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Abstract

A topological space X has Property III provided there are subsets U (k) and D(k) of
X for each k£ > 1 such that:
1) U(k) is open in X and D(k) is relatively closed in U(k);
2) D(k) is discrete in itself;
3) if p is a point of an open set G, then there is a kK > 1 such that p € U(k) and
D(k)NG # ¢.
We show that Property III is exactly what is needed, in a generalized ordered space, to
transform a d6-base in the sense of Aull into a o-disjoint base (equivalently, into a quasi-
development). We also give an example of a linearly ordered topological space that has a

060-base, but not a point-countable base.
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1.Introduction.

A topological space X has Property III provided there are subsets U (k) and D(k) of
X for each k£ > 1 such that:
1) U(k) is open in X and D(k) is relatively closed in U(k);
2) D(k) is discrete in itself, i.e., when endowed with the relative topology from X, the
space D(k) is discrete;
3) if p is a point of an open set G, then there is a kK > 1 such that p € U(k) and
D(k)NG # ¢.
In [BL] we showed that Property III plays an important bridging role in the theory of
generalized ordered spaces by proving that a generalized ordered space X has a o-disjoint
base if and only if it has a point-countable base and has Property III. In this paper we
extend the main theorem of [BL] by showing that Property III plays an even larger bridging
role in ordered space theory. We show that for generalized ordered spaces, Property III is
the solution of the equation “o-disjoint base = (?) + d6-base” by adding (e) to the list of

equivalent conditions in the following theorem:

1.1) Theorem: The following properties of a generalized ordered space X are equivalent:
a) X is quasi-developable;
b) X has a o-disjoint base;
c) X has a o-point finite base;

d) X has a point countable base and has Property III;
e) X has a 60-base and has Property III.

Recall that a generalized ordered space or GO-space is a triple (X,7,<) such that

(X, <) is a linearly ordered set and where 7 is a Hausdorff topology on X that has a base of
order-convex open sets. If it happens that 7 is the open interval topology of the ordering

<, then X is a linearly ordered topological space or LOTS. The class of GO-spaces is

exactly the class of subspaces of LOTS.

Quasi-developments, o-point finite bases, and o- disjoint bases are familiar objects:
see [B1], [BL] and [L1] for general background material. The notion of a df-base was
intruduced by Aull in [Au]: A collection B = [J{B(n) : n > 1} is a d6-base for X provided
that if G is open and p € G, then for some n, some B € B(n) has p € B C G, and the
order of p in B(n) is countable. (By the order of a point p in a collection C we mean
the cardinality of the collection {C' € C : p € C'}. We will denote the order of p in C by
ord(p,C).) Clearly, any point-countable base is a d6-base, but the converse is false, even

among GO-spaces, as can be seen from the example constructed in Section 3.
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Throughout this paper, we must carefully distinguish between the statements “FE is
a discrete subspace of X” and “F is a closed discrete subspace of X. We will do this, for
example, by writing “Suppose X has a o-closed discrete dense subset” even though that
makes our terminology more cumbersome. For example, it is easy to see that the usual
space of countable ordinals has a o-discrete dense subspace but no dense subspace that is

o-closed-discrete.

2. Property III, )f-bases, and perfect GO spaces

We begin by recalling two technical results from [BL] and a characterization of hered-

itary paracompactness that follows immediately from [Fa].

2.1) Lemma:Let X be a GO-space with Property III. Then:

a) Every subspace of X also has Property III;
b) X is hereditarily paracompact.

2.2) Lemma: Suppose {C(a) : a € A} is a pairwise disjoint collection of open subsets of a
first-countable GO-space X . For each «, suppose that E(«) is a discrete-in-itself subspace
of C(a). Then there is a o-disjoint collection B of open subsets of X that contains a base
at each point of | J{E(a) : a € A}.

2.3)Lemma: A GO-space X is hereditarily paracompact if and only if for each subspace
C C X there are sets E and E’ such that:

a) E and E' are relatively closed subsets of C' that are discrete;

b) E is well-ordered by the given ordering of X, and E’ is reverse-well-ordered by the
given ordering of X ;

c) if pe C then p € [e, €] for some e € E and ¢’ € E'.

2.4) Proposition: Suppose that X is a GO-space with a §6-base. If X has Property III,

then X has a o- disjoint base.

Proof: Let B = |J{B(n) : n > 1} be a df-base for X. We may assume that members of
B are convex subsets of X. Then X is certainly first countable. For each n let X (n) =
{p € X :ord(p,B(n)) < w}. Because X is first countable, it is easy to show that the set
X (n) is a relatively closed subset of the open set | JB(n). For k > 1, let U(k) and D(k)
be the sets given by Property III. Let O(n,k) = U(k) N (UB(n)). Then O(n,k) is open
in U(k) and hence also in X, so that O(n,k) — D(k) is open in X. Let {C(n,k,a) : a €
A(n, k)} be the family of all convex components of O(n, k) — D(k). In addition, notice that
X(n)NO(n,k) is a relatively closed subset of O(n, k) so that for each a € A(n, k), the set
X(n)NC(n,k,«a) is a relatively closed subset of C(n,k,a). Let A*(n, k) = {a € A(n, k) :
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X(n)NC(n,k,a) # ¢} and for each a € A*(n, k) use (2.3) to find discrete, relatively closed
subsets F(n, k,a), E'(n,k,«) of X(n)NC(n,k,«) as described in (2.3).

For each aw € A*(n,k) let H(n,k,a) be the collection of all convex components of
the open set C'(n, k,a) — E(n, k,«) that have at least one endpoint in the set E(n,k, a).
Define H'(n, k, ) in an analogous way, using E’(n, k,«) in place of E(n,k,«). For each
H € H(n, k,«a), define G(n, k, o, H) to be the collection of all sets H N B where B € B(n)
and B contains at least one of the endpoints of H that belongs to E(n,k,«a). Define
collections G(n, k,a, H") using the sets E’(n,k,«) in place of E(n,k,«) and sets H' €
H (n, k, o).

For a fixed (n,k,a,H), if BN H € G(n,k,«, H) then B contains at least one end
point of H that belongs to E(n,k,a) C X(n), and B € B(n). Because there are at
most two such endpoints, the collection G(n, k, o, H) is countable. Index G(n,k,a, H) as
{G(n,k,a,H,7) : j > 1}. Similarly, index G'(n, k, o, H') as {G'(n,k,a, H',j) : j > 1}

Let U(n,k,j) ={G(n,k,a, H,j) : a € A*(n,k) and H € H(n,k,a)}. If o and g are
distinct members of A*(n, k) then G(n,k,«, Hy,j) and G(n,k, 3, Ha, j) are, respectively,
subsets of the disjoint convex components C'(n, k, a) and C'(n, k, 3), for any Hy € H(n, k, «)
and Hy € H(n,k,3). And if Hy # Hs belong to H(n,k,«), then G(n,k,«a, H;,j) C H;
so that G(n,k,a, Hy,5) N G(n,k, o, Hy,j) = ¢. Therefore each U(n,k,j) is a pairwise
disjoint collection. Analogously, U’(n, k, 7) , the collection of all sets G’ (n, k, «a, H', j) where
a € A*(n,k) and H' € H(n, k,«), is a pairwise disjoint collection. Let U = |J{U(n, k,j) :
n,k,j > 1} and define U' = J{U'(n,k,j) : n,k,j5 > 1}. Then U and U’ are o-disjoint
collections of open subsets of X.

Let Y = (IU{D(k) : k> 1}) U(U{E(n, k,a) UE' (n,k,c) : n,k > 1 and o € A*(n,k)}
Repeated application of (2.2) yields a o-disjoint collection £ of open subsets of X that
contains a base at each point y € Y. Thus it will be enough to show that the collection
U UU' defined above contains a base at each point of X — Y.

To that end, suppose p € X —Y and p € G, where G is open in X. Find n such that
ord(p, B(n)) is countable, and such that for some B € B(n), we have p € B C . Then
p € X(n). Next find some k such that p € U(k) and some point d € D(k) N B. Because
d € Y while p € Y, we have p # d. There are two cases to consider. If p < d, then we
will show that U contains a set that contains p and is a subset of B C G. If d < p then
an analogous argument (which we leave to the reader) shows that &’ contains the required
set.

Because p € U(k) N (IUB(n)) = O(n, k) and p ¢ D(k) there is a unique o € A(n, k)
such that p € C(n, k, ). Because p € C(n, k,a)N X (n), it follows that a € A*(n, k) so that
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E(n,k,a) is defined. From d ¢ C(n,k,«) it follows that either C(n, k,«) C | <, d[ or else
C(n,k,a) C ]d,— [. Because p € C(n,k,«) and p < d, it follows that C'(n, k, o) C | «,d[.
If p is the largest element of the set X (n)NC(n, k, «), then {p} = E(n,k,«) C Y, contrary
to p € Y. Therefore some ¢ € FE(n,k,«) has p < q. We may assume that ¢ is the
first such point. Then ¢ is the right endpoint of the unique convex component H of
C(n,k,a) — E(n, k,«) that contains p. Therefore H € H(n, k, «).

Because B € B(n) is a convex set containing both p and d, and because p < ¢ and
qg € E(n,k,a) C C(n,k,a) C ] «,d[, we know that B contains q. Therefore, BN H €
G(n, k,a, H) so that for some j we have BN H € U(n,k,j) CU,andpe BNHC BCG

as required. The case where d < p being analogous, we now know that X has a o- disjoint

base. D

3. Examples

In this section we construct a LOTS Z with a df-base that does not have a point-
countable base. In the light of (2.4), Z cannot have Property III. The space Z is an
extension of an example in [B] of a LOTS with a point-countable base, but not a o-

disjoint base.

3.1) Construction: Let P, @), and R denote, respectively, the sets of irrational, rational,
and real numbers. For each limit ordinal p < wy, let X (u) be the set of all functions f :
[0, 4] — R such that f(a) € P whenever a < pand f(u) € Q. Let X = [J{X (1) : p < w1}
and let Y = X (wq). Let Z = XUY and order Z lexicographically, i.e., for distinct f,g € Z
define f<g if f(a) < g(a) where « is the first ordinal such that f(«) # g(a). Let Z have
the lexicographic order topology of <. For each f € Z let A(f) be the largest member of
the domain of f. For each f € Z and each n > 1 define B(f,n) to be the set

{9€2:Mg) =2 Mf) and g(a) = f(a) for each a < A(f) and [g(A(f)) = F(A(f))| < 1/n}.

3.2) Lemma: With notation as above,

a) for each f € Z, {B(f,n) : n > 1} is a countable base of open neighborhoods for f in
the space Z;

b) the collection B = {B(f,n) : f € X and n > 1} is point-countable at each point
g€ X;

c¢) the collection C = {B(f,n) : f € Y and n > 1} is point-countable at each g € Z;

d) Z has a d0-base.

Proof: See [B2] for a proof of a) and b). As for c), suppose g € Z. If A(g) < w1, then
g ¢ UJC. If \N(g) = wy and if g € B(f,n) € C, then f(«a) = g(a) for each @ < wq, and
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f(w1) is one of the countably many numbers in ). Hence g lies in at most countably many

members of C. Combining assertions a), b), and c) gives d). [_]

3.3) Lemma: Suppose f € X and n > 1 are given. Then there is a function g € X such
that:

a) Mg) = A(f) +w

b) B(g,1) is a proper subset of B(f,n).
Proof: Write A = A(f) and choose an irrational number p such that |f(\) — p| < 1/n.
Define g on [0, A 4+ w] by:

1) gla) = f(a) if a < X

2) 9(A) = p;

3) gla) =mif A< a < A+ w;

4) g\ +w) =3.14.

Then B(g,1) C B(f,n) as required, and the inclusion is proper because f € B(f,n) —

B(g,1). [
3.4) Lemma: The space Z does not have a point-countable base.

Proof.: For contradiction, suppose that D is a point- countable base of open sets for Z. Let
{fta : @ < w1} be an increasing well-ordering of all limit ordinals less than w;. Define a
function fy : [0,w] — R by the rule that fy(«) = 7 for each @ < w and f(w) = 3.14. Then
fo € X has A(fo) = w = pp. Choose any D(0) € D with fy € D(0). Find ng such that
B(fo,m0) C D(0) and then use (3.3) to find a function go : [0, A(fo) + w] — R such that
B(go,1) is a proper subset of B(fy,no).

For induction hypothesis, suppose that o < w; and that for each § < a we have

defined functions fg, gg, an integer mg > 1, and a set D(3) € D such that:

1) fs, g5 € X and Agg) = A(f) +w > A(f3) > pg;
2) N(gg,1) C N(fz,mg) C D(5), with each inclusion being proper;

3) if y < B < athen D(B) C N(g,1).
There are two cases to consider.

Case 1: Suppose that « is not a limit ordinal, say @ = 3+ 1. Then gg is defined and we
let fo = gsg. Then f, € N(gg,1) so that there is some D(«) € D such that f, € D(a) C
N(gs, 1) with the last inclusion being proper. Choose m,, so that N(fq,mq) C D(a). Use
Lemma (3.3) to find g, with A(ga) = A(fa) +w and N(ga,1) C N(fa,ma). Observe that
Aga) > A fa) = AMygp) = g +w = pn. Thus, the induction continues across non-limit

ordinals.



Case 2: Suppose « is a limit ordinal less than wq. Let A = sup{\(f3) : 8 < a}. Then
A is a limit ordinal with A > A(fg) > pg for each § < a so that A > p,. Because
[0, A] = {2} U (UL{[0, A(fa)[ : B < a}), we may define f, € X by

a) fa(6) = f3(0) if § < A(f3) for some (5 < «;

b) fa(N) =3.14.

Observe that for each § < a we have f, € N(fq,1) C N(gg,1) C D(f), with both
inclusions being proper. Now find D(a) € D such that f, € D(a) C N(fa,1) and
then an integer m, such that N(fu,ms) C D(a). Use (3.3) to find g, € X such that
AMga) = M fa) +w and N(ga,1) C N(fa,ma) C D(a). Thus, the induction continues

across limit ordinals.

The above induction produces a subset { f, : @ < w1} of X and distinct sets D(«a) € D
for « < wy. Define h: [0,w;] — R by

9(6) = fa(0) whenever § < A(fy) and a < wy;
g(u}l) = 3.14.

Then g € Z and g € D(«a) for each o < wy. Because the sets D(«) are distinct members
of D, it follows that D cannot be point-countable in Z. L]
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