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Problem #1. Consider the Neumann problem:

−∆u = f in Ω, with ∂u
∂n = 0 on ∂Ω

(a) Assume that f ∈ L2(Ω) and show that the condition∫
Ω
fdx = 0

is necessary for the existence of a solution (because of the choice of boundary conditions).

(b) Note that if u solves the Neumann problem so does w = u + c with c being an arbitrary
constant. To obtain uniqueness we add the extra condition∫

Ω
udx = 0

requiring the mean value of u to be zero. Give this problem a variational formulation using
the space

V =
{
v ∈ H1(Ω)

∣∣ ∫
Ω vdx = 0

}
(c) Show that if the weak solution u ∈ V is actually sufficiently regular then it solves

−∆u = f −
∫
Ω
fdx in with ∂u

∂n = 0 on ∂Ω.

Problem #2. Raviart-Thomas element of lowest order. This problem illustrates how to design
finite elements for the space H(div,Ω) where Ω is a polygonal domain in R2.

(a) H(div,Ω) is the Sobolev space of vector-valued functions v(x) ∈ Rd satisfying the following
definition:

H(div,Ω) =
{
v ∈ [L2(Ω)]d

∣∣ divv ∈ L2(Ω) and∫
Ω v · ∇φdx = −

∫
Ω divvφdx for all φ ∈ C∞

0 (Ω)
}

(∗)

In other words: H(div,Ω) is the space of L2-integrable vector-valued function with a well-
defined weak divergence. Given Γ ⊂ Ω, a surface of discontinuity dividing Ω in two pieces; i.e.
Ω1∪Ω2 = Ω and ∂Ω1∩∂Ω2 = Γ; show that functions v ∈ H(div,Ω) cannot have normal jumps
[[v]] · n = 0 across Γ since this would fundamentally contradict definition (∗).

(b) Consider the following space P of vector valued polynomials over a triangle K ⊂ Ω:

P = [P0(K)]2 + xP0(K)

Hence a function v ∈ P is of the form v(x) = a + bx where a = [a1, a2]
⊤ ∈ R2, b ∈ R, and

x = [x1, x2]
⊤ is the usual vector of spatial coordinates. Note that the polynomial space P has

a total of three degrees of freedom: a1, a2 and b. Consider the alternative choice degrees of
freedom {σ1, σ2, σ3} of the vector-valued polynomial space P:

σi(v) =

∫
Fi

v · nds for each i ∈ {1, 2, 3} (∗∗)
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where Fi ⊂ ∂K represents a face of the element K. Note that σi(v) : P → R is not a nodal
value. Prove that the set of degrees of freedom {p1, p2, p3} is unisolvent. Start by showing that
v(x) · n(x) ≡ const at each face.

(c) Prove that all functions vh in the finite element space resulting from pasting together affine
equivalent triangles are in H(div,Ω). Note however that vh is not continuous since its tangent
component may jump at every interface between two elements.
Hint: show that the normal components of discrete vector fields vh are continuous across
interelement boundaries, meaning [[vh]] · nF ≡ 0 for each face F in the skeleton of the mesh
and that this implies the existence of a weak divergence.

Problem #3. Relationship between norms and nodal values. Let Th be a family of quasi-uniform
shape-regular triangulation of the polygonal domain Ω. Let Vh be a finite element space defined
on such mesh Th. Let {ϕi}Ni=1 be the canonical Lagrange basis function on Vh, and let vh(x) =∑N

i=1 Viϕi(x) ∈ Vh. Prove the following local estimates:

c1∥v∥2L2(K) ≤ hdK
∑
xi∈K

V 2
i ≤ c2∥vh∥2L2(K)

∥vh∥2H1(K) ≤ c1h
d−2
K ∥vh∥2L∞(K) ≤ c2h

d−2
K

∑
xi∈K

V 2
i

Problem #4. Applications of Bramble-Hilbert lemma I. Let Th be a family of quasi-uniform
shape-regular triangulations of the polygonal domain Ω. By this we mean that:

Quasi-uniformity: ∃ c1, c2 > 0 such that c1hK′ ≤ hK ≤ c2hK′ for all K,K ′ ∈ Th
Shape regularity: ∃σ > 0 such that hK

ρK
≤ σ for all K ∈ Th

In colloquial terms: quasi-uniformity means that all the element sizes are comparable, while shape
regularity means that the elements are not “too flat” (assuming that σ = O(1)). For each Th let

Vh =
{
vh ∈ L2(Ω)

∣∣ vh|K ∈ P0 ∀K ∈ Th
}

Define the piecewise averaging operator (Πhv)(x) =
∑

K∈Th vKIK(x) where IK(x) is the indicator
function at the element K and the “nodal value” vK is defined as

vK = 1
|K|

∫
K v dx

The operator Πh is nothing else than the L2(Ω)-projector onto the Vh space. Prove the error bounds

∥v −Πhv∥L2(Ω) ≤ ch|u|H1(Ω) where h = max
K∈Th

hK∣∣∫
K u(v −Πhv) dx

∣∣ ≤ ch2K |u|H1(K)|v|H1(K)

Note: The proof of the first inequality requires defining a (possibly nonlinear) functional F (u) in
the reference element, that is non-negative, subadditive, satisfying F (p) ≡ 0 for all p ∈ Pk, then
invoke the Bramble-Hilbert lemma. The estimate follows by using a scaling argument.



Problem #5. Applications of Bramble-Hilbert lemma II. Let Th = {xi}Ni=0 be a partition of

Ω = (0, 1). Let Q(w) =
∑N

i=1Qi(w) be the trapezoidal quadrature rule, where:

Qi(w) =
hi
2 (w(xi−1) + w(xi))

and hi = xi − xi−1 is the local meshsize. Show that for all w ∈ W 2
1 (Ω) the following error estimate

holds: ∣∣Q(w)−
∫ 1
0 w(x)dx

∣∣ ≤ const ·
∑N

i=1 h
2
i

∫ xi

xi−1
|w′′|dx

Hint: use the fact that Qi(w) is exact if w ∈ P1 in the unit interval, then use Bramble-Hilbert
lemma, and finish by using scaling arguments. You will receive zero credits if you solve this problem
using Taylor series expansions or related arguments.


