
Numerical Analysis of PDE I, Spring 2024, HW#2.
Assignment day: January 28th 2024

Ignacio Tomas1, Department of Mathematics and Statistics, Texas Tech University.

Problem #1. Continuous and discrete Maximum principles. Let u be the solution of the mixed
boundary value problem

Lu = −u′′ + u = f(x) for all x ∈ (0, 1) with u(0) = u0 and u′(1) = β

with u0, β ∈ R.

(a) Write a finite difference method on a uniform partition Th = {xi}Ni=0 with 0 = x0 < x1 <
... < xN = 1 and meshsize h. Write 2 discretizations of the Neumann condition u′(1) = β that
introduce error O(h) and O(h2).

(b) Let U ∈ RN be the discrete solution, F ∈ RN be the right hand side, and K ∈ RN×N be the
corresponding matrix so that KU = F . Show the discrete maximum principle: if Fj ≤ 0 for
all j ∈ {1, N} then Uj ≤ 0 for all for all j ∈ {1, N}. Conclude that K is non-singular.

(c) Show the continuous maximum principle for the operator L, meaning: show that Lw ≤ 0 in
(0, 1) and w(0) ≤ 0, w′(1) < 0, then

max
0≤x≤1

w(x) ≤ 0

To make a concrete case assume that Lw = −1 and that w(0) = 0 and w′(1) = −1.

(d) Show the discrete maximum principle. Using the information from (c), let W ∈ RN be given
by Wj = w(xj): show that (KW )i ≤ −1

2 for all 1 < i < N .

(e) Make use of the discrete maximum principle in order to derive a bound for ∥U∥ℓ∞(RN ) in terms
of u0, β and f .

(f) Prove the error estimate of the form

max
1≤i≤N

|u(xi)− Ui| ≤ const · hγ

where const > 0 will depend on the regularity of the exact solution, γ = 1 or 2 depending
on the discretization of the Neumann boundary condition. Make the required regularity of u
explicit in each case.

Problem #2. Higher order finite difference formula. Derive the following 4th order finite differ-
ence formula.

u′′(xi) =
1

12h2 (−u(xi−2) + 16u(xi−1)− 30u(xi) + 16u(xi+1)− u(xi+2)) +O(h4)

upon combining 2nd order centered differences for uniform mesh spacing h and 2h at x = xi.
To this end write the Taylor expansions for these two formulas and eliminate the leading er-
ror term, making explicit the dependence on the regularity of u in the error term O(h4) above.

Problem #3. MATLAB/PYTHON project. Consider the two-point boundary value problem with
parameter b ∈ R:

−u′′ + bu′ + u = 2x in (0, 1) , u(0) = u(1) = 0 (1)

(a) Find the exact solution of u(x) in terms of the parameter b.
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(b) Write the finite difference approximation of (1) using centered finite differences and upwind
difference on a uniform mesh with meshsize h. Write the matrix of the system and examine
how the equations would change if u(1) = α ̸= 0.

(c) Implement the finite difference method using MATLAB or PYTHON. If you use Matlab: use
the command diag to construct the corresponding tridiagonal matrix (type help diag to learn
about this command). Use the backslash command \ to find the solution to Ax=b as x = A\b.

(d) Solve the linear system for h = 1
52

−k for 0 < k < 5 and b = 0, 100. Compute the maximum
norm error at the nodes and plot it vs h in a log-log plot. Explain your findings.

(e) Plot the exact solution u(x) and the computed solution as piecewise linear function over the
corresponding grid for h = 1

20 ,
1
80 and b = 0, 100. Draw conclusions.

Problem #4. Transmission conditions. Consider two domains Ω1 and Ω2 with common boundary
γ ∈ C1 and Γi = ∂Ωi\γ for i = 1, 2. Let a(x), c(x) ∈ C0(Ω) for i = 1, 2 but discontinuous across γ.
Let u ∈ C2(Ωi) ∩ C0(Ω) for i = 1, 2 and u = g on ∂Ω be the solution of the weak (or variational)
problem: ∫

Ω
a∇u · ∇v + cuv dx =

∫
Ω
fv dx ∀v ∈ C∞

0 (Ω) (2)

(a) Derive the strong form of the PDE including the conditions satisfied by u and ∇u across γ

(b) Obtain an energy E(u,∇u) and compute its first variation, which gives the Euler-Lagrange
equation (2).

Note: What do we mean by energy? It can be proven that u ∈ C2 ∩ C0(Ω) solves the Poisson
problem −∆u = f if and only if u is a minimizer of the functional E(u,∇u) =

∫
Ω

1
2 |∇u|2 − fudx.

This property is called Dirichlet principle. If you are unfamiliar with this concept read the book
of Evans p.41-43 in order to get familiar with this concept and the usual proof devices. Note that
we expect that the “energy” associated to this problem will not be exactly the same as that one of
the Poisson problem.

Problem #5. Given the strong form of the boundary value problem

−div (a∇u) = f in Ω (3)

a∂nu+ h(u− g) = k on ∂Ω (4)

with a(x), h(x), and k(x) smooth bounded coefficients and

a(x) ≥ a0 > 0 , h(x) ≥ h0 > 0

(a) Derive the corresponding weak (or variational) formulation: identify the bilinear form and the
right hand side functional.

(b) Show that the resulting bilinear form is coercive: you will have to use the Friedrich’s inequality
proved in the previous homework.

(c) Show that the resulting right hand side functional F (v) is indeed bounded in H1(Ω): you will
have to invoke a trace inequality: see for instance the book of Evans p .272, or Theorem A.4
in the appendix of Larsson-Thomee’s book.

(d) Show that the solution satisfies a stability estimate of the form

∥u∥H1(Ω) ≤ c(∥f∥L2(Ω) + ∥g∥L2(∂Ω) + ∥k∥L2(∂Ω))

(e) Find an energy E(u,∇u) whose first variation gives rise to (3).


