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Abstract

A topological space X has Property III provided there are subsets U(k) and D(k) of
X for each k ≥ 1 such that:

1) U(k) is open in X and D(k) is relatively closed in U(k);
2) D(k) is discrete in itself;
3) if p is a point of an open set G, then there is a k ≥ 1 such that p ∈ U(k) and

D(k) ∩G 6= φ.

We show that Property III is exactly what is needed, in a generalized ordered space, to
transform a δθ-base in the sense of Aull into a σ-disjoint base (equivalently, into a quasi-
development). We also give an example of a linearly ordered topological space that has a
δθ-base, but not a point-countable base.
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1.Introduction.

A topological space X has Property III provided there are subsets U(k) and D(k) of
X for each k ≥ 1 such that:

1) U(k) is open in X and D(k) is relatively closed in U(k);
2) D(k) is discrete in itself, i.e., when endowed with the relative topology from X, the

space D(k) is discrete;
3) if p is a point of an open set G, then there is a k ≥ 1 such that p ∈ U(k) and

D(k) ∩G 6= φ.

In [BL] we showed that Property III plays an important bridging role in the theory of
generalized ordered spaces by proving that a generalized ordered space X has a σ-disjoint
base if and only if it has a point-countable base and has Property III. In this paper we
extend the main theorem of [BL] by showing that Property III plays an even larger bridging
role in ordered space theory. We show that for generalized ordered spaces, Property III is
the solution of the equation “σ-disjoint base = (?) + δθ-base” by adding (e) to the list of
equivalent conditions in the following theorem:

1.1) Theorem: The following properties of a generalized ordered space X are equivalent:

a) X is quasi-developable;

b) X has a σ-disjoint base;

c) X has a σ-point finite base;

d) X has a point countable base and has Property III;

e) X has a δθ-base and has Property III.

Recall that a generalized ordered space or GO-space is a triple (X, T , <) such that
(X, <) is a linearly ordered set and where T is a Hausdorff topology on X that has a base of
order-convex open sets. If it happens that T is the open interval topology of the ordering
<, then X is a linearly ordered topological space or LOTS. The class of GO-spaces is
exactly the class of subspaces of LOTS.

Quasi-developments, σ-point finite bases, and σ- disjoint bases are familiar objects:
see [B1], [BL] and [L1] for general background material. The notion of a δθ-base was
intruduced by Aull in [Au]: A collection B =

⋃
{B(n) : n ≥ 1} is a δθ-base for X provided

that if G is open and p ∈ G, then for some n, some B ∈ B(n) has p ∈ B ⊂ G, and the
order of p in B(n) is countable. (By the order of a point p in a collection C we mean
the cardinality of the collection {C ∈ C : p ∈ C}. We will denote the order of p in C by
ord(p, C).) Clearly, any point-countable base is a δθ-base, but the converse is false, even
among GO-spaces, as can be seen from the example constructed in Section 3.
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Throughout this paper, we must carefully distinguish between the statements “E is
a discrete subspace of X” and “E is a closed discrete subspace of X. We will do this, for
example, by writing “Suppose X has a σ-closed discrete dense subset” even though that
makes our terminology more cumbersome. For example, it is easy to see that the usual
space of countable ordinals has a σ-discrete dense subspace but no dense subspace that is
σ-closed-discrete.

2. Property III, δθ-bases, and perfect GO spaces

We begin by recalling two technical results from [BL] and a characterization of hered-
itary paracompactness that follows immediately from [Fa].

2.1) Lemma:Let X be a GO-space with Property III. Then:

a) Every subspace of X also has Property III;

b) X is hereditarily paracompact.

2.2) Lemma: Suppose {C(α) : α ∈ A} is a pairwise disjoint collection of open subsets of a

first-countable GO-space X. For each α, suppose that E(α) is a discrete-in-itself subspace

of C(α). Then there is a σ-disjoint collection B of open subsets of X that contains a base

at each point of
⋃
{E(α) : α ∈ A}.

2.3)Lemma: A GO-space X is hereditarily paracompact if and only if for each subspace

C ⊂ X there are sets E and E′ such that:

a) E and E′ are relatively closed subsets of C that are discrete;

b) E is well-ordered by the given ordering of X, and E′ is reverse-well-ordered by the

given ordering of X;

c) if p ∈ C then p ∈ [e, e′] for some e ∈ E and e′ ∈ E′.

2.4) Proposition: Suppose that X is a GO-space with a δθ-base. If X has Property III,

then X has a σ- disjoint base.

Proof: Let B =
⋃
{B(n) : n ≥ 1} be a δθ-base for X. We may assume that members of

B are convex subsets of X. Then X is certainly first countable. For each n let X(n) =
{p ∈ X : ord(p,B(n)) ≤ ω}. Because X is first countable, it is easy to show that the set
X(n) is a relatively closed subset of the open set

⋃
B(n). For k ≥ 1, let U(k) and D(k)

be the sets given by Property III. Let O(n, k) = U(k) ∩ (
⋃
B(n)). Then O(n, k) is open

in U(k) and hence also in X, so that O(n, k) −D(k) is open in X. Let {C(n, k, α) : α ∈
A(n, k)} be the family of all convex components of O(n, k)−D(k). In addition, notice that
X(n)∩O(n, k) is a relatively closed subset of O(n, k) so that for each α ∈ A(n, k), the set
X(n) ∩ C(n, k, α) is a relatively closed subset of C(n, k, α). Let A∗(n, k) = {α ∈ A(n, k) :
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X(n)∩C(n, k, α) 6= φ} and for each α ∈ A∗(n, k) use (2.3) to find discrete, relatively closed
subsets E(n, k, α), E′(n, k, α) of X(n) ∩ C(n, k, α) as described in (2.3).

For each α ∈ A∗(n, k) let H(n, k, α) be the collection of all convex components of
the open set C(n, k, α) − E(n, k, α) that have at least one endpoint in the set E(n, k, α).
Define H′(n, k, α) in an analogous way, using E′(n, k, α) in place of E(n, k, α). For each
H ∈ H(n, k, α), define G(n, k, α,H) to be the collection of all sets H ∩B where B ∈ B(n)
and B contains at least one of the endpoints of H that belongs to E(n, k, α). Define
collections G(n, k, α,H ′) using the sets E′(n, k, α) in place of E(n, k, α) and sets H ′ ∈
H′(n, k, α).

For a fixed (n, k, α, H), if B ∩ H ∈ G(n, k, α,H) then B contains at least one end
point of H that belongs to E(n, k, α) ⊂ X(n), and B ∈ B(n). Because there are at
most two such endpoints, the collection G(n, k, α,H) is countable. Index G(n, k, α,H) as
{G(n, k, α, H, j) : j ≥ 1}. Similarly, index G′(n, k, α,H ′) as {G′(n, k, α, H ′, j) : j ≥ 1}

Let U(n, k, j) = {G(n, k, α,H, j) : α ∈ A∗(n, k) and H ∈ H(n, k, α)}. If α and β are
distinct members of A∗(n, k) then G(n, k, α,H1, j) and G(n, k, β,H2, j) are, respectively,
subsets of the disjoint convex components C(n, k, α) and C(n, k, β), for any H1 ∈ H(n, k, α)
and H2 ∈ H(n, k, β). And if H1 6= H2 belong to H(n, k, α), then G(n, k, α,Hi, j) ⊂ Hi

so that G(n, k, α, H1, j) ∩ G(n, k, α,H2, j) = φ. Therefore each U(n, k, j) is a pairwise
disjoint collection. Analogously, U ′(n, k, j) , the collection of all sets G′(n, k, α, H ′, j) where
α ∈ A∗(n, k) and H ′ ∈ H(n, k, α), is a pairwise disjoint collection. Let U =

⋃
{U(n, k, j) :

n, k, j ≥ 1} and define U ′ =
⋃
{U ′(n, k, j) : n, k, j ≥ 1}. Then U and U ′ are σ-disjoint

collections of open subsets of X.

Let Y = (
⋃
{D(k) : k ≥ 1}) ∪ (

⋃
{E(n, k, α) ∪E′(n, k, α) : n, k ≥ 1 and α ∈ A∗(n, k)}

Repeated application of (2.2) yields a σ-disjoint collection E of open subsets of X that
contains a base at each point y ∈ Y . Thus it will be enough to show that the collection
U ∪ U ′ defined above contains a base at each point of X − Y .

To that end, suppose p ∈ X − Y and p ∈ G, where G is open in X. Find n such that
ord(p,B(n)) is countable, and such that for some B ∈ B(n), we have p ∈ B ⊂ G. Then
p ∈ X(n). Next find some k such that p ∈ U(k) and some point d ∈ D(k) ∩ B. Because
d ∈ Y while p 6∈ Y , we have p 6= d. There are two cases to consider. If p < d, then we
will show that U contains a set that contains p and is a subset of B ⊂ G. If d < p then
an analogous argument (which we leave to the reader) shows that U ′ contains the required
set.

Because p ∈ U(k) ∩ (
⋃
B(n)) = O(n, k) and p 6∈ D(k) there is a unique α ∈ A(n, k)

such that p ∈ C(n, k, α). Because p ∈ C(n, k, α)∩X(n), it follows that α ∈ A∗(n, k) so that
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E(n, k, α) is defined. From d 6∈ C(n, k, α) it follows that either C(n, k, α) ⊂ ]←, d[ or else
C(n, k, α) ⊂ ]d,→ [. Because p ∈ C(n, k, α) and p < d, it follows that C(n, k, α) ⊂ ]←, d[.
If p is the largest element of the set X(n)∩C(n, k, α), then {p} = E(n, k, α) ⊂ Y , contrary
to p 6∈ Y . Therefore some q ∈ E(n, k, α) has p < q. We may assume that q is the
first such point. Then q is the right endpoint of the unique convex component H of
C(n, k, α)− E(n, k, α) that contains p. Therefore H ∈ H(n, k, α).

Because B ∈ B(n) is a convex set containing both p and d, and because p < q and
q ∈ E(n, k, α) ⊂ C(n, k, α) ⊂ ] ←, d[, we know that B contains q. Therefore, B ∩ H ∈
G(n, k, α, H) so that for some j we have B ∩H ∈ U(n, k, j) ⊂ U , and p ∈ B ∩H ⊂ B ⊂ G

as required. The case where d < p being analogous, we now know that X has a σ- disjoint
base.

3. Examples

In this section we construct a LOTS Z with a δθ-base that does not have a point-
countable base. In the light of (2.4), Z cannot have Property III. The space Z is an
extension of an example in [B] of a LOTS with a point-countable base, but not a σ-
disjoint base.

3.1) Construction: Let P, Q, and R denote, respectively, the sets of irrational, rational,
and real numbers. For each limit ordinal µ ≤ ω1, let X(µ) be the set of all functions f :
[0, µ]→ R such that f(α) ∈ P whenever α < µ and f(µ) ∈ Q. Let X =

⋃
{X(µ) : µ < ω1}

and let Y = X(ω1). Let Z = X∪Y and order Z lexicographically, i.e., for distinct f, g ∈ Z

define f≺g if f(α) < g(α) where α is the first ordinal such that f(α) 6= g(α). Let Z have
the lexicographic order topology of ≺. For each f ∈ Z let λ(f) be the largest member of
the domain of f . For each f ∈ Z and each n ≥ 1 define B(f, n) to be the set

{g ∈ Z : λ(g) ≥ λ(f) and g(α) = f(α) for each α < λ(f) and |g(λ(f))− f(λ(f))| < 1/n}.

3.2) Lemma: With notation as above,

a) for each f ∈ Z, {B(f, n) : n ≥ 1} is a countable base of open neighborhoods for f in

the space Z;

b) the collection B = {B(f, n) : f ∈ X and n ≥ 1} is point-countable at each point

g ∈ X;

c) the collection C = {B(f, n) : f ∈ Y and n ≥ 1} is point-countable at each g ∈ Z;

d) Z has a δθ-base.

Proof: See [B2] for a proof of a) and b). As for c), suppose g ∈ Z. If λ(g) < ω1, then
g 6∈

⋃
C. If λ(g) = ω1 and if g ∈ B(f, n) ∈ C, then f(α) = g(α) for each α < ω1, and
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f(ω1) is one of the countably many numbers in Q. Hence g lies in at most countably many
members of C. Combining assertions a), b), and c) gives d). .

3.3) Lemma: Suppose f ∈ X and n ≥ 1 are given. Then there is a function g ∈ X such

that:

a) λ(g) = λ(f) + ω

b) B(g, 1) is a proper subset of B(f, n).

Proof: Write λ = λ(f) and choose an irrational number p such that |f(λ) − p| < 1/n.
Define g on [0, λ + ω] by:

1) g(α) = f(α) if α < λ;

2) g(λ) = p;

3) g(α) = π if λ < α < λ + ω;

4) g(λ + ω) = 3.14.

Then B(g, 1) ⊂ B(f, n) as required, and the inclusion is proper because f ∈ B(f, n) −
B(g, 1).

3.4) Lemma: The space Z does not have a point-countable base.

Proof: For contradiction, suppose that D is a point- countable base of open sets for Z. Let
{µα : α < ω1} be an increasing well-ordering of all limit ordinals less than ω1. Define a
function f0 : [0, ω]→ R by the rule that f0(α) = π for each α < ω and f(ω) = 3.14. Then
f0 ∈ X has λ(f0) = ω = µ0. Choose any D(0) ∈ D with f0 ∈ D(0). Find n0 such that
B(f0, n0) ⊂ D(0) and then use (3.3) to find a function g0 : [0, λ(f0) + ω] → R such that
B(g0, 1) is a proper subset of B(f0, n0).

For induction hypothesis, suppose that α < ω1 and that for each β < α we have
defined functions fβ , gβ , an integer mβ ≥ 1, and a set D(β) ∈ D such that:

1) fβ , gβ ∈ X and λ(gβ) = λ(fβ) + ω > λ(fβ) ≥ µβ ;

2) N(gβ , 1) ⊂ N(fβ ,mβ) ⊂ D(β), with each inclusion being proper;

3) if γ < β < α then D(β) ⊂ N(gγ , 1).

There are two cases to consider.

Case 1: Suppose that α is not a limit ordinal, say α = β + 1. Then gβ is defined and we
let fα = gβ . Then fα ∈ N(gβ , 1) so that there is some D(α) ∈ D such that fα ∈ D(α) ⊂
N(gβ , 1) with the last inclusion being proper. Choose mα so that N(fα,mα) ⊂ D(α). Use
Lemma (3.3) to find gα with λ(gα) = λ(fα) + ω and N(gα, 1) ⊂ N(fα,mα). Observe that
λ(gα) > λ(fα) = λ(gβ) = µβ + ω = µα. Thus, the induction continues across non-limit
ordinals.
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Case 2: Suppose α is a limit ordinal less than ω1. Let λ = sup{λ(fβ) : β < α}. Then
λ is a limit ordinal with λ ≥ λ(fβ) ≥ µβ for each β < α so that λ ≥ µα. Because
[0, λ] = {λ} ∪ (

⋃
{[0, λ(fβ)[ : β < α}), we may define fα ∈ X by

a) fα(δ) = fβ(δ) if δ < λ(fβ) for some β < α;
b) fα(λ) = 3.14.

Observe that for each β < α we have fα ∈ N(fα, 1) ⊂ N(gβ , 1) ⊂ D(β), with both
inclusions being proper. Now find D(α) ∈ D such that fα ∈ D(α) ⊂ N(fα, 1) and
then an integer mα such that N(fα,mα) ⊂ D(α). Use (3.3) to find gα ∈ X such that
λ(gα) = λ(fα) + ω and N(gα, 1) ⊂ N(fα,mα) ⊂ D(α). Thus, the induction continues
across limit ordinals.

The above induction produces a subset {fα : α < ω1} of X and distinct sets D(α) ∈ D
for α < ω1. Define h : [0, ω1]→ R by

g(δ) = fα(δ) whenever δ < λ(fα) and α < ω1;

g(ω1) = 3.14.

Then g ∈ Z and g ∈ D(α) for each α < ω1. Because the sets D(α) are distinct members
of D, it follows that D cannot be point-countable in Z.
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