
Numerical Analysis of PDE I, Spring 2024, HW#1.
Assignment day: January 15th 2024

Ignacio Tomas1, Department of Mathematics and Statistics, Texas Tech University.

Problem #1. 1d Poincaré’s inequality and norm-equivalence. Given a Banach space B: while
there is usually one “natural” choice of norm ∥u∥B, it is perfectly possible to consider other norms.
More precisely, we say that the norms ∥u∥A and ∥u∥B are equivalent if there exists c1 > 0 and
c2 > 0 such that

c1∥u∥A ≤ ∥u∥B ≤ c2∥u∥A for all u ∈ B (1)

with c1 and c2 independent of u.

For the specific case of the H1(Ω) space with Ω = (a, b) ⊂ R the natural norm is clearly ∥u∥H1(Ω) =

(
∫ b
a u2 + |u′|2dx)

1
2 . Prove that for any continuously differentiable u : Ω → R, Ω = [a, b], with

satisfying u(a) = 0 there holds,∫
Ω
u2(x) dx ≤ (b− a)2

∫
Ω
|u′(x)|2 dx.

While the proof requires C1(a, b) regularity, the inequality actually holds true for H1 functions
which, strictly speaking, may not be differentiable. Here cp = |b − a| is the so-called Poincaré’s
constant.

Conclude that, for the case of functions u ∈ H1
0 (Ω) with H1

0 (Ω) defined as

H1
0 (Ω) = {u ∈ H1(Ω)|u(a) = u(b) = 0}

the semi-norm |u|H1(Ω) = (
∫ b
a |u′|2 dx)

1
2 is actually a norm since it is equivalent to ∥u∥H1(Ω). Provide

the expressions of c1 and c2 in terms of the Poincaré’s constant.

Hint: Start with the identity

u(x) = u(a)︸︷︷︸
= 0

+

∫ x

a
u′(s) ds

and observe that
∫ x
a u′(s) ds =

∫ x
a 1u′(s) ds. You will have to use some the elementary inequalities

we have learned in class.

Problem #2. Multi-d Poincaré’s inequality and norm-equivalence. Let u ∈ C1
0(Ω). Here C1

0(Ω) is
the space of differentiable functions with compact support in Ω. The following Poincaré’s inequality
holds true

∥u∥L2(Ω) ≤ cp∥∇u∥L2(Ω) for all u ∈ C1
0(Ω)

with cp independent of u, but depending on geometric properties of Ω. We will not prove it here,
but this Poincaré’s inequality holds true for functions in u ∈ H1

0 (Ω) as well. Consider the following:

(a) A first crude proof. Prove that Poincaré’s inequality holds true: start by considering the fact
that ∫

Ω
div (xu2) dx = 0 for all u ∈ C1

0(Ω)

because of the divergence theorem and the compact support of u. Then proceed using elemen-
tary inequalities learned in class. Provide an explicit expression for the Poincaré’s constant
cP .
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(b) A better proof. The proof provided in the previous step is somewhat defective since the
Poincaré’s constant will depend on the value of M = maxx∈Ω |x|ℓ2(Rd). Technically speaking,

the proof of step (a) is not incorrect, but the resulting Poincaré’s constant could be exagger-
atedly large. Using technical jargon: the Poincaré’s constant should be translation invariant.
In particular, it should not depend on the distance of Ω with respect to the origin. We have
to fix this!

A better proof should lead to a Poincaré’s constant depending on the diameter of the domain
defined as

diam(Ω) = max
x,y∈Ω

|x− y|ℓ2(Rd)

Re-do the proof of the part (a): start by thinking how to modify the proof of part (a) in order
make the dependence on the diameter of the domain appear. Provide an improved expression
for the Poincaré’s constant.

Conclude that the H1(Ω)-norm and the seminorm ∥∇u∥L2(Ω) are equivalent in the space H1
0 (Ω):

provide an expression for the equivalence constants in terms of the Poincaré’s constant cP .

Problem #3. Weak derivatives. Compute the (weak) derivative ∂xiv(x) with v(x) = log | log |x|
2 |

in the unit ball of Rd. Prove that v(x) ∈ W 1,d(Ω). In particular, this implies that H1(Ω) functions
may not be bounded in dimension d ≥ 2.
Hint: the expectation is that you should start by showing that v(x) ∈ Ld(Ω), and the proceed to
show that ∂xiv(x) ∈ Ld(Ω) as well.

Problem #4. Assuming that solutions of the following boundary value problem

−(a(x)u′(x))′ + b(x)u′(x) + c(x)u(x) = f(x), with u(a) = u(b) = 0,

with

a(x) ≥ a0 > 0 , c(x) ≥ c0 > 0 , c(x)− b′(x)
2 ≥ 0 (2)

exists, prove that it admits the a-priori estimate

∥u∥L2(a,b) ≤ c∥f∥L2(a,b)

Provide an expression for the constant in terms of the bounds satisfied by the cofficients a(x), b(x),
and c(x).

Hint: This is just an integration by parts exercise. In addition, it will require using some of the
inequalities learned in class.

Problem #5. Prove the Friedrich’s inequality.

∥u∥L2(Ω) ≤ cF
(
∥∇u∥2L2(Ω) + ∥u∥2L2(∂Ω)

) 1
2 for all u ∈ C1(Ω) ,

where Ω is a bounded domain in Rd with boundary ∂Ω. Though it’s not necessary in practice, it is
perfectly possible to obtain an explicit expression for the constant cF . Even better: it is possible
to verify (directly) that cF does NOT depend on u but only on geometric properties of the domain
Ω.

Hint: Integrate by parts the identity
∫
Ω u2 dx =

∫
Ω u2∆ϕ dx where ϕ(x) = 1

2d |x|
2.

Note: we will see later in the class that Friedrich’s inequality allows us to prove a specialized forms
of norm-equivalence. This is useful to prove the requirements of Lax-Milgram theorem



Problem #6. Consider a scalar valued-function u(x) : R → R with x ∈ R. Consider the definitions:

xi := ih and ui := u(xi) ,

with i integer and h > 0 a real number. For simplicity let’s assume that h = 1/N with N a positive
integer. Given the finite difference formulas

δuj =
uj+1 − uj−1

2h
, and δ2uj =

uj+1 + 2uj − uj−1

h2
,

prove the following estimates

|δ2Uj − d2u
dx2 (xj)| ≤ Ch2∥u∥C4(Ω) for all xj ∈ Ω ,

|δUj − du
dx(xj)| ≤ Ch2∥u∥C3(Ω) for all xj ∈ Ω ,

where Ω = (0, 1).

Hint: You will have to use Taylor’s polynomial. You might want to consider using the remain-
der/truncation formula in integral form:

Rk =

∫ x

a

uk+1(s)

k!
(x− s)kds

instead of the usual remainder in Cauchy’s form. This remainder formula usually helps get sharper
constants. The power of h of the error estimate usually pop-out from the term (x− s)k inside the
remainder.

Problem #7. Consider the nonlinear boundary value problem:

−u′′ + u = eu in Ω = (0, 1) with u(0) = u(1) = 0

Assuming that solutions to this problem exist: use the maximum principle to show that all solutions
are nonnegative i.e. u(x) ≥ 0 for all x ∈ Ω. Use the strong version of the maximum principle to
show that all solutions are positive, i.e. u(x) > 0 for all Ω.

Note: a quick and short outline of maximum/minimum principles techniques can be found in
Chapter 2 of the book of Larsson-Thomee (it’s less than a handful of pages). Study the main
ideas/steps and adapt the proofs to this problem.


