Numerical Analysis of PDE I, Spring 2024, HW#4.

Assignment day: March 3rd, 2024

Ignacio Tomas¹, Department of Mathematics and Statistics, Texas Tech University.

Problem #1. Consider the Neumann problem:

$$-\Delta u = f$$
 in Ω , with $\frac{\partial u}{\partial n} = 0$ on $\partial \Omega$

(a) Assume that $f \in L^2(\Omega)$ and show that the condition

$$\int_{\Omega} f \mathrm{d}\boldsymbol{x} = 0$$

is necessary for the existence of a solution (because of the choice of boundary conditions).

(b) Note that if u solves the Neumann problem so does w = u + c with c being an arbitrary constant. To obtain uniqueness we add the extra condition

$$\int_{\Omega} u \mathrm{d}\boldsymbol{x} = 0$$

requiring the mean value of u to be zero. Give this problem a variational formulation using the space

$$\mathbb{V} = \left\{ v \in H^1(\Omega) \, \middle| \, \int_{\Omega} v \mathrm{d} \boldsymbol{x} = 0 \right\}$$

(c) Show that if the weak solution $u \in \mathbb{V}$ is actually sufficiently regular then it solves

$$-\Delta u = f - \int_{\Omega} f d\boldsymbol{x}$$
 in with $\frac{\partial u}{\partial n} = 0$ on $\partial \Omega$.

Problem #2. Raviart-Thomas element of lowest order. This problem illustrates how to design finite elements for the space $\mathbf{H}(\operatorname{div}, \Omega)$ where Ω is a polygonal domain in \mathbb{R}^2 .

(a) $\mathbf{H}(\operatorname{div}, \Omega)$ is the Sobolev space of vector-valued functions $\boldsymbol{v}(\boldsymbol{x}) \in \mathbb{R}^d$ satisfying the following definition:

$$\mathbf{H}(\operatorname{div},\Omega) = \left\{ \boldsymbol{v} \in [L^2(\Omega)]^d \, \middle| \, \operatorname{div} \boldsymbol{v} \in L^2(\Omega) \text{ and} \right. \\ \left. \int_{\Omega} \boldsymbol{v} \cdot \nabla \varphi \, \mathrm{d} \boldsymbol{x} = -\int_{\Omega} \operatorname{div} \boldsymbol{v} \varphi \, \mathrm{d} \boldsymbol{x} \text{ for all } \varphi \in \mathcal{C}_0^\infty(\Omega) \right\}$$
(*)

In other words: $\mathbf{H}(\operatorname{div}, \Omega)$ is the space of L^2 -integrable vector-valued function with a welldefined weak divergence. Given $\Gamma \subset \Omega$, a surface of discontinuity dividing Ω in two pieces; i.e. $\Omega_1 \cup \Omega_2 = \Omega$ and $\partial \Omega_1 \cap \partial \Omega_2 = \Gamma$; show that functions $\boldsymbol{v} \in H(\operatorname{div}, \Omega)$ cannot have normal jumps $[\![\boldsymbol{v}]\!] \cdot \boldsymbol{n} = 0$ across Γ since this would fundamentally contradict definition (*).

(b) Consider the following space \mathbb{P} of vector valued polynomials over a triangle $K \subset \Omega$:

$$\mathbb{P} = [\mathbb{P}_0(K)]^2 + \boldsymbol{x} \mathbb{P}_0(K)$$

Hence a function $\boldsymbol{v} \in \mathbb{P}$ is of the form $\boldsymbol{v}(\boldsymbol{x}) = \boldsymbol{a} + b\boldsymbol{x}$ where $\boldsymbol{a} = [a_1, a_2]^\top \in \mathbb{R}^2$, $b \in \mathbb{R}$, and $\boldsymbol{x} = [x_1, x_2]^\top$ is the usual vector of spatial coordinates. Note that the polynomial space \mathbb{P} has a total of three degrees of freedom: a_1, a_2 and b. Consider the alternative choice degrees of freedom $\{\sigma_1, \sigma_2, \sigma_3\}$ of the vector-valued polynomial space \mathbb{P} :

$$\sigma_i(\boldsymbol{v}) = \int_{F_i} \boldsymbol{v} \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{s} \text{ for each } i \in \{1, 2, 3\} \ (**)$$

¹https://www.math.ttu.edu/~igtomas/, igtomas@ttu.edu

where $F_i \subset \partial K$ represents a face of the element K. Note that $\sigma_i(\boldsymbol{v}) : \mathbb{P} \to \mathbb{R}$ is not a nodal value. Prove that the set of degrees of freedom $\{p_1, p_2, p_3\}$ is unisolvent. Start by showing that $\boldsymbol{v}(\boldsymbol{x}) \cdot \boldsymbol{n}(\boldsymbol{x}) \equiv const$ at each face.

(c) Prove that all functions v_h in the finite element space resulting from pasting together affine equivalent triangles are in $\mathbf{H}(\operatorname{div}, \Omega)$. Note however that v_h is not continuous since its tangent component may jump at every interface between two elements.

Hint: show that the normal components of discrete vector fields \boldsymbol{v}_h are continuous across interelement boundaries, meaning $[\![\boldsymbol{v}_h]\!] \cdot \boldsymbol{n}_F \equiv 0$ for each face F in the skeleton of the mesh and that this implies the existence of a weak divergence.

Problem #3. Relationship between norms and nodal values. Let \mathcal{T}_h be a family of quasi-uniform shape-regular triangulation of the polygonal domain Ω . Let \mathbb{V}_h be a finite element space defined on such mesh \mathcal{T}_h . Let $\{\phi_i\}_{i=1}^N$ be the canonical Lagrange basis function on \mathbb{V}_h , and let $v_h(\boldsymbol{x}) = \sum_{i=1}^N V_i \phi_i(\boldsymbol{x}) \in \mathbb{V}_h$. Prove the following local estimates:

$$c_{1} \|v\|_{L^{2}(K)}^{2} \leq h_{K}^{d} \sum_{\boldsymbol{x}_{i} \in K} V_{i}^{2} \leq c_{2} \|v_{h}\|_{L^{2}(K)}^{2}$$
$$\|v_{h}\|_{H^{1}(K)}^{2} \leq c_{1} h_{K}^{d-2} \|v_{h}\|_{L^{\infty}(K)}^{2} \leq c_{2} h_{K}^{d-2} \sum_{\boldsymbol{x}_{i} \in K} V_{i}^{2}$$

Problem #4. Applications of Bramble-Hilbert lemma I. Let \mathcal{T}_h be a family of quasi-uniform shape-regular triangulations of the polygonal domain Ω . By this we mean that:

Quasi-uniformity: $\exists c_1, c_2 > 0$ such that $c_1 h_{K'} \leq h_K \leq c_2 h_{K'}$ for all $K, K' \in \mathcal{T}_h$

Shape regularity: $\exists \sigma > 0$ such that $\frac{h_K}{\rho_K} \leq \sigma$ for all $K \in \mathcal{T}_h$

In colloquial terms: quasi-uniformity means that all the element sizes are comparable, while shape regularity means that the elements are not "too flat" (assuming that $\sigma = O(1)$). For each \mathcal{T}_h let

$$\mathbb{V}_{h} = \left\{ v_{h} \in L^{2}(\Omega) \, \big| \, v_{h} |_{K} \in \mathbb{P}_{0} \, \forall K \in \mathcal{T}_{h} \right\}$$

Define the piecewise averaging operator $(\Pi_h v)(x) = \sum_{K \in \mathcal{T}_h} \overline{v}_K \mathbb{I}_K(x)$ where $\mathbb{I}_K(x)$ is the indicator function at the element K and the "nodal value" \overline{v}_K is defined as

$$\overline{v}_K = \frac{1}{|K|} \int_K v \, \mathrm{d} \boldsymbol{x}$$

The operator Π_h is nothing else than the $L^2(\Omega)$ -projector onto the \mathbb{V}_h space. Prove the error bounds

$$\|v - \Pi_h v\|_{L^2(\Omega)} \le ch |u|_{H^1(\Omega)}$$
 where $h = \max_{K \in \mathcal{T}_h} h_K$

$$\left| \int_{K} u(v - \Pi_{h}v) \, \mathrm{d}\boldsymbol{x} \right| \le c h_{K}^{2} |u|_{H^{1}(K)} |v|_{H^{1}(K)}$$

Note: The proof of the first inequality requires defining a (possibly nonlinear) functional F(u) in the reference element, that is non-negative, subadditive, satisfying $F(p) \equiv 0$ for all $p \in \mathbb{P}_k$, then invoke the Bramble-Hilbert lemma. The estimate follows by using a scaling argument.

Problem #5. Applications of Bramble-Hilbert lemma II. Let $\mathcal{T}_h = \{x_i\}_{i=0}^N$ be a partition of $\Omega = (0, 1)$. Let $Q(w) = \sum_{i=1}^N Q_i(w)$ be the trapezoidal quadrature rule, where:

$$Q_i(w) = \frac{h_i}{2}(w(x_{i-1}) + w(x_i))$$

and $h_i = x_i - x_{i-1}$ is the local meshsize. Show that for all $w \in W_1^2(\Omega)$ the following error estimate holds:

$$\left|Q(w) - \int_0^1 w(x) \mathrm{d}x\right| \le \operatorname{const} \cdot \sum_{i=1}^N h_i^2 \int_{x_{i-1}}^{x_i} |w''| \mathrm{d}x$$

Hint: use the fact that $Q_i(w)$ is exact if $w \in \mathbb{P}^1$ in the unit interval, then use Bramble-Hilbert lemma, and finish by using scaling arguments. You will receive zero credits if you solve this problem using Taylor series expansions or related arguments.