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Assignment day: February 11th 2024.

Ignacio Tomas1, Department of Mathematics and Statistics, Texas Tech University.

Problem #1. PDE problem: continuous dependence on coefficients. Let ui for i = 1, 2 be the
solution of

−div (ai∇ui) = f in Ω with ui = 0 on ∂Ω,

where Ω ⊂ Rd is bounded, f ∈ L2(Ω) and the coefficients satisfy ai ∈ C(Ω) and

0 < α0 ≤ ai(x) ∀x ∈ Ω.

Prove the stability bound

∥∇(u1 − u2)∥L2(Ω) ≤
const

α2
0

∥a1 − a2∥L∞(Ω)∥f∥L2(Ω).

Problem #2. Change of variables and scaling arguments. Let h be a positive number and

consider the coordinate transformation x = hx̂ from the reference domain Ω̂ onto Ω. For the sake
of concreteness: assume that diam(Ω̂) = 1 and 0 < h << 1, therefore Ω is much smaller than Ω̂.

Assume that the function v (defined on Ω) and the function v̂ (defined on Ω̂) are related by the
rule v̂(x̂) := v(hx̂), or equivalently v(x) := v̂(h−1x).

a. Prove the scaling identities

∥v∥L2(Ω) = h
d
2 ∥v̂∥

L2(Ω̂)
, ∥∇v∥L2(Ω) = h

d
2
−1∥∇̂v̂∥

L2(Ω̂)
, ∥v∥L2(∂Ω) = h

d−1
2 ∥v̂∥

L2(∂Ω̂)
.

b. Prove the scaled trace-inequality

∥u∥L2(∂Ω) ≤ c
(
h−1∥u∥2L2(Ω) + h∥∇u∥2L2(Ω)

) 1
2

Hint: Start from the trace inequality ∥û∥
L2(∂Ω̂)

≤ c∥v̂∥
H1(Ω̂)

in the reference domain Ω̂ and use

scaling arguments.

Note: in this exercise we are using the simplified diagonal map hI with I ∈ Rd×d in order to relate
the reference and mapped domains. In general, we will be interested in affine maps x = Ax̂ + b
whereA ∈ Rd×d encodes contractions, dilations and rotations, while b ∈ Rd represents a translation.

Problem #3. Proving L2-interpolation estimate using elementary arguments. Let u ∈ H2(0, 1),
that is, u admits two weak derivatives in L2(0, 1). Let Ihu be the continuous piecewise linear
interpolant of u over a partition Th of (0, 1) of size h, i.e. h = maxK∈Th hK . The following (global)
error estimates holds true:

∥u− Ihu∥L2(0,1) ≤ c h2∥u′′∥2L2(0,1) and ∥(u− Ihu)
′∥L2(0,1) ≤ c h∥u′′∥2L2(0,1) .

The key difficulty in showing that these estimates are true lies in proving the (local) error estimate
at each element K = [xj , xj+1]:

∥u− Ihu∥L2(K) ≤ ch2K∥u′′∥L2(K) and ∥(u− Ihu)
′∥L2(K) ≤ chK∥u′′∥L2(K)

Provide two alternative proofs for these error estimates:
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a. Strategy #1 (Using scaling arguments): start from the Poincare inequality

∥v̂∥L2(0,1) ≤ c∥v̂ ′∥L2(0,1) ,

which holds true for any v̂ ∈ H(0, 1) provided v̂ vanishes for least at one point in [0, 1]. You

have already proved this inequality in Homework #1. Consider v̂ := û − Îhu. Note that this
choice of v̂ satisfies v̂(0) = 0 and v̂(1) = 0 because of the definition of the nodal interpolator.
Similarly, note that, from the mean value theorem, there exists at least one x̂0 ∈ [0, 1] such
that v̂ ′(x̂0) = 0. This allows us to use Poincare’s inequality twice! Finish the proof using
scaling arguments. Thoroughly justify each step.

b. Strategy #2 (Via C-norm estimates and no scaling arguments): let Q1v be the polynomial of
degree 1 obtained from Taylor’s formula for u at xj (the left-point of the element K). Notice
the invariance Ih[Q1u] = Q1v, and the bound ∥Ihw∥C(K) ≤ ∥w∥C(K) for all w ∈ C(K), so that

∥Ihv − v∥C(K) = ∥Ih(v −Q1v) + (Q1v − v)∥C(K) ≤ 2∥v −Q1v∥C(K) .

Then estimate the remainder

∥v −Q1v∥C(Kj) ≤ max
x∈K

∫
Kj

|x− y||v′′(y)|dy.

This should lead to the conclusion that ∥Ihv − v∥C(K) ≤ 2hK
∫
K |v′′(y)|dy. The estimate for

∥u− Ihu∥L2(K) follows by some very simple, but delicate, Cauchy-Schwarz trickery.

Regarding the semi-norm error, start by noting that (Ihv)
′(x)−v′(x) = 1

|K|
∫
K(v′(y)−v′(x))dy

for all x ∈ K, since (Ihv)
′(x) is a constant at each element.

Note: these proofs are “artisanal”, since they only use very elementary tools. We will see later
during the class that there exist more powerful and general tools to prove error estimates in arbitrary
space dimensions.

Problem #4. Symmetric vs non-symmetric bilinear form. Let a(u, v) and F (v) satisfy the
assumptions of the Lax-Milgram lemma, meaning

|a(u, v)| ≤ c1∥u∥V∥v∥V for all u, v ∈ V,

a(u, u) ≥ c2∥u∥2V for all u ∈ V,

|F (v)| ≤ c3∥v∥V for all v ∈ V.

Let Vh ⊂ V be a finite dimensional subspace of V and let uh ∈ Vh be the solution of

a(uh, vh) = F (vh) for all vh ∈ Vh.

Prove that

∥uh − u∥V ≤ c1
c2

min
wh∈Vh

∥w − u∥V

for the general case when a(uh, vh) may be non-symmetric. Prove that if a(uh, vh) is symmetric we

can define the norm ∥u∥a := a(u, u)
1
2 and we have that:

∥uh − u∥a = min
wh∈Vh

∥wh − u∥a and ∥uh − u∥V ≤
(
c1
c2

) 1
2 min
wh∈Vh

∥wh − u∥V.



Problem #5. Two-point boundary value problem: boundary conditions and algebraic constraints.
Consider the following boundary value problem in (0, 1):

−u′′ + u = f , u′(0) = 1 , u(1) = 0

(a) Write the variational formulation: clearly identify the solution and test space, show that
the weak formulation satisfies the conditions of the Lax-Milgram theorem. Questions: What
boundary conditions become incorporated naturally, without any additional intellectual over-
head, into the resulting formulation a(u, v) = F (v)? What boundary condition will have to be
enforced into the solution/test space?

(b) Let 0 = x0 < x1 < x2 < ... < xN−1 < xN = 1 be a partition of (0, 1) with hi = |Ki| = xi−xi−1.

Let {ϕi}Ni=0 be the corresponding basis of hat functions. Let uh =
∑N

i=0 Uiϕi be the continuous
piecewise linear finite element solution. Write down the matrix equation satisfied by U ∈ RN+1

and F ∈ RN+1

(M +K)U = F (1)

for suitable vector F with entries Fi. Compute the entries of the (N+1)×(N+1) stiffness matrix
K, mass matrix M , and right hand side vector F , by assembling elementary contributions of
each element K = (xi, xi+1). Note however, that system (1) has too many rows/columns: we
have to do something with it before we try to solve it using direct or iterative solvers, see next
bullet.

(c) Now, assume general Dirichlet data on the right point, that is u(1) = α ̸= 0. Just like in bullet
(b), one row of system (1) corresponds with a degree of freedom that we already know. In order
to obtain an actually meaningful linear algebra system, we could consider removing some entries
from the system. Similarly, regarding the vector F , some specific entries will require some
manual modifications in order to incorporate the boundary data (known degrees of freedom).
However, the most widely accepted strategy is not to remove any row/column of the system, but
to modify the original (N+1)×(N+1) system accordingly without modifying its dimensionality
in order to incorporate Dirichlet boundary conditions. For instance, it is a common practice
to set the entire row of the known degree of freedom to zero with the exception of its diagonal
value, which is set equal to one. Other additional modifications are necessary as well. Make
precise what modifications are required and where. Show that the resulting modified system
actually yields the expected behaviour. This is not mandatory, but if you feel adventurous
enough: provide a brief argument explaining why the modified system is invertible (no need to
get too rigorous).

(d) Consider instead the following set of boundary conditions: u′(0) = 1 and u′(1) = 1. Write a
variational formulation, define a proper choice of solution and test space, clearly identify the
bilinear form a(u, v) and right hand side functional F (v). Prove that the conditions of the
Lax-Milgram theorem hold. Again, write a finite element discretization. For this case, given
the “unmodified” linear system (M + K)U = F . Question: Do we have to introduce any
algebraic modification into specific rows/columns or right hand side vector? Or the resulting
linear algebra system is good as is? Why?

The process of picking-up contributions from each cell K in order to compute the matrix of the sys-
tem and right hand side vector is commonly known as “assembly”. The process of introducing man-
ual modifications into that system does not have a particular name. Perhaps, we could call it “intro-
duction of algebraic constraints into the linear system” or “enforcement of boundary conditions”. In
fact, in large scale codes it could be found under the name of set affine algebraic constraints ,
set algebraic constraints, etc. The question for you here is: What kind of boundary conditions
appear to require the introduction of algebraic modifications into the system after its assembly?


