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Abstract

In this paper we examine the role of theβ-space property (equivalently of the MCM-property)
in generalized ordered (GO-)spaces and, more generally, in monotonically normal spaces. We
show that a GO-space is metrizable iff it is aβ-space with aGδ-diagonal and iff it is a quasi-
developableβ-space. That last assertion is a corollary of a general theorem that anyβ-space
with a σ-point-finite base must be developable. We use a theorem of Balogh and Rudin to
show that any monotonically normal space that is hereditarily monotonically countably meta-
compact (equivalently, hereditarily aβ-space) must be hereditarily paracompact, and that any
generalized ordered space that is perfect and hereditarily aβ-space must be metrizable. We
include an appendix on non-archimedean spaces in which we prove various results announced
without proof by Nyikos.
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1 Introduction

To say that a space(X, τ) is aβ-space [14] means that there is a functiong from {1, 2, 3 · · ·} ×X
to τ such that eachg(n, x) is a neighborhood ofx and ify ∈ g(n, xn) for eachn, then the sequence
〈xn〉 has a cluster point inX. The functiong(n, x) in that definition is said to be aβ-function
for X. Many types of spaces haveβ-functions, e.g., semi-stratifiable spaces [8], w∆-spaces, strict
p-spaces, and countably compact spaces [12].

Recently theβ-space property re-emerged in a completely different context, namely the study
of monotone modifications of topological properties. The following definition appears in [11].

Definition 1.1 A topological space ismonotonically countably metacompact(MCM) if for each
decreasing sequenceD = {Dn : n < ω} of closed sets with

⋂
{Dn : n < ω} = ∅, there is a

sequence{U(n, D) : n < ω} of open sets satisfying:

1



a) for eachn < ω, Dn ⊆ U(n, D);

b)
⋂
{U(n, D) : n < ω} = ∅;

c) if C = {Cn : n < ω} is a decreasing sequence of closed sets with empty intersec-
tion, and ifCn ⊆ Dn for eachn, thenU(n, C) ⊆ U(n, D) for eachn.

Note that the open setsU(n,D) in that definition depend on an entire decreasing sequenceD =
〈Dn〉 of closed sets with empty intersection. In a subsequent paper, Ge Ying and Chris Good [23]
proved:

Lemma 1.2 For a T1-spaceX, the following are equivalent:

a) X is MCM;

b) for each pointx ∈ X there is a sequence{g(n, x) : n < ω} of open neighborhoods
of x such that if{Dn : n < ω} is a decreasing sequence of closed sets with empty
intersection, then the setsG(n, Dn) =

⋃
{g(n, x) : x ∈ Dn} satisfy

⋂
{G(n,Dn)) :

n < ω} = ∅;
c) X is aβ-space.2

In the light of Lemma 1.2 we will use the terms “β-space” and “MCM-space” interchangeably in
this paper, depending upon which one sounds better in a given context.

It is well-known that every GO-space is hereditarily normal and has the much stronger property
called monotone normality ([13]). By way of contrast, it is also well-known that every GO-space is
hereditarily countably metacompact, but familiar examples show that GO-spaces may fail to have
the monotone countable metacompactness property. The following examples were announced in
[11].

Example 1.3 Neither the Sorgenfrey line nor the Michael line nor the lexicographic productZω1

(a LOTS that is a topological group) is MCM (equivalently, none of the three is aβ-space).

Those examples immediately lead one to ask which GO-spaces are MCM and what is the role of
the MCM property (equivalently, theβ-space property) among GO-spaces.

Section 2 contains metrization theorems for GO-spaces that involve theβ-space property. The first
provides another solution of the equation

GO-space +Gδ-diagonal + (?) = metrizable.

We prove:

Theorem 1.4 A GO-space is metrizable if and only if it is aβ-space with aGδ-diagonal.

Theorem 1.5 A GO-space is metrizable if and only if it is a quasi-developableβ-space.
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Theorem 1.5 is a corollary of a general theorem that asserts:

Theorem 1.6 Any regularβ-space with aσ-point-finite base is developable.

In Section 3 we investigate the hereditaryβ-space property. We use a theorem of Balogh and Rudin
[2] and a stationary set argument to show that:

Proposition 1.7 Any monotonically normal space (and in particular, any GO-space) that is hered-
itarily a β-space is hereditarily paracompact.

The rest of Section 3 is devoted to proving metrization theorems that depend on the hereditary
β-property (equivalently, the hereditary MCM property). We first show that a GO-space with aσ-
closed discrete set is metrizable if and only if each of its subspaces is aβ-space and then investigate
what happens if “X has aσ-closed discrete dense set” is weakened to “X is perfect.” Normally,
one expects that metrization theorems for GO-spaces withσ-closed-discrete dense sets will not
generalize to perfect spaces because normally one runs into Souslin space problems when one
considers perfect GO-spaces that do not, a priori, haveσ-closed-discrete dense sets. We get around
this problem using results of Qiao and Tall, coupled with some results about non-archimedean
spaces that were announced many years ago by Peter Nyikos. Based on those results, we prove:

Theorem 1.8 A GO-space is metrizable if and only if it is perfect and each of its subspaces is a
β-space.

Because the required results of Nyikos have never been published, we include our proofs of them
in Section 4 of this paper.

Recall that ageneralized ordered space(GO-space) is a triple(X, <, τ) where< is a linear
ordering ofX andτ is a Hausdorff topology onX that has a base of order-convex subsets (possibly
including singletons). Probably the best-known GO-spaces are the Sorgenfrey line and the Michael
line. If τ is the usual open interval topology of the ordering, then(X, <, τ) is a linearly ordered
topological space(LOTS). Čech proved that the GO-spaces are exactly those spaces that embed
topologically in some LOTS.

In this paper we reserve the symbolsZ, Q, andR for the sets of all integers, rational, and
real numbers, respectively. For any ordinalx, cf(x) denotes the cofinality ofx. We will need to
distinguish between subsets ofX that arerelatively discrete(i.e., are discrete when topologized as
subspaces ofX) and sets that are both closed and discrete subsets ofX, and between dense sets
that areσ-relatively discrete subsets ofX and those that areσ-closed-discrete.

2 Metrization and the β-space property

In this section, we investigate how theβ-space property interacts with other topological properties
to provide metrization theorems. Recall that any LOTS with aGδ-diagonal is metrizable [15] while
GO-spaces withGδ-diagonals may fail to be metrizable (e.g., the Sorgenfrey and Michael lines).
Theβ-space property is exactly what is missing, and we have:
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Proposition 2.1 A GO-space is metrizable if and only if it is aβ-space with aGδ-diagonal.

Proof: Half of the proposition is trivial. To prove the other half, recall that a spaceX is para-
compact because it is a GO-space with aGδ-diagonal [15]. Also recall that any spaceX is semi-
stratifiable if it is aβ-space with aG∗

δ-diagonal (see Theorem 7.8(ii) of [12]) and that any para-
compact space with aGδ-diagonal has aG∗

δ-diagonal. ThereforeX is semi-stratifiable. HenceX
is metrizable [15].2

Our next result is a general theorem – it is not restricted to GO-spaces.

Proposition 2.2 A T3, β-space with aσ-point-finite base is developable. AT3 space is metrizable
if and only if it is a collectionwise normalβ-space with aσ-point-finite base.

Proof: The second assertion of the proposition follows from the first because any collectionwise
normal developable space is metrizable. To prove the first assertion, suppose

⋃
{B(n) : n ≥ 1} is

a σ-point-finite base forX. We may modify that base if necessary so thatB(2k) is the collection
of all singleton isolated points ofX for eachk ≥ 1. We may also assume that eachB(n) is closed
under finite intersections so that, ifx ∈

⋃
B(i) then there is a memberB(i, x) ∈ B(i) that is the

smallest member ofB(i) that containsx.

Let g(n, x) be aβ-function forX. BecauseX is first-countable, we may assume that{g(n, x) :
n ≥ 1} is a decreasing local base atx for each pointx ∈ X and that ifx is isolated, then
g(n, x) = {x} for eachn.

Claim 1: Fix x ∈ X andn ≥ 1. Then there is somem ≥ n with x ∈
⋃
B(m) andB(m,x) ⊆

g(n, x), whereB(m, x) is the smallest member ofB(m) that containsx. To prove Claim 1, con-
sider the setI = {i ≥ 1 : ∃B ∈ B(i) with x ∈ B ⊆ g(n, x)}. If I is infinite then it certainly
contains somem ≥ n and this is the desired value ofm. Now, for contradiction, supposeI is
finite. Note that ifx is isolated inX, then each even integer belongs toI. Hence ifI is finite, x
is not isolated. LetU =

⋂
{B(i, x) : i ∈ I}. ThenU is an open set containingx, so that there is

some pointy ∈ U − {x}. The setg(n, x) − {y} is a neighborhood ofx so that there is somek
and someB0 ∈ B(k) with x ∈ B0 ⊆ g(n, x) − {y}. Then the setB(k, x) ∈ B(k) exists and has
x ∈ B(k, x) ⊆ B0 ⊆ g(n, x) so thatk ∈ I. But then we have

y ∈ U =
⋂
{B(i, x) : i ∈ I} ⊆ B(k, x) ⊆ g(n, x)− {y}

and that is impossible. This establishes Claim 1.

Given Claim 1, for each fixedx andn we may defineφ(n, x) to be the first integerm ≥ n
havingx ∈

⋃
B(m) andB(m, x) ⊆ g(n, x). Observe that for each fixedx, φ(n, x) ≤ φ(x, n+1).

Now defineh(n, x) =
⋂
{B(i, x) : x ∈

⋃
B(i) and i ≤ φ(x, n)}. Thenh(n + 1, x) ⊆ h(n, x)

andh(n, x) ⊆ g(n, x) so thath is also aβ-function forX and{h(n, x) : n ≥ 1} is a local base at
x for each point ofX.

Claim 2: If p ∈ h(n, xn) for eachn ≥ 1, then〈xn〉 clusters top. We know that〈xn〉 clusters
to some pointq of X becauseh is a β-function. For contradiction, supposeq 6= p. Because
{h(n, q) : n ≥ 1} is a local base atq there is anN such thatq ∈ h(N, q) ⊆ X − {p}. Because
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〈xn〉 clusters atq, there is somen0 > φ(N, q) with xn0 ∈ h(N, q). Becausexn0 ∈ h(N, q) =⋂
{B(i, q) : q ∈

⋃
B(i) and i ≤ φ(N, q)} we know that

if q ∈
⋃
B(i) and i ≤ φ(N, q) then xn0 ∈ B(i, q)

and, in addition,
B(i, xn0) exists and B(i, xn0) ⊆ B(i, q).

Observe thatφ(n0, xn0) ≥ n0 > φ(N, q) so that we now havep ∈ h(n0, xn0) =
⋂
{B(i, xn0) :

i ≤ φ(n0, xn0) and xn0 ∈
⋃
B(i)} which is a subset of

⋂
{B(i, xn0) : i ≤ φ(q, N) and xn0 ∈⋃

B(i)} ⊆
⋂
{B(i, xn0) : i ≤ φ(q, N) and q ∈

⋃
B(i)}.

But because
⋂
{B(i, xn0) : i ≤ φ(q, N) and q ∈

⋃
B(i)} is a subset of

⋂
{B(i, q) : i ≤

φ(q, N) and q ∈
⋃
B(i)} = h(q, N), we are forced to conclude

p ∈ h(n0, xn0) ⊆ h(q, N) ⊆ X − {p}

which is impossible. Therefore Claim 2 is established.

A theorem of Aull [1] shows thatX, having aσ-point-finite base, must be quasi-developable.
To complete the proof, all we need to show is thatX is perfect. For any closed setC, let Gn =⋃
{h(n, x) : x ∈ C}. ThenGn is an open set and in the light of Claim 2,

⋂
{Gn : n ≥ 1} = C. 2

We do not know whether the previous proposition can be generalized to quasi-developable
spaces. (That would be a generalization, because Aull has proved that any space with aσ-point-
finite base is quasi-developable.) A recent paper [16] claimed that any quasi-developableβ-space
must be developable, but some details of the proof are unclear.

Whether or not each quasi-developableβ-space is developable, we have the following equiva-
lence for GO-spaces:

Corollary 2.3 A GO-space is metrizable if and only if it is a quasi-developableβ-space.

Proof: To prove the non-trivial half of the corollary, supposeX is a GO-space that is quasi-
developable and aβ-space. Then by [3], [15]X has aσ-point-finite base and is collectionwise
normal. Now apply Proposition 2.2.2

3 The hereditary β-space property

In our paper [6] we proved that any GO-space that is hereditarily aβ-space must be hereditarily
paracompact. The key to the proof was a pressing down lemma argument that showed:

Lemma 3.1 No stationary subset of a regular uncountable cardinal can be hereditarily aβ-space
in its relative topology.2
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In [6], we then combined Lemma 3.1 with a characterization of paracompactness in generalized
ordered spaces from [9] to get the desired result. Since the time of that earlier paper, Balogh and
Rudin [2] have significantly generalized the result from [9], showing that a monotonically normal
space fails to be paracompact if and only if it contains a closed subspace that is homeomorphic to
a stationary set in a regular uncountable cardinal. Combining that result with Lemma 3.1 gives:

Corollary 3.2 A monotonically normal space that is hereditarily aβ-space is hereditarily para-
compact.2

In the remainder of this section we prove that the hereditary MCM property is a natural com-
ponent of metrizability in GO-spaces. We begin by recalling the following lemma [10], [4].

Lemma 3.3 SupposeX is a GO-space with a dense subset that isσ-closed-discrete. Then:

a) X is perfect (i.e., each closed set is aGδ-set) and first-countable;

b) there is a sequence{H(n) : n ≥ 1} of open covers ofX such that for eachp ∈
X,

⋂
{St(p,H(n)) : n ≥ 1} has at most two points.

c) (Faber’s Metrization Theorem [10]) the GO-spaceX is metrizable if and only if the
setsR = {x ∈ X : [x,→) ∈ τ}, L = {x ∈ X : (←, x] ∈ τ} and I = {x ∈ X :
{x} ∈ τ} are eachσ-closed-discrete inX. 2

Theorem 3.4 Let (X, <, τ) be a GO-space. ThenX is metrizable if and only ifX has aσ-closed-
discrete dense set and is hereditarily aβ-space.

Proof: Any metric space has aσ-closed-discrete dense set and is hereditarily aβ-space. To prove
the converse, supposeX has aσ-closed-discrete dense subsetE and is hereditarily aβ-space. We
will apply Faber’s metrization theorem in part (c) of 3.3. The set of isolated points, being a subset
of E, is σ-closed-discrete. We prove that the setR = {x ∈ X : [x,→) ∈ τ} is σ-closed-discrete;
the proof for the setL = {x ∈ X : (←, x] ∈ τ} in Faber’s theorem (see Lemma 3.3(c)) is
analogous.

By Lemma 3.3,X is perfect so that each relatively discrete subset ofX is σ-closed-discrete.
Therefore, it will be enough to show that the setR is the union of countably many relatively
discrete, but perhaps not closed, subsets. To that end, for eachx ∈ R, find a sequence{g(n, x) :
n ≥ 1} of sets that satisfy Lemma 1.2 for the subspace(R, τR). Replacing those sets by smaller
sets if necessary, we may assume:

a){g(n, x) : n ≥ 1} is a decreasing local base atx in the subspace(R, τR);

b) each setg(n, x) is contained in some member of the coverH(n) described in
Lemma 3.3(b);

c) g(n, x) ⊆ [x,→) for eachx and eachn;

d) if a < b < c are points ofR with a, c ∈ g(n, x) thenb ∈ g(n, x).
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Let G(n) = {g(n, x) : x ∈ X} and defineR(n) = {x ∈ R : St(x,G(n)) ⊆ [x,→)}. Then
R(n) ⊆ R(n + 1) for eachn. Let R∗ =

⋃
{R(n) : n ≥ 1}. For eachx ∈ R∗ there is some

n with St(x,G(k)) ⊆ [x,→) for eachk ≥ n. But theng(k, x) is the unique member ofG(k)
that containsx for eachk ≥ n so that the setsSt(x,G(k)) = g(k, x) form a neighborhood base
for x in the space(R, τR). Thus, the subspace(R∗, τR∗) is developable and hence is metrizable.
Applying Faber’s metrization theorem, we see that the setR∗ is the countable union of subspaces
that are relatively discrete. We claimR = R∗. If not, then there is a pointy ∈ R − R∗. Then
y 6∈ R(n) for eachn so there must be some pointsxn ∈ R with y ∈ g(n, xn) 6⊆ [y,→). Because
g(n, xn) ⊆ [xn,→) we must havexn < y.

There cannot be an infinite sequencen1 < n2 < · · · with xn1 = xn2 = · · · because then
y ∈ g(nk, xnk

) = g(nk, xn1) would make it impossible for the setsg(n, xn1) to be a decreasing
local base at the pointxn1 . We claim that there cannot be a sequencem1 < m2 < · · · with
xm1 > xm2 > · · ·. For suppose such a decreasing subsequence exists. Then for eachj ≥ m2 we
have

{xm2 , xm1 , y} ⊆ [xmj
, y] ∩R ⊆ g(mj, xmj

) ⊆ g(j, xmj
) ∈ G(j)

which shows that
{xm2 , xm1 , y} ⊆ St(y,G(j)) ⊆ St(y,H(j))

for eachj ≥ 2 and that is impossible in the light of the special properties of the coversH(n)
described in part (b) of Lemma 3.3.

Therefore the sequence〈xn〉 has no constant subsequences and no decreasing subsequences,
so there must be a strictly increasing subsequencexn1 < xn2 < · · ·. Let Ak = {xni

: i ≥ k}
and observe thatAk has no limit points inR. Hence{Ak : k ≥ 1} is a decreasing sequence of
closed sets with empty intersection. However, withG(k,Ak) defined as in Lemma 1.2, we have
y ∈

⋂
{G(k, Ak) : k ≥ 1} and that is impossible. HenceR = R∗, soR is the union of countably

many subspaces, each being relatively discrete. The same is true of the subsetL and we may now
apply Faber’s metrization theorem to complete the proof.2

Experience has shown that many results proved for GO-spaces havingσ-closed-discrete dense
sets become axiom-sensitive when stated for the broader class of perfect GO-spaces. It is somewhat
surprising that the Theorem 3.4 is not of this type. We begin with a result about dense metrizable
subspaces. Then, by combining Theorem 3.4 with some known results about non-archimedean
spaces (i.e., spaces with a base that is a tree under reverse inclusion) we obtain a new metrization
theorem for perfect GO-spaces.

Proposition 3.5 Let X be a first-countable GO-space that is hereditarily aβ-space. ThenX has
a dense metrizable subspace.

Proof: We need two results from the literature.

a) Any first-countable GO-space contains a dense non-archimedean subspace, i.e., a
dense subspace having a base of open, convex sets that is a tree under reverse inclusion.

b) Any first-countable, non-archimedeanβ-space is metrizable.
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The first is due to Qiao and Tall [20] (who proved the result for first-countable LOTS, but a slight
modification of their proof establishes the result for first-countable GO-spaces). The second is due
to Nyikos [17]. No proof of the second result has appeared in print and we include a proof and
relevant definitions in the final section of this paper.

Now supposeX is a first countable GO-space. LetY be a dense non-archimedean subspace ofX.
If X is hereditarily aβ-space, thenY is aβ-space. Now apply assertion b) above to show thatY
is metrizable.2

Theorem 3.6 : SupposeX is a GO-space. ThenX is metrizable if and only ifX is perfect and
hereditarily MCM.

Proof: To prove the non-trivial part of the theorem, suppose thatX is perfect and hereditarily
MCM. Apply Proposition 3.5 to find a dense metrizable subspaceY of X. ThenY contains a
dense subsetD that is the union of countably many subsetsD(n), each being relatively discrete.
But then,X being perfect, eachD(n) is the union of countably many subsetsD(n, k) where
eachD(n, k) is a closed discrete subspace ofX. Now apply Theorem 3.4 to conclude thatX is
metrizable.2

As noted in the Introduction, any compact or countably compact space isβ-space because
every sequence in a countably compact space has a cluster point. Hence the lexicographic square
is aβ-space, as is the ordinal space[0, ω1). However, thehereditaryβ-space property is another
matter, and we have the following question.

Question 3.7 Is there a compact, first-countable LOTSX that is hereditarily aβ-space and not
metrizable?

Note that, in the light of Corollary 3.5, ifX is a first-countable compact LOTS that is hereditarily
a β-space, thenX has a dense metrizable subspace, as does each subspace ofX. Also note that
by Theorem 3.6 and assertion (b) in the proof of (3.6), many kinds of subspaces of such anX will
be metrizable. These include perfect subspaces (a class that includes all separable subspaces and,
more generally, all subspaces with aσ-closed discrete dense subset), non-archimedean subspaces,
and subspaces with a point-countable base (because, according to a result of Chaber [7] (see also
Theorem 7.9 of [12]) any first-countable, paracompactβ-space with a point-countable base must be
metrizable). Other results in the literature suggest that one place to look for the required example
is in the branch spaces of certain trees ([21], [22]).

4 Appendix on non-archimedean spaces

A regular spaceX is non-archimedeanif it has a base that is a tree under reverse inclusion.
Basic topological results about such spaces were announced by Peter Nyikos in [17], [18], and
[19] but, Nyikos has informed us, no proof of the one result needed in this paper (namely that
a first-countable non-archimedeanβ-space is metrizable) has even been published. The goal of
this appendix is to provide the required proof. Our approach is as follows. First we will show
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that any non-archimedean space is paracompact. Next we will show that any first-countable non-
archimedeanβ-space is developable and then, from general metrization theory, we will conclude
that any first-countable, non-archimedeanβ-space is metrizable. It happens to be true that any
non-archimedean space is a GO-space, but we will not use that fact in our proofs.

Lemma 4.1 SupposeB is a tree-base for the non-archimedean spaceX. Then:

a) each member ofB is clopen;

b) each subspace ofX is ultraparacompact;

c) if p ∈ X and ifC ⊆ B hasp ∈
⋂
C, then either

⋂
C is a neighborhood ofp or else⋂

C = {p} andC is a neighborhood base atp.

Proof: For anyp ∈ X, let B(p) = {B ∈ B : p ∈ B}. ThenB(p) is well-ordered by reverse
inclusion and ifp ∈ B1 ∩B2 (whereBi ∈ B) then eitherB1 ⊆ B2 or B2 ⊆ B1.

To prove a), letB ∈ B. Let p be any limit point ofB and supposep 6∈ B. Chooseq ∈ B.
Becausep 6= q, we may chooseB′ ∈ B with p ∈ B′ ⊆ X − {q}. ThenB ∩B′ 6= ∅ andB ⊆ B′ is
impossible, so thatp ∈ B′ ⊆ B, contrary top 6∈ B. HenceB is clopen.

To prove b), recall that a spaceY is ultraparacompactif each open cover ofY has a pairwise
disjoint open refinement. LetU be any collection of open subsets ofX. Let C be the collection
of all B ∈ B that are contained in some member ofU . Let V be the collection of all minimal
members ofC with respect to the tree ordering (i.e., reverse inclusion) ofB. ThenV refinesU , is
pairwise disjoint, and has

⋃
V =

⋃
U . It follows that every open subspace ofX, and hence every

subspace ofX, is ultraparacompact.

To prove c), supposep ∈
⋂
C and that

⋂
C is not a neighborhood ofp. Thenp is not isolated

in X. We claim that
⋂
C = {p}. For suppose there are at least two pointsp, q in

⋂
C and choose

any memberB0 ∈ B with p ∈ B0 ⊆ X − {q}. ThenB0 meets eachC ∈ C andB0 cannot contain
any member ofC. HenceB0 is a subset of each member ofC and thereforeB0 ⊆

⋂
C. But that

makes
⋂
C a neighborhood ofp which is impossible. Hence

⋂
C = {p}. Let B1 be any member

of B that containsp. Becausep is not isolated, we may chooseq ∈ B1−{p} and findC1 ∈ C with
p ∈ C1 ⊆ X − {q}. ThenC1 ∩ B1 6= ∅ andB1 ⊆ C1 is impossible, so thatC1 ⊆ B1 as required
to show thatC is a local base atp. 2

Proposition 4.2 If X is a non-archimedeanβ-space in which points areGδ-sets, thenX is metriz-
able.

Proof: Part c) of Lemma 4.1 shows that a non-archimedean space in which points areGδ-sets must
be first-countable.

Let B be a tree-base for the spaceX and letg(n, x) be aβ-function for X as described in
Section 1. Because we can replace eachg(n, x) by a smaller neighborhood ofx and still have
a β-function, we may assume thatg(n, x) ∈ B and that{g(n, x) : n ≥ 1} is a local base atx.
We may also assume thatg(n + 1, x) is a proper subset ofg(n, x) unlessx is isolated and that
g(n, x) = {x} for eachn if x is isolated.
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We now describe a partition process that will be applied to various setsg(n, x). If x is isolated,
theng(n, x) = g(n+1, x) = {x} and we letW(g(n, x)) = {g(n+1, x)}. If x is not isolated, then
the setS = g(n, x) − g(n + 1, x) is not empty and, by part a) of Lemma 4.1,S is open. Let the
members ofW(g(n, x)) beg(n + 1, x) together with all members of the collection{g(k, y) : k ≥
n + 1 and g(k, y) ⊆ S} that are minimal in the ordering of the tree(B,⊇). ThenW(g(n, x)) is a
pairwise disjoint open cover ofg(n, x) by sets of the formg(k, y) ∈ B wherek ≥ n + 1. Note that
if g(k, y) ∈ W(g(n, x)) with y 6= x, thenx 6∈ g(k, y). For each setW ∈ W(g(n, x)) choose one
pointy(W ) ∈ W such thatW = g(k, y(W )) andk ≥ n + 1, making sure that ifW = g(n + 1, x),
theny(W ) = x. Let C(g(n, x)) = {y(W ) : W ∈ W(g(n, x))}.

LetH(0) = {X}. GivenH(n) for somen, define

H(n + 1) =
⋃
{W(g(m, x)) : g(m,x) ∈ H(n)}.

Let C(n) = {y(W ) : W ∈ H(n)}. EachH(n) is a pairwise disjoint cover ofX by members ofB
that have the formg(y, k) for exactly oney ∈ C(n) andk ≥ n.

We claim that the sequenceH(1),H(2), · · · is a development forX. Fix anyp ∈ X. Then
p belongs to exactly one member ofH(n) so thatSt(p,H(n)) is a member ofH(n) and has the
form g(kn, yn) whereyn ∈ C(n) andkn ≥ n. Furthermore,g(kn+1, yn+1) ⊆ g(kn, yn) because
of the way that the collectionsH(n) were constructed. Becausekn ≥ n we havep ∈ g(n, yn)
and therefore the sequencey1, y2, · · · must cluster at some pointq ∈ X. Becauseg(kn+1, yn+1) ⊆
g(kn, yn) we see that eachg(kn, yn) contains{ym : m ≥ n} and therefore the pointq is a point
of the closure of eachg(kn, yn). But g(kn, yn) is clopen, being a member ofB, so that{p, q} ⊆⋂
{g(kn, yn) : n ≥ 1}.

If infinitely many terms in sequencey1, y2, · · · are the same, sayyn = yN for eachn in the
infinite setI, then becausekn ≥ n the setsg(kn, yn) form a local base atyN so thatp, q ∈⋂
{g(kn, yn) : n ≥ 1} = {yN} forcesp = q = yN and hence{St(p,H(n)) : n ≥ 1} is a local

base at{p}.
If the sequencey1, y2, · · · has no constant subsequences, then there is a subsequence of distinct

terms. For notational simplicity, assume thatyi 6= yj wheneveri 6= j. Then we know that
yn 6∈ g(kn+1, yn+1) so that the setT =

⋂
{g(kn, yn) : n ≥ 1} contains no pointyk. HenceT cannot

be a neighborhood ofq even thoughq ∈ T . But by part c) of Lemma 4.1 we know that sinceT is
not a neighborhood ofq, it must be true thatT = {q} and{g(kn, yn) : n ≥ 1} is a neighborhood
base atq. But {p, q} ⊆ T then forcesp = q so that, once again,{St(p,H(n)) : n ≥ 1} is a local
base atp.

At this stage of the proof, we know thatX is developable and paracompact (by part (b) of
Lemma 4.1) and therefore metrizable.2
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