boldsymbol{v}(\boldsymbol{x}) q(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\widehat{K}} \widehat{\operatorname{div}} \widehat{\boldsymbol{v}}(\widehat{\boldsymbol{x}}) q\left(\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})\right) \mathrm{d} \widehat{\boldsymbol{x}}$ for all $q(\boldsymbol{x}) \in \mathcal{C}_{0}^{\infty}(K)$. Note that $\boldsymbol{v}(\boldsymbol{x})$ is mapped using the contravariant map, while $q(\boldsymbol{x})$ is mapped using the pullback transform. You will have to use the result of Part 1.
3. Multiply both sides of the identity $\operatorname{div} \boldsymbol{v}(\boldsymbol{x})=\frac{1}{\operatorname{det} A_{K}} \widehat{\operatorname{div}} \widehat{\boldsymbol{v}}(\widehat{\boldsymbol{x}})$ by the measure of volume $\mathrm{d} \boldsymbol{x}$ and integrate in K : What do you get?

Note. The contravariant Piola-transform is important for the implementation of $H(\operatorname{div}, \Omega)$ finite elements. The contravariant transform does the right job even if $\boldsymbol{T}_{K}(\widehat{\boldsymbol{x}})$ is non-affine. On the other hand, the pullback map cannot be used to map div-conformig elements since it does not preserve the divergence or normal components of $\boldsymbol{v}(\boldsymbol{x})$.

[^0]Problem \#3. Condition numbers. Let $\mathbf{A} \in \mathbb{R}^{N \times N}$ be nonsingular symmetric matrix. The condition number of \mathbf{A} in the 2-norm is $\kappa(\mathbf{A})=\|\mathbf{A}\|_{2}\left\|\mathbf{A}^{-1}\right\|_{2}$. This number dictates the performance iterative solvers. Show that:
(a) If \mathbf{A} is symmetric positive definite, then $\kappa(\mathbf{A})=\frac{\lambda_{\max }}{\lambda_{\min }}$, where $\lambda_{\max }\left(\right.$ resp $\left.\lambda_{\min }\right)$ is the largest (resp smallest) eigenvalue of \mathbf{A}.
(b) The condition number of the mass matrix $\mathbf{M} \in \mathbb{R}^{N \times N}$ with entries given by $\mathbf{M}_{i j}=\int_{\Omega} \phi_{i}(\boldsymbol{x}) \phi_{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}$ over a quasi-uniform triangulation \mathcal{T}_{h} of size h satisfies $\kappa(\mathbf{M})=\mathcal{O}(1)$.
Hint: use the results of Problem \#3 from Homework \#4.
(c) The condition number of the stiffness matrix \mathbf{K} with entries $\mathbf{K}_{i j}=\int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} \boldsymbol{x}$ for the case of vanishing Dirichlet boundary conditions over a quasi-uniform triangulation \mathcal{T}_{h} of size h satisfies $\kappa(\mathbf{K})=\mathcal{O}\left(h^{-2}\right)=\mathcal{O}\left(N^{\frac{2}{d}}\right)$ where N is the total number of degree of freedom.
Hint: use the results of Problem \#3 from Homework \#4.

Problem \#4. Consistency of quadrature under lumping. Let $a(u, v)=(c \nabla u, \nabla v)_{L^{2}(\Omega)}$, where $c(\boldsymbol{x}) \in \mathcal{C}^{2}(\Omega)$ and $F(v)=(f, v)_{L^{2}(\Omega)}$ denote the "exact" bilinear form and right hand side functional. Consider the three-point quadrature rule

$$
q_{K}(g)=\frac{1}{3}|K| \sum_{i=1}^{3} g\left(\boldsymbol{x}_{i}\right)
$$

where $g \in \mathcal{C}^{0}(K)$ and $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right\}$ are the vertex coordinates of the triangle K, in order to approximate the integral $\int_{K} g \mathrm{~d} \boldsymbol{x}$. Indeed, this quadrature formula is a generalization of the trapezoidal rule. Using similar techniques to those of problem \#5 in homework \#4 we can easily prove that:

$$
\begin{equation*}
\left|q_{K}(g)-\int_{K} g \mathrm{~d} \boldsymbol{x}\right| \leq c h^{2}|g|_{W^{2,1}(K)} \tag{*}
\end{equation*}
$$

Consider the functionals $a_{h, K}(u, v)$ and $F_{h, K}(v)$ defined in each element as

$$
a_{h, K}(u, v):=q_{K}(u v) \text { and } F_{h, K}(v):=q_{K}(f v)
$$

such that $a_{h}(u, v)=\sum_{K \in \mathcal{T}_{h}} a_{h, K}(u, v)$ and $F_{h}(v)=\sum_{K \in \mathcal{T}_{h}} F_{h, K}(v)$. Let \mathbb{V}_{h} be defined by

$$
\mathbb{V}_{h}=\left\{v \in \mathcal{C}(\Omega)|v|_{K} \in \mathbb{P}_{1}(K) \forall K \in \mathcal{T}_{h}\right\}
$$

Prove that:

$$
\begin{aligned}
& c_{1}\left|v_{h}\right|_{H^{1}(\Omega)} \leq a_{h}\left(v_{h}, v_{h}\right) \leq c_{2}\left|v_{h}\right|_{H^{1}(\Omega)} \\
& \left|a_{h}\left(v_{h}, w_{h}\right)-a\left(v_{h}, w_{h}\right)\right| \leq c h^{2}\|a\|_{\mathcal{C}^{2}(\Omega)}\left|v_{h}\right|_{H^{1}(\Omega)}\left|w_{h}\right|_{H^{1}(\Omega)} \\
& \left|F_{h}\left(v_{h}\right)-F\left(v_{h}\right)\right| \leq c h^{2}\|f\|_{H^{2}(\Omega)}\left|v_{h}\right|_{H^{1}(\Omega)}
\end{aligned}
$$

for all $v_{h}, w_{h} \in \mathbb{V}_{h}$, where the constants are independent or v_{h} and w_{h}.
Hint. First important observation is that the functional $q_{K}(g)$ is exact for all $g \in \mathbb{P}_{1}(K)$. The second important observation is that if $\left.v_{h}\right|_{K} \in \mathbb{P}_{1}(K)$ therefore $\left.\nabla v_{h}\right|_{K} \in\left[\mathbb{P}_{0}(K)\right]^{d}$. The proofs of the second and third inequalites will require using the error estimate (${ }^{*}$). At some point of the proof you will have to use the fact that the elementwise hessian of functions in the space \mathbb{V}_{h} is zero.

[^0]: ${ }^{1}$ https://www.math.ttu.edu/~igtomas/, igtomas@ttu.edu

