# Numerical Analysis of PDE I, Spring 2024, HW\#4. 

Assignment day: March 3rd, 2024

Ignacio Tomas ${ }^{1}$, Department of Mathematics and Statistics, Texas Tech University.
Problem \#1. Consider the Neumann problem:

$$
-\Delta u=f \text { in } \Omega, \text { with } \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega
$$

(a) Assume that $f \in L^{2}(\Omega)$ and show that the condition

$$
\int_{\Omega} f \mathrm{~d} \boldsymbol{x}=0
$$

is necessary for the existence of a solution (because of the choice of boundary conditions).
(b) Note that if $u$ solves the Neumann problem so does $w=u+c$ with $c$ being an arbitrary constant. To obtain uniqueness we add the extra condition

$$
\int_{\Omega} u \mathrm{~d} \boldsymbol{x}=0
$$

requiring the mean value of $u$ to be zero. Give this problem a variational formulation using the space

$$
\mathbb{V}=\left\{v \in H^{1}(\Omega) \mid \int_{\Omega} v \mathrm{~d} \boldsymbol{x}=0\right\}
$$

(c) Show that if the weak solution $u \in \mathbb{V}$ is actually sufficiently regular then it solves

$$
-\Delta u=f-\int_{\Omega} f \mathrm{~d} \boldsymbol{x} \text { in with } \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega
$$

Problem \#2. Raviart-Thomas element of lowest order. This problem illustrates how to design finite elements for the space $\mathbf{H}(\operatorname{div}, \Omega)$ where $\Omega$ is a polygonal domain in $\mathbb{R}^{2}$.
(a) $\mathbf{H}(\operatorname{div}, \Omega)$ is the Sobolev space of vector-valued functions $\boldsymbol{v}(\boldsymbol{x}) \in \mathbb{R}^{d}$ satisfying the following definition:

$$
\begin{align*}
& \mathbf{H}(\operatorname{div}, \Omega)=\left\{\boldsymbol{v} \in\left[L^{2}(\Omega)\right]^{d} \mid \operatorname{div} \boldsymbol{v} \in L^{2}(\Omega)\right. \text { and } \\
&\left.\int_{\Omega} \boldsymbol{v} \cdot \nabla \varphi \mathrm{d} \boldsymbol{x}=-\int_{\Omega} \operatorname{div} \boldsymbol{v} \varphi \mathrm{d} \boldsymbol{x} \text { for all } \varphi \in \mathcal{C}_{0}^{\infty}(\Omega)\right\} \tag{*}
\end{align*}
$$

In other words: $\mathbf{H}(\operatorname{div}, \Omega)$ is the space of $L^{2}$-integrable vector-valued function with a welldefined weak divergence. Given $\Gamma \subset \Omega$, a surface of discontinuity dividing $\Omega$ in two pieces; i.e. $\Omega_{1} \cup \Omega_{2}=\Omega$ and $\partial \Omega_{1} \cap \partial \Omega_{2}=\Gamma$; show that functions $\boldsymbol{v} \in H$ (div, $\Omega$ ) cannot have normal jumps $\llbracket \boldsymbol{v} \rrbracket \cdot \boldsymbol{n}=0$ across $\Gamma$ since this would fundamentally contradict definition (*).
(b) Consider the following space $\mathbb{P}$ of vector valued polynomials over a triangle $K \subset \Omega$ :

$$
\mathbb{P}=\left[\mathbb{P}_{0}(K)\right]^{2}+\boldsymbol{x} \mathbb{P}_{0}(K)
$$

Hence a function $\boldsymbol{v} \in \mathbb{P}$ is of the form $\boldsymbol{v}(\boldsymbol{x})=\boldsymbol{a}+b \boldsymbol{x}$ where $\boldsymbol{a}=\left[a_{1}, a_{2}\right]^{\top} \in \mathbb{R}^{2}, b \in \mathbb{R}$, and $\boldsymbol{x}=\left[x_{1}, x_{2}\right]^{\top}$ is the usual vector of spatial coordinates. Note that the polynomial space $\mathbb{P}$ has a total of three degrees of freedom: $a_{1}, a_{2}$ and $b$. Consider the alternative choice degrees of freedom $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ of the vector-valued polynomial space $\mathbb{P}$ :

$$
\sigma_{i}(\boldsymbol{v})=\int_{F_{i}} \boldsymbol{v} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{s} \text { for each } i \in\{1,2,3\} \quad(* *)
$$

[^0]where $F_{i} \subset \partial K$ represents a face of the element $K$. Note that $\sigma_{i}(\boldsymbol{v}): \mathbb{P} \rightarrow \mathbb{R}$ is not a nodal value. Prove that the set of degrees of freedom $\left\{p_{1}, p_{2}, p_{3}\right\}$ is unisolvent. Start by showing that $\boldsymbol{v}(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) \equiv$ const at each face.
(c) Prove that all functions $\boldsymbol{v}_{h}$ in the finite element space resulting from pasting together affine equivalent triangles are in $\mathbf{H}(\operatorname{div}, \Omega)$. Note however that $\boldsymbol{v}_{h}$ is not continuous since its tangent component may jump at every interface between two elements.
Hint: show that the normal components of discrete vector fields $\boldsymbol{v}_{h}$ are continuous across interelement boundaries, meaning $\llbracket \boldsymbol{v}_{h} \rrbracket \cdot \boldsymbol{n}_{F} \equiv 0$ for each face $F$ in the skeleton of the mesh and that this implies the existence of a weak divergence.

Problem \#3. Relationship between norms and nodal values. Let $\mathcal{T}_{h}$ be a family of quasi-uniform shape-regular triangulation of the polygonal domain $\Omega$. Let $\mathbb{V}_{h}$ be a finite element space defined on such mesh $\mathcal{T}_{h}$. Let $\left\{\phi_{i}\right\}_{i=1}^{N}$ be the canonical Lagrange basis function on $\mathbb{V}_{h}$, and let $v_{h}(\boldsymbol{x})=$ $\sum_{i=1}^{N} V_{i} \phi_{i}(\boldsymbol{x}) \in \mathbb{V}_{h}$. Prove the following local estimates:

$$
\begin{aligned}
c_{1}\|v\|_{L^{2}(K)}^{2} & \leq h_{K}^{d} \sum_{\boldsymbol{x}_{i} \in K} V_{i}^{2} \leq c_{2}\left\|v_{h}\right\|_{L^{2}(K)}^{2} \\
\left\|v_{h}\right\|_{H^{1}(K)}^{2} & \leq c_{1} h_{K}^{d-2}\left\|v_{h}\right\|_{L^{\infty}(K)}^{2} \leq c_{2} h_{K}^{d-2} \sum_{\boldsymbol{x}_{i} \in K} V_{i}^{2}
\end{aligned}
$$

Problem \#4. Applications of Bramble-Hilbert lemma $I$. Let $\mathcal{T}_{h}$ be a family of quasi-uniform shape-regular triangulations of the polygonal domain $\Omega$. By this we mean that:

$$
\text { Quasi-uniformity: } \exists c_{1}, c_{2}>0 \text { such that } c_{1} h_{K^{\prime}} \leq h_{K} \leq c_{2} h_{K^{\prime}} \text { for all } K, K^{\prime} \in \mathcal{T}_{h}
$$

$$
\text { Shape regularity: } \exists \sigma>0 \text { such that } \frac{h_{K}}{\rho_{K}} \leq \sigma \text { for all } K \in \mathcal{T}_{h}
$$

In colloquial terms: quasi-uniformity means that all the element sizes are comparable, while shape regularity means that the elements are not "too flat" (assuming that $\sigma=\mathcal{O}(1))$. For each $\mathcal{T}_{h}$ let

$$
\mathbb{V}_{h}=\left\{v_{h} \in L^{2}(\Omega)\left|v_{h}\right|_{K} \in \mathbb{P}_{0} \forall K \in \mathcal{T}_{h}\right\}
$$

Define the piecewise averaging operator $\left(\Pi_{h} v\right)(x)=\sum_{K \in \mathcal{T}_{h}} \bar{v}_{K} \square_{K}(\boldsymbol{x})$ where $\square_{K}(\boldsymbol{x})$ is the indicator function at the element $K$ and the "nodal value" $\bar{v}_{K}$ is defined as

$$
\bar{v}_{K}=\frac{1}{|K|} \int_{K} v \mathrm{~d} \boldsymbol{x}
$$

The operator $\Pi_{h}$ is nothing else than the $L^{2}(\Omega)$-projector onto the $\mathbb{V}_{h}$ space. Prove the error bounds

$$
\begin{aligned}
&\left\|v-\Pi_{h} v\right\|_{L^{2}(\Omega)} \leq c h|u|_{H^{1}(\Omega)} \text { where } h=\max _{K \in \mathcal{T}_{h}} h_{K} \\
&\left|\int_{K} u\left(v-\Pi_{h} v\right) \mathrm{d} \boldsymbol{x}\right| \leq c h_{K}^{2}|u|_{H^{1}(K)}|v|_{H^{1}(K)}
\end{aligned}
$$

Note: The proof of the first inequality requires defining a (possibly nonlinear) functional $F(u)$ in the reference element, that is non-negative, subadditive, satisfying $F(p) \equiv 0$ for all $p \in \mathbb{P}_{k}$, then invoke the Bramble-Hilbert lemma. The estimate follows by using a scaling argument.

Problem \#5. Applications of Bramble-Hilbert lemma II. Let $\mathcal{T}_{h}=\left\{x_{i}\right\}_{i=0}^{N}$ be a partition of $\Omega=(0,1)$. Let $Q(w)=\sum_{i=1}^{N} Q_{i}(w)$ be the trapezoidal quadrature rule, where:

$$
Q_{i}(w)=\frac{h_{i}}{2}\left(w\left(x_{i-1}\right)+w\left(x_{i}\right)\right)
$$

and $h_{i}=x_{i}-x_{i-1}$ is the local meshsize. Show that for all $w \in W_{1}^{2}(\Omega)$ the following error estimate holds:

$$
\left|Q(w)-\int_{0}^{1} w(x) \mathrm{d} x\right| \leq \text { const } \cdot \sum_{i=1}^{N} h_{i}^{2} \int_{x_{i-1}}^{x_{i}}\left|w^{\prime \prime}\right| \mathrm{d} x
$$

Hint: use the fact that $Q_{i}(w)$ is exact if $w \in \mathbb{P}^{1}$ in the unit interval, then use Bramble-Hilbert lemma, and finish by using scaling arguments. You will receive zero credits if you solve this problem using Taylor series expansions or related arguments.


[^0]:    ${ }^{1}$ https://www.math.ttu.edu/~igtomas/, igtomas@ttu.edu

