A Metric Space of A.H. Stone and an Example Concerning σ -Minimal Bases

by

Harold R. Bennett, Texas Tech University, Lubbock, TX

and

David J. Lutzer, College of William and Mary, Williamsburg, VA

Abstract

In this paper we use a metric space Y due to A. H. Stone and one of its completions X to construct a linearly ordered topological space E = E(Y, X) that is Čech complete, has a σ -closed-discrete dense subset, is perfect, hereditarily paracompact, first-countable, and has the property that each of its subspaces has a σ -minimal base for its relative topology. However, E is not metrizable and is not quasi- developable. The construction of E(Y, X) is a point-splitting process that is familiar in ordered spaces, and an orderability theorem of Herrlich is the link between Stone's metric space and our construction.

Key words and phrases: linearly ordered space, generalized ordered space, Cech complete, paracompact, perfect space, σ -minimal base, metrization theory.

MR Classification numbers : 54F05, 54D18, 54D30, 54E35.

1. Introduction.

A collection \mathcal{A} of subsets of a space X is <u>minimal</u> (or irreducible) if each member of \mathcal{A} contains a point that belongs to no other member of \mathcal{A} . Spaces with σ -minimal bases were introduced and studied by Aull in [A1, A2], and the basic examples clarifying the relation of σ -minimal bases to other topological properties were constructed in [BB]. However, there remains one context in which the role of Aull's σ -minimal bases is not yet clear, and that is the theory of linearly ordered and generalized ordered spaces.

Among generalized ordered spaces, quasi-developability, the existence of a σ -disjoint base, and the existence of a σ - point-finite base are mutually equivalent properties ([B],[L]). Among generalized ordered spaces, each implies the existence of a σ -minimal base, but the converse is obviously false – the lexicographic square is a compact linearly ordered space that has a σ -minimal base but is not quasi-developable. Indeed, there are linearly ordered spaces that have σ -minimal bases that are not even first countable. However, all such spaces are hereditarily paracompact [BL1] even though the existence of a σ -minimal base is not itself a hereditary property. Familiar examples suggest that generalized ordered spaces with σ -minimal bases are either quasi-developable or else contain a particular type of pathological subspace that does not have a σ -minimal base for its relative topology, and that suggests asking ([BL2],[L2]) whether a compact linearly ordered space must be metrizable if each of its subspaces has a σ -minimal base. That question is still open. (See "Added in Proof.") A weaker version of the question (originally mis-posed in [BL2]) asks whether a linearly ordered, or generalized ordered, space X must be quasi-developable if every subspace of X has a σ - minimal base for its relative topology. That is the question that we resolve negatively in this paper by constructing a non-metrizable, perfect linearly ordered space X such that every subspace of X has a σ -minimal base for its topology. The space X has many other valuable features: it is hereditarily paracompact, first-countable, Čech-complete, and has a dense subspace that is σ -closed-discrete in X. But the space X is not quasi-developable, as can be seen from the fact that X is perfect but not metrizable.

The two key components of our construction are an elegant metric space constructed by A.H. Stone in [St] (and used as the basis for many other topological examples, e.g., [P1,P2]) together with an orderability theorem of H. Herrlich [H].

Recall that a linearly ordered topological space (or LOTS) is a triple $(X, <, \mathcal{T})$ where < is a linear ordering of X and where \mathcal{T} is the usual open interval topology of <. Unfortunately, a subspace of a LOTS may fail to be a LOTS, and that leads to the study of generalized ordered spaces (or GO-spaces), i.e., spaces that can be embedded in some LOTS. An internal characterization of GO-spaces is that they are triples $(X, <, \mathcal{T})$ where < is a linear ordering of X and where \mathcal{T} is a Hausdorff topology on X that has an open base consisting of order-convex sets.

In our paper we must carefully distinguish between subsets of a space X that are the union of a countable collection of closed, discrete subspaces of X (such subspaces will be called σ -closed-discrete) and subspaces that are countable unions of discrete, but not necessarily closed, subspaces (such spaces are said to be σ -discrete-in-themselves). However, as Stone pointed out in [St], the two notions are equivalent in any metric space, and indeed in any perfect space, where a space X is <u>perfect</u> if every closed subset of X is a G_{δ} in X.

We want to thank the referee for valuable comments that significantly shortened the proofs in this paper.

2. Stone's metric space and preliminary properties of E(Y,X)

In [St], A.H. Stone constructed a special metric space Y that has been used as the

starting point of many important examples in topology; see, for example, [P1,P2]. The crucial properties of Stone's space Y are:

- S-1) Y is a subspace of D^{ω} where D is a discrete space of cardinality ω_1 ;
- S-2) the cardinality of Y is ω_1 ;
- S-3) Y is not the union of countably many subspaces, each discrete-in-itself;

S-4) if C is a countable subset of Y, then the closure of C in Y is also countable.

Throughout this paper, X will be the closure of Y in the metric space D^{ω} and \mathcal{M} will denote the topology that X inherits from D^{ω} . Let d be a metric on X that induces the topology \mathcal{M} and, for $x \in X$ and $\epsilon > 0$ let $B(d, x, \epsilon)$ denote the open d-ball of radius ϵ centered at x.

2.1 **Proposition**: With X as above, (X, \mathcal{M}) is a completely metrizable space and there is a linear ordering of the set X that induces \mathcal{M} as its open interval topology.

Proof: Being closed in D^{ω} , (X, \mathcal{M}) is completely metrizable. That some linear ordering of X makes (X, \mathcal{M}) into a LOTS follows from a result of Herrlich ([H]; see [E, Problem 6.3.2] for another proof) because X is strongly zero-dimensional.

2.2 **Proposition**: Let $Z \subset X$. Define $J(1) = \{z \in Z : \text{for some } x \in X, z < x \text{ and } |z, x[\cap Z = \emptyset\} \text{ and } J(-1) = \{z \in Z : \text{for some } x \in X, z > x \text{ and } |x, z[\cap Z = \emptyset\}.$ Then $J = J(-1) \cup J(1)$ is a σ -closed-discrete subset of (X, \mathcal{M}) .

Proof: Because X is metrizable, it will be enough to show that J is the union of countably many subsets, each of which is discrete-in-itself. Consider J(1), the argument for J(-1)being analogous. For each $z \in J(1)$ let z^+ denote an element of X such that $z < z^+$ and $|z, z^+[\cap Z = \emptyset$. Then there is an integer $n = n(z) \ge 1$ such that $B(d, z, \frac{1}{n}) \subset] \leftarrow, z^+[$. Let $J(1,m) = \{z \in J(1) : n(z) = m\}$. If p < q are points of J(1,m), then $p^+ \le q$ so that we have $B(d, p, \frac{1}{m}) \subset] \leftarrow, p^+[$ showing that $q \notin B(d, p, \frac{1}{m})$ so that $d(p,q) \ge \frac{1}{m}$ as required. \square

For any $Z \subset X$, there is a second natural topology on Z, namely the Sorgenfrey topology S_Z that has sets of the form $Z \cap [z, b]$ as a base, where $z \in Z$ and $b \in X$ has z < b. Clearly $\mathcal{M}_Z \subset \mathcal{S}_Z$, where \mathcal{M}_Z is the topology that Z inherits from the metrizable space (X, \mathcal{M}) .

2.3 Corollary: For any $Z \subset X$, the space (Z, S_Z) has a dense set D that is the union of countably many closed, discrete subsets of (Z, S_Z) .

Proof: The metrizable space (Z, \mathcal{M}_Z) has a dense set E that is σ -closed-discrete in (Z, \mathcal{M}_Z) and hence is also σ -closed-discrete in (Z, \mathcal{S}_Z) . From (2.2) the set $J(1) = \{z \in Z : \text{ for some }$ $x \in X$ with x > z, $[z, x[\cap Z = \{z\}\}$ is also σ -closed-discrete in (Z, \mathcal{M}_Z) and therefore also in (Z, \mathcal{S}_Z) . Because $J(1) \cup E$ is dense in (Z, \mathcal{S}_Z) , the lemma is proved.

2.4 Construction of E(Y, X). Let Y be Stone's metric space and X its closure in D^{ω} . Let \mathcal{M} be the metrizable topology that X inherits from the product space. Use (2.1) to choose a linear ordering of X that induces \mathcal{M} as its open interval topology. Let

$$E(Y, X) = (Y \times \{-1, 1\}) \cup ((X - Y) \times \{0\}).$$

Order E(Y, X) lexicographically and let E(Y, X) carry the open interval topology of that ordering. Let $\pi : E(Y, X) \to X$ be the function $\pi(x, i) = x$. One can think of E(Y, X) as being the result of splitting each point of Y into two consecutive points.

2.5 **Proposition**: The mapping π is a perfect mapping from E(Y, X) onto (X, \mathcal{M}) . Hence E(Y, X):

- a) is Čech-complete;
- b) has a dense subset that is σ -closed-discrete;
- c) is perfect, hereditarily paracompact, and first countable.

Proof: It is easy to see that π is continuous and closed so that, because $|\pi^{-1}(x)| \leq 2$ for each $x \in X$, π is perfect. Hence a) holds.

Let D be a dense σ -closed-discrete subset of the metric space (X, \mathcal{M}) . Then $E_1 = \pi^{-1}[D]$ is a σ -closed-discrete subset of E(Y, X). Consider the sets $J(-1) = \{z \in X : \text{ for some } x < z,]x, z[= \emptyset\}$ and $J(1) = \{z \in X : \text{ for some } x > z,]z, x[= \emptyset\}$. According to (2.2), each is σ -closed-discrete in (X, \mathcal{M}) . Hence $E_2 = \pi^{-1}[J(-1) \cup J(1)]$ is σ -closed-discrete in E(Y, X). It is easy to verify that $E_1 \cup E_2$ is dense in E(Y, X) so that (b) holds. Now (c) follows from the general theory of ordered spaces (see [L,BLP,Fa,vW]).

2.6 **Proposition**: E(Y, X) is not metrizable.

Proof: For contradiction, suppose E(Y, X) is metrizable. Then so is its subspace $Y \times \{1\}$, which is homeomorphic to (Y, \mathcal{S}_Y) , where \mathcal{S}_Y is the Sorgenfrey topology on Y described just before (2.3). Let d be a metric on Y that induces the topology \mathcal{M}_Y and suppose ρ is a metric on Y that induces the topology \mathcal{S}_Y . We will denote the open balls with respect to d and ρ by $B(d, x, \epsilon)$ and $B(\rho, x, \epsilon)$, respectively.

For each $y \in Y$ there is an integer $n = n(y) \ge 1$ such that $B(\rho, y, \frac{1}{n}) \subset [y, \to [$. Let $Y(m) = \{y \in Y : n(y) = m\}$ and observe that

(*) if p < q are points of Y(m), then $B(\rho, q, \frac{1}{m}) \subset [q, \to [$ so that $\rho(p, q) \geq \frac{1}{m}$. Thus each Y(m) is closed and discrete in (Y, \mathcal{S}_Y) . For each $y \in Y(m)$ there is a b > y such that $Y \cap [y, b] \subset B(\rho, y, \frac{1}{m})$. Because $] \leftarrow, b[$ is a neighborhood of y in (Y, \mathcal{M}_Y) , there is a $k = k(y, m) \ge 1$ such that $B(d, y, \frac{1}{k}) \subset] \leftarrow, b[$. Hence $B(d, y, \frac{1}{k}) \cap [y, \to [\subset [y, b] \subset B(\rho, y, \frac{1}{m})$. Let $Y(m, j) = \{y \in Y(m) : k(y, m) = j\}$ for each $m, j \ge 1$. Because $Y = \bigcup \{Y(m, j) : m, j \ge 1\}$, it follows from property (S-3) of Y that for some $m, j \ge 1$, the set Y(m, j) is not discrete-in-itself when Y is topologized using \mathcal{M}_Y . Hence we may choose a strictly monotonic sequence $\{y_k : k \ge 1\}$ in Y(m, j)that converges to a point $y_0 \in Y(m, j)$. Because $Y(m, j) \subset Y(m)$ and Y(m) is closed and discrete in (Y, \mathcal{S}_Y) , it must be the case that $y_1 < y_2 < y_3 < \dots$ Choose integers k < isuch that $\{y_k, y_i\} \subset B(d, y_0, \frac{1}{3j})$. The triangle inequality yields $d(y_k, y_i) < \frac{1}{j}$ so that $y_i \in$ $B(d, y_k, \frac{1}{j}) \cap [y_k, \to [$. Because $y_k \in Y(m, j)$ we have $B(d, y_k, \frac{1}{j}) \cap [y_k, \to [\subset B(\rho, y_k, \frac{1}{m})$ so that $\rho(y_k, y_i) < \frac{1}{m}$, and that contradicts (*) above, because $y_k, y_i \in Y(m, j) \subset Y(m)$.

3. σ -minimal bases

3.1) **Lemma**: Let Z be a subspace of a first-countable GO-space Y. Suppose that Z, in its relative topology, has a σ -minimal base. Then there is a σ -minimal collection of open subsets of Y that contains a neighborhood base at each point of Z.

Proof: Let $\mathcal{B} = \bigcup \{ \mathcal{B}(n) : n \ge 1 \}$ be a σ -minimal base of relatively open subsets of Z. For each $B \in \mathcal{B}$, let B^* be the convex hull of B in Y. The set B^* might not be open, but because Y is first countable, there is a sequence $B^*(k)$ of convex open subsets of Y such that if G is a convex open subset of Y that contains B^* , then for some $k, B^*(k) \subset G$.

For each $B \in \mathcal{B}(n)$, choose an open set C(B) in Y such that $B = C(B) \cap Z$, and define $D(B, n, k) = B^*(k) \cap C(B)$. Each D(B, n, k) is open in Y and the collection $\mathcal{D}(n, k) = \{D(B, n, k) : B \in \mathcal{B}(n)\}$ is irreducible. Finally, $\mathcal{D} = \bigcup \{\mathcal{D}(n, k) : n, k \ge 1\}$ contains a local base at each $y \in Y$. For suppose G is a convex open subset of Y and that $z \in G \cap Z$. Then there is an index n and a set $B \in \mathcal{B}(n)$ such that $z \in B \subset G \cap Z$. Because G is convex, $B^* \subset G$. As noted above, there is an index $k \ge 1$ such that $B^*(k) \subset G$. Then $z \in D(B, n, k) = C(B) \cap B^*(k) \subset G$, as required. \square

3.2 Corollary: Suppose Z is a first-countable GO space and $Z = \bigcup \{Z(n) : n \ge 1\}$ where each subspace Z(n) has a σ -minimal base for its relative topology. Then Z has a σ -minimal base.

3.3 **Lemma**: With (Y, S_Y) as in Section 2, each subspace of (Y, S_Y) has a σ -minimal base for its relative topology.

Proof: Let $Z \subset Y$. According to (2.3) there is a dense subset $D = \bigcup \{D(n) : n \ge 1\}$ of (Z, \mathcal{S}_Z) where each D(n) is a closed, discrete subspace of (Z, \mathcal{S}_Z) . Because (Z, \mathcal{S}_Z) is first

countable and hereditarily collectionwise normal, there is a σ -disjoint collection \mathcal{D} of open subsets of Z that contains a neighborhood base at each point of D.

Let $Z_0 = \{z \in Z : \text{some } S_Z\text{-neighborhood of } z \text{ is countable } \}$. Then Z_0 is an open subspace of Z and, each countable GO-space being metrizable, Z_0 is locally metrizable. The existence of the σ -closed-discrete, dense set D makes Z perfect and hence hereditarily paracompact, so that Z_0 is a metrizable subspace of Z. Hence there is a σ -disjoint collection \mathcal{E} of \mathcal{S}_Z -open sets that contains a neighborhood base at each point of Z_0 .

Suppose $z \in Z - (D \cup Z_0)$. Then each \mathcal{S}_Z neighborhood of z is uncountable. We claim that for each $b \in X$ with b > z, the set $C = [z, b] \cap D$ is uncountable. For if not, then property (S-4) of Stone's space (Y, \mathcal{M}_Y) forces the \mathcal{M}_Y -closure of C to be countable. But then $[z, b] \cap Z$ is a subset of the \mathcal{S}_Y -closure of C which is a subset of the \mathcal{M}_Y -closure of Cwhich is countable, so that $z \in Z_0$, contradicting $z \in Z - (D \cup Z_0)$.

Provided $z \in Z - (D \cup Z_0)$, each $B(d, z, \frac{1}{k}) \cap [z, \to [$ is an \mathcal{S}_Z -neighborhood of z. Hence for some $n \geq 1$, $|B(d, z, \frac{1}{k}) \cap [z, \to [\cap D(n) | > \omega$. Let A(n, k) be the set of all $z \in Z - (D \cup Z_0)$ such that $|B(d, z, \frac{1}{k}) \cap [z, \to [\cap D(n) | > \omega$. Because $|Y| = \omega_1$ according to property (S-2), there is a 1-1 function $\phi_{n,k} : A(n,k) \to D(n)$ such that $\phi_{n,k}(z) \in B(d, z, \frac{1}{k}) \cap [z, \to [\cap D(n)]$ for each $z \in A(n, k)$. For $z \in A(n, k)$ define

$$C(z, n, k) = (Z \cap [z, \to [\cap B(d, z, \frac{1}{k})) - (D(n) - \{\phi_{n,k}(z)\})$$

and let $C(n,k) = \{C(z,n,k) : z \in A(n,k)\}$. Each collection C(n,k) consists of S_Z open sets and is a minimal collection because if z, w are distinct points of A(n,k), then $\phi_{n,k}(z) \in C(z,n,k) - C(w,n,k)$.

We claim that $C = \bigcup \{C(n,k) : n, k \ge 1\}$ contains an S_Z -neighborhood base at each point $z \in Z - (D \cup Z_0)$. For suppose z < b with $b \in X$, and consider $Z \cap [z, b]$. Because $] \leftarrow, b[$ is an \mathcal{M}_Y -neighborhood of z, there is a $k \ge 1$ with $B(d, z, \frac{1}{k}) \subset] \leftarrow, b[$. Then $B(d, z, \frac{1}{k}) \cap [z, \to [\subset [z, b[$. Choose n so that $|B(d, z, \frac{1}{k}) \cap [z, \to [\cap D(n)] > \omega$. Then $C(z, n, k) \in C(n, k)$ and $z \in C(z, n, k) \subset [z, b[\cap Z \text{ as required.}]$

3.4 Corollary: Every subspace of E(Y, X) has a σ -minimal base for its topology.

Proof: Let $Z \subset E(Y,X)$ and define $Z(i) = (Y \times \{i\}) \cap Z$ if $i \in \{-1,1\}$ and $Z(0) = Z \cap ((X - Y) \times \{0\})$. In the light of (3.2) it will be enough to show that each Z(i) has a σ -minimal base for its relative topology.

The subspace Z(0) is metrizable and therefore has a base of the required kind. The subspace Z(1) is homeomorphic to a subspace of (Y, \mathcal{S}_Y) so that it has a σ -minimal base in the light of (3.3). The argument to show that Z(-1) has a σ -minimal base for its relative topology is entirely analogous to the argument for Z(1), and that completes the proof.

Added in Proof: In a paper that will apprear in *Proceedings of the American Mathematical Society*, Wei-Xue Shi constructed a non- mertrizable compact LOTS X, every subspace of which has a σ -minimal base. Shi's result completely settles the question posed in [BL2] and [L2].

Bibliography

- [A1] Aull, C., Quasi-developments and $\delta\theta$ -bases, J. London Math. Soc. 9 (1974), 197-204.
- [A2] Aull, C., Some properties involving base axioms and metrization, TOPO72, Springer Lecture Notes in Mathematics, 378 (1974), 41-45.
- [B] Bennett, H., Point-countability in linearly ordered spaces, Proc.Amer. Math. Soc. 28 (1971), 598-606.
- [BB] Bennett, H. and Berney, E.S., Spaces with σ -minimal bases, Topology Proceedings 2 (1977), 1-10.
- [BL1] Bennett, H. and Lutzer, D., Ordered spaces with σ -minimal bases, Topology Proceedings 2 (1977), 371-382.
- [BL2] Bennett, H. and Lutzer, D., Problems in perfect ordered spaces, in <u>Open Problems in</u> <u>Topology</u>, ed. by J. van Mill and G.M. Reed, North Holland, Amsterdam, 1990, pp. 233-237.
- [BLP] Bennett, H., Lutzer, D., and Purisch, S., Dense metrizable subspaces of ordered spaces, to appear.
 - [E] Engelking, R., General Topology, Heldeman Verlag, Berlin, 1989.
 - [Fa] Faber, M., Metrizability in generalized ordered spaces, Math. Centre Tracts, no, 53 (1974), Amsterdam.
 - [H] Herrlich, H., Ordnungsfähigheit total-diskontinnuierlich Räume, Math. Ann. 159 (1965), 77-80.
 - [L] Lutzer, D., On generalized ordered spaces, Dissertationes Math. 89 (1971), 1-41.
 - [L2] Lutzer, D., Twenty questions on ordered spaces, <u>Topology and Order Structures</u>, (2),
 H. Bennett and D, Lutzer, editors, pages 1-18, MC Tract 169, Mathematical Centre, Amsterdam.
 - [P1] Pol, R., A perfectly normal locally metrizable non- paracompact space, Fund. Math. 97(1977), 37-42.
 - [P2] Pol, R., A non-paracompact space whose countable power is perfectly normal, Comment. Math. Prace. Mat. 20(1977-78), 435- 437.

- [St] Stone, A.H., On $\sigma\text{-discreteness}$ and Borel isomorphism, Amer. J. Math. 85 (1963), 655-666.
- [vW] van Wouwe, J., GO-spaces and generalizations of metrizability, Math. Centre Tracts no. 104 (1979), Amsterdam.