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Abstract

In this paper we use a metric space Y due to A. H. Stone and one of its completions X

to construct a linearly ordered topological space E = E(Y, X) that is Čech complete, has
a σ-closed-discrete dense subset, is perfect, hereditarily paracompact, first-countable, and
has the property that each of its subspaces has a σ-minimal base for its relative topology.
However, E is not metrizable and is not quasi- developable. The construction of E(Y, X)
is a point-splitting process that is familiar in ordered spaces, and an orderability theorem
of Herrlich is the link between Stone’s metric space and our construction.
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1. Introduction.

A collection A of subsets of a space X is minimal (or irreducible) if each member of A
contains a point that belongs to no other member of A. Spaces with σ-minimal bases were
introduced and studied by Aull in [A1, A2], and the basic examples clarifying the relation
of σ-minimal bases to other topological properties were constructed in [BB]. However, there
remains one context in which the role of Aull’s σ-minimal bases is not yet clear, and that
is the theory of linearly ordered and generalized ordered spaces.

Among generalized ordered spaces, quasi-developability, the existence of a σ-disjoint
base, and the existence of a σ- point-finite base are mutually equivalent properties ([B],[L]).
Among generalized ordered spaces, each implies the existence of a σ-minimal base, but the
converse is obviously false – the lexicographic square is a compact linearly ordered space
that has a σ-minimal base but is not quasi-developable. Indeed, there are linearly ordered
spaces that have σ-minimal bases that are not even first countable. However, all such
spaces are hereditarily paracompact [BL1] even though the existence of a σ-minimal base
is not itself a hereditary property.
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Familiar examples suggest that generalized ordered spaces with σ-minimal bases are
either quasi-developable or else contain a particular type of pathological subspace that does
not have a σ-minimal base for its relative topology, and that suggests asking ([BL2],[L2])
whether a compact linearly ordered space must be metrizable if each of its subspaces has a
σ-minimal base. That question is still open. (See “Added in Proof.”) A weaker version of
the question (originally mis-posed in [BL2]) asks whether a linearly ordered, or generalized
ordered, space X must be quasi-developable if every subspace of X has a σ- minimal base
for its relative topology. That is the question that we resolve negatively in this paper by
constructing a non-metrizable, perfect linearly ordered space X such that every subspace
of X has a σ-minimal base for its topology. The space X has many other valuable features:
it is hereditarily paracompact, first-countable, Čech-complete, and has a dense subspace
that is σ-closed-discrete in X. But the space X is not quasi-developable, as can be seen
from the fact that X is perfect but not metrizable.

The two key components of our construction are an elegant metric space constructed
by A.H. Stone in [St] (and used as the basis for many other topological examples, e.g.,
[P1,P2]) together with an orderability theorem of H. Herrlich [H].

Recall that a linearly ordered topological space (or LOTS) is a triple (X, <, T ) where
< is a linear ordering of X and where T is the usual open interval topology of <. Un-
fortunately, a subspace of a LOTS may fail to be a LOTS, and that leads to the study
of generalized ordered spaces (or GO-spaces), i.e., spaces that can be embedded in some
LOTS. An internal characterization of GO-spaces is that they are triples (X, <, T ) where
< is a linear ordering of X and where T is a Hausdorff topology on X that has an open
base consisting of order-convex sets.

In our paper we must carefully distinguish between subsets of a space X that are
the union of a countable collection of closed, discrete subspaces of X (such subspaces
will be called σ-closed-discrete) and subspaces that are countable unions of discrete, but
not necessarily closed, subspaces (such spaces are said to be σ-discrete-in-themselves).
However, as Stone pointed out in [St], the two notions are equivalent in any metric space,
and indeed in any perfect space, where a space X is perfect if every closed subset of X is
a Gδ in X.

We want to thank the referee for valuable comments that significantly shortened the
proofs in this paper.

2. Stone’s metric space and preliminary properties of E(Y,X)

In [St], A.H. Stone constructed a special metric space Y that has been used as the
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starting point of many important examples in topology; see, for example, [P1,P2]. The
crucial properties of Stone’s space Y are:

S-1) Y is a subspace of Dω where D is a discrete space of cardinality ω1;

S-2) the cardinality of Y is ω1;

S-3) Y is not the union of countably many subspaces, each discrete-in-itself;

S-4) if C is a countable subset of Y , then the closure of C in Y is also countable.

Throughout this paper, X will be the closure of Y in the metric space Dω and M will
denote the topology that X inherits from Dω. Let d be a metric on X that induces the
topology M and, for x ∈ X and ε > 0 let B(d, x, ε) denote the open d-ball of radius ε

centered at x.

2.1 Proposition: With X as above, (X,M) is a completely metrizable space and there
is a linear ordering of the set X that induces M as its open interval topology.

Proof: Being closed in Dω, (X,M) is completely metrizable. That some linear ordering
of X makes (X,M) into a LOTS follows from a result of Herrlich ([H]; see [E, Problem
6.3.2] for another proof) because X is strongly zero-dimensional.

2.2 Proposition: Let Z ⊂ X. Define J(1) = {z ∈ Z : for some x ∈ X, z < x and
]z, x[ ∩Z = ∅} and J(−1) = {z ∈ Z : for some x ∈ X, z > x and ]x, z[ ∩Z = ∅}. Then
J = J(−1) ∪ J(1) is a σ-closed-discrete subset of (X,M).

Proof: Because X is metrizable, it will be enough to show that J is the union of countably
many subsets, each of which is discrete-in-itself. Consider J(1), the argument for J(−1)
being analogous. For each z ∈ J(1) let z+ denote an element of X such that z < z+ and
]z, z+[ ∩Z = ∅. Then there is an integer n = n(z) ≥ 1 such that B(d, z, 1

n ) ⊂ ] ←, z+[ .
Let J(1,m) = {z ∈ J(1) : n(z) = m}. If p < q are points of J(1,m), then p+ ≤ q so
that we have B(d, p, 1

m ) ⊂ ] ←, p+[ showing that q 6∈ B(d, p, 1
m ) so that d(p, q) ≥ 1

m as
required.

For any Z ⊂ X, there is a second natural topology on Z, namely the Sorgenfrey
topology SZ that has sets of the form Z ∩ [z, b[ as a base, where z ∈ Z and b ∈ X has
z < b. Clearly MZ ⊂ SZ , where MZ is the topology that Z inherits from the metrizable
space (X,M).

2.3 Corollary: For any Z ⊂ X, the space (Z,SZ) has a dense set D that is the union of
countably many closed, discrete subsets of (Z,SZ).

Proof: The metrizable space (Z,MZ) has a dense set E that is σ-closed-discrete in (Z,MZ)
and hence is also σ-closed-discrete in (Z,SZ). From (2.2) the set J(1) = {z ∈ Z : for some
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x ∈ X with x > z, [z, x[ ∩Z = {z}} is also σ-closed-discrete in (Z,MZ) and therefore also
in (Z,SZ). Because J(1) ∪ E is dense in (Z,SZ), the lemma is proved.

2.4 Construction of E(Y, X). Let Y be Stone’s metric space and X its closure in Dω.
Let M be the metrizable topology that X inherits from the product space. Use (2.1) to
choose a linear ordering of X that induces M as its open interval topology. Let

E(Y, X) = (Y × {−1, 1}) ∪ ((X − Y )× {0}).

Order E(Y, X) lexicographically and let E(Y,X) carry the open interval topology of that
ordering. Let π : E(Y, X)→ X be the function π(x, i) = x. One can think of E(Y, X) as
being the result of splitting each point of Y into two consecutive points.

2.5 Proposition: The mapping π is a perfect mapping from E(Y, X) onto (X,M). Hence
E(Y, X):

a) is Čech-complete;

b) has a dense subset that is σ-closed-discrete;

c) is perfect, hereditarily paracompact, and first countable.

Proof: It is easy to see that π is continuous and closed so that, because |π−1(x)| ≤ 2 for
each x ∈ X, π is perfect. Hence a) holds.

Let D be a dense σ-closed-discrete subset of the metric space (X,M). Then E1 =
π−1[D] is a σ-closed-discrete subset of E(Y, X). Consider the sets J(−1) = {z ∈ X : for
some x < z, ]x, z[ = ∅} and J(1) = {z ∈ X : for some x > z, ]z, x[ = ∅}. According
to (2.2), each is σ-closed-discrete in (X,M). Hence E2 = π−1[J(−1) ∪ J(1)] is σ-closed-
discrete in E(Y, X). It is easy to verify that E1 ∪E2 is dense in E(Y,X) so that (b) holds.
Now (c) follows from the general theory of ordered spaces (see [L,BLP,Fa,vW]).

2.6 Proposition: E(Y,X) is not metrizable.

Proof: For contradiction, suppose E(Y, X) is metrizable. Then so is its subspace Y × {1},
which is homeomorphic to (Y,SY ), where SY is the Sorgenfrey topology on Y described
just before (2.3). Let d be a metric on Y that induces the topologyMY and suppose ρ is
a metric on Y that induces the topology SY . We will denote the open balls with respect
to d and ρ by B(d, x, ε) and B(ρ, x, ε), respectively.

For each y ∈ Y there is an integer n = n(y) ≥ 1 such that B(ρ, y, 1
n ) ⊂ [y,→ [ . Let

Y (m) = {y ∈ Y : n(y) = m} and observe that

(*) if p < q are points of Y (m), then B(ρ, q, 1
m ) ⊂ [q,→ [ so that ρ(p, q) ≥ 1

m .

Thus each Y (m) is closed and discrete in (Y,SY ).
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For each y ∈ Y (m) there is a b > y such that Y ∩[y, b[ ⊂ B(ρ, y, 1
m ). Because ]←, b[ is

a neighborhood of y in (Y,MY ), there is a k = k(y, m) ≥ 1 such that B(d, y, 1
k ) ⊂ ]←, b[ .

Hence B(d, y, 1
k ) ∩ [y,→ [ ⊂ [y, b[ ⊂ B(ρ, y, 1

m ). Let Y (m, j) = {y ∈ Y (m) : k(y, m) = j}
for each m, j ≥ 1. Because Y =

⋃
{Y (m, j) : m, j ≥ 1}, it follows from property (S-3) of

Y that for some m, j ≥ 1, the set Y (m, j) is not discrete-in-itself when Y is topologized
using MY . Hence we may choose a strictly monotonic sequence {yk : k ≥ 1} in Y (m, j)
that converges to a point y0 ∈ Y (m, j). Because Y (m, j) ⊂ Y (m) and Y (m) is closed and
discrete in (Y,SY ), it must be the case that y1 < y2 < y3 < .... Choose integers k < i

such that {yk, yi} ⊂ B(d, y0,
1
3j ). The triangle inequality yields d(yk, yi) < 1

j so that yi ∈
B(d, yk, 1

j ) ∩ [yk,→ [ . Because yk ∈ Y (m, j) we have B(d, yk, 1
j ) ∩ [yk,→ [ ⊂ B(ρ, yk, 1

m )
so that ρ(yk, yi) < 1

m , and that contradicts (*) above, because yk, yi ∈ Y (m, j) ⊂ Y (m).
That contradiction shows that (Y,SY ) cannot be metrizable and completes the proof.

3. σ-minimal bases

3.1) Lemma: Let Z be a subspace of a first-countable GO-space Y. Suppose that Z, in
its relative topology, has a σ-minimal base. Then there is a σ-minimal collection of open
subsets of Y that contains a neighborhood base at each point of Z.

Proof: Let B =
⋃
{B(n) : n ≥ 1} be a σ-minimal base of relatively open subsets of Z. For

each B ∈ B, let B∗ be the convex hull of B in Y . The set B∗ might not be open, but
because Y is first countable, there is a sequence B∗(k) of convex open subsets of Y such
that if G is a convex open subset of Y that contains B∗, then for some k, B∗(k) ⊂ G.

For each B ∈ B(n), choose an open set C(B) in Y such that B = C(B)∩Z, and define
D(B,n, k) = B∗(k) ∩ C(B). Each D(B,n, k) is open in Y and the collection D(n, k) =
{D(B,n, k) : B ∈ B(n)} is irreducible. Finally, D =

⋃
{D(n, k) : n, k ≥ 1} contains a local

base at each y ∈ Y . For suppose G is a convex open subset of Y and that z ∈ G ∩ Z.
Then there is an index n and a set B ∈ B(n) such that z ∈ B ⊂ G ∩ Z. Because G is
convex, B∗ ⊂ G. As noted above, there is an index k ≥ 1 such that B∗(k) ⊂ G. Then
z ∈ D(B,n, k) = C(B) ∩B∗(k) ⊂ G, as required.

3.2 Corollary: Suppose Z is a first-countable GO space and Z =
⋃
{Z(n) : n ≥ 1} where

each subspace Z(n) has a σ-minimal base for its relative topology. Then Z has a σ-minimal
base.

3.3 Lemma: With (Y,SY ) as in Section 2, each subspace of (Y,SY ) has a σ-minimal base
for its relative topology.

Proof: Let Z ⊂ Y . According to (2.3) there is a dense subset D =
⋃
{D(n) : n ≥ 1} of

(Z,SZ) where each D(n) is a closed, discrete subspace of (Z,SZ). Because (Z,SZ) is first

5



countable and hereditarily collectionwise normal, there is a σ-disjoint collection D of open
subsets of Z that contains a neighborhood base at each point of D.

Let Z0 = {z ∈ Z : some SZ-neighborhood of z is countable }. Then Z0 is an open
subspace of Z and, each countable GO-space being metrizable, Z0 is locally metrizable.
The existence of the σ-closed-discrete, dense set D makes Z perfect and hence hereditarily
paracompact, so that Z0 is a metrizable subspace of Z. Hence there is a σ-disjoint collection
E of SZ-open sets that contains a neighborhood base at each point of Z0.

Suppose z ∈ Z− (D∪Z0). Then each SZ neighborhood of z is uncountable. We claim
that for each b ∈ X with b > z, the set C = [z, b[ ∩D is uncountable. For if not, then
property (S-4) of Stone’s space (Y,MY ) forces theMY -closure of C to be countable. But
then [z, b[ ∩Z is a subset of the SY -closure of C which is a subset of theMY -closure of C

which is countable, so that z ∈ Z0, contradicting z ∈ Z − (D ∪ Z0).
Provided z ∈ Z − (D ∪ Z0), each B(d, z, 1

k ) ∩ [z,→ [ is an SZ-neighborhood of z.
Hence for some n ≥ 1, |B(d, z, 1

k ) ∩ [z,→ [ ∩ D(n)| > ω. Let A(n, k) be the set of
all z ∈ Z − (D ∪ Z0) such that |B(d, z, 1

k ) ∩ [z,→ [ ∩ D(n)| > ω. Because |Y | = ω1

according to property (S-2), there is a 1-1 function φn,k : A(n, k) → D(n) such that
φn,k(z) ∈ B(d, z, 1

k ) ∩ [z,→ [ ∩ D(n) for each z ∈ A(n, k). For z ∈ A(n, k) define

C(z, n, k) = (Z ∩ [z,→ [ ∩B(d, z,
1
k

))− (D(n)− {φn,k(z)})

and let C(n, k) = {C(z, n, k) : z ∈ A(n, k)}. Each collection C(n, k) consists of SZ-
open sets and is a minimal collection because if z, w are distinct points of A(n, k), then
φn,k(z) ∈ C(z, n, k)− C(w, n, k).

We claim that C =
⋃
{C(n, k) : n, k ≥ 1} contains an SZ-neighborhood base at each

point z ∈ Z − (D ∪ Z0). For suppose z < b with b ∈ X, and consider Z ∩ [z, b[ . Because
] ←, b[ is an MY -neighborhood of z, there is a k ≥ 1 with B(d, z, 1

k ) ⊂ ] ←, b[ . Then
B(d, z, 1

k ) ∩ [z,→ [ ⊂ [z, b[ . Choose n so that |B(d, z, 1
k ) ∩ [z,→ [ ∩ D(n)| > ω. Then

C(z, n, k) ∈ C(n, k) and z ∈ C(z, n, k) ⊂ [z, b[ ∩Z as required.

3.4 Corollary: Every subspace of E(Y, X) has a σ-minimal base for its topology.

Proof: Let Z ⊂ E(Y, X) and define Z(i) = (Y × {i}) ∩ Z if i ∈ {−1, 1} and Z(0) =
Z ∩ ((X − Y ) × {0}. In the light of (3.2) it will be enough to show that each Z(i) has a
σ-minimal base for its relative topology.

The subspace Z(0) is metrizable and therefore has a base of the required kind. The
subspace Z(1) is homeomorphic to a subspace of (Y,SY ) so that it has a σ-minimal base in
the light of (3.3). The argument to show that Z(−1) has a σ-minimal base for its relative
topology is entirely analogous to the argument for Z(1), and that completes the proof.
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Added in Proof: In a paper that will apprear in Proceedings of the American Math-
ematical Society, Wei-Xue Shi constructed a non- mertrizable compact LOTS X, every
subspace of which has a σ-minimal base. Shi’s result completely settles the question posed
in [BL2] and [L2].
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