The β -space Property in Monotonically Normal Spaces and GO-Spaces

by

Harold R. Bennett, Texas Tech University, Lubbock, TX 79409 and David J. Lutzer, College of William and Mary, Williamsburg, VA 23187-8795

Abstract

In this paper we examine the role of the β -space property (equivalently of the MCM-property) in generalized ordered (GO-)spaces and, more generally, in monotonically normal spaces. We show that a GO-space is metrizable iff it is a β -space with a G_{δ} -diagonal and iff it is a quasidevelopable β -space. That last assertion is a corollary of a general theorem that any β -space with a σ -point-finite base must be developable. We use a theorem of Balogh and Rudin to show that any monotonically normal space that is hereditarily monotonically countably metacompact (equivalently, hereditarily a β -space) must be hereditarily paracompact, and that any generalized ordered space that is perfect and hereditarily a β -space must be metrizable. We include an appendix on non-archimedean spaces in which we prove various results announced without proof by Nyikos.

Math Reviews classifications (2000) Primary = 54D15; Secondary = 54D20, 54F05

Key Words and Phrases: monotonically countably metacompact, MCM, β -space, monotonically normal, generalized ordered space, GO-space, paracompact, stationary set, metrization, hereditarily MCM, perfect space, quasi-developable, σ -closed-discrete dense set, nonarchimedean space, dense metrizable subspace.

*****draft of October 28, 2003*****

1 Introduction

To say that a space (X, τ) is a β -space [14] means that there is a function g from $\{1, 2, 3 \cdots\} \times X$ to τ such that each g(n, x) is a neighborhood of x and if $y \in g(n, x_n)$ for each n, then the sequence $\langle x_n \rangle$ has a cluster point in X. The function g(n, x) in that definition is said to be a β -function for X. Many types of spaces have β -functions, e.g., semi-stratifiable spaces [8], w Δ -spaces, strict p-spaces, and countably compact spaces [12].

Recently the β -space property re-emerged in a completely different context, namely the study of monotone modifications of topological properties. The following definition appears in [11].

Definition 1.1 A topological space is monotonically countably metacompact (*MCM*) if for each decreasing sequence $D = \{D_n : n < \omega\}$ of closed sets with $\bigcap \{D_n : n < \omega\} = \emptyset$, there is a sequence $\{U(n, D) : n < \omega\}$ of open sets satisfying:

a) for each $n < \omega$, $D_n \subseteq U(n, D)$; b) $\bigcap \{U(n, D) : n < \omega\} = \emptyset$; c) if $C = \{C_n : n < \omega\}$ is a decreasing sequence of closed sets with empty intersection, and if $C_n \subseteq D_n$ for each n, then $U(n, C) \subseteq U(n, D)$ for each n.

Note that the open sets U(n, D) in that definition depend on an entire decreasing sequence $D = \langle D_n \rangle$ of closed sets with empty intersection. In a subsequent paper, Ge Ying and Chris Good [23] proved:

Lemma 1.2 For a T_1 -space X, the following are equivalent:

a) X is MCM;
b) for each point x ∈ X there is a sequence {g(n, x) : n < ω} of open neighborhoods of x such that if {D_n : n < ω} is a decreasing sequence of closed sets with empty intersection, then the sets G(n, D_n) = ∪{g(n, x) : x ∈ D_n} satisfy ∩{G(n, D_n)) : n < ω} = ∅;
c) X is a β-space. □

In the light of Lemma 1.2 we will use the terms " β -space" and "MCM-space" interchangeably in this paper, depending upon which one sounds better in a given context.

It is well-known that every GO-space is hereditarily normal and has the much stronger property called monotone normality ([13]). By way of contrast, it is also well-known that every GO-space is hereditarily countably metacompact, but familiar examples show that GO-spaces may fail to have the monotone countable metacompactness property. The following examples were announced in [11].

Example 1.3 Neither the Sorgenfrey line nor the Michael line nor the lexicographic product \mathbb{Z}^{ω_1} (a LOTS that is a topological group) is MCM (equivalently, none of the three is a β -space).

Those examples immediately lead one to ask which GO-spaces are MCM and what is the role of the MCM property (equivalently, the β -space property) among GO-spaces.

Section 2 contains metrization theorems for GO-spaces that involve the β -space property. The first provides another solution of the equation

GO-space +
$$G_{\delta}$$
-diagonal + (?) = metrizable.

We prove:

Theorem 1.4 A GO-space is metrizable if and only if it is a β -space with a G_{δ} -diagonal.

Theorem 1.5 A GO-space is metrizable if and only if it is a quasi-developable β -space.

Theorem 1.5 is a corollary of a general theorem that asserts:

Theorem 1.6 Any regular β -space with a σ -point-finite base is developable.

In Section 3 we investigate the hereditary β -space property. We use a theorem of Balogh and Rudin [2] and a stationary set argument to show that:

Proposition 1.7 Any monotonically normal space (and in particular, any GO-space) that is hereditarily a β -space is hereditarily paracompact.

The rest of Section 3 is devoted to proving metrization theorems that depend on the hereditary β -property (equivalently, the hereditary MCM property). We first show that a GO-space with a σ -closed discrete set is metrizable if and only if each of its subspaces is a β -space and then investigate what happens if "X has a σ -closed discrete dense set" is weakened to "X is perfect." Normally, one expects that metrization theorems for GO-spaces with σ -closed-discrete dense sets will not generalize to perfect spaces because normally one runs into Souslin space problems when one considers perfect GO-spaces that do not, a priori, have σ -closed-discrete dense sets. We get around this problem using results of Qiao and Tall, coupled with some results about non-archimedean spaces that were announced many years ago by Peter Nyikos. Based on those results, we prove:

Theorem 1.8 A GO-space is metrizable if and only if it is perfect and each of its subspaces is a β -space.

Because the required results of Nyikos have never been published, we include our proofs of them in Section 4 of this paper.

Recall that a *generalized ordered space* (GO-space) is a triple $(X, <, \tau)$ where < is a linear ordering of X and τ is a Hausdorff topology on X that has a base of order-convex subsets (possibly including singletons). Probably the best-known GO-spaces are the Sorgenfrey line and the Michael line. If τ is the usual open interval topology of the ordering, then $(X, <, \tau)$ is a *linearly ordered topological space* (LOTS). Čech proved that the GO-spaces are exactly those spaces that embed topologically in some LOTS.

In this paper we reserve the symbols \mathbb{Z} , \mathbb{Q} , and \mathbb{R} for the sets of all integers, rational, and real numbers, respectively. For any ordinal x, cf(x) denotes the cofinality of x. We will need to distinguish between subsets of X that are *relatively discrete* (i.e., are discrete when topologized as subspaces of X) and sets that are both closed and discrete subsets of X, and between dense sets that are σ -relatively discrete subsets of X and those that are σ -closed-discrete.

2 Metrization and the β -space property

In this section, we investigate how the β -space property interacts with other topological properties to provide metrization theorems. Recall that any LOTS with a G_{δ} -diagonal is metrizable [15] while GO-spaces with G_{δ} -diagonals may fail to be metrizable (e.g., the Sorgenfrey and Michael lines). The β -space property is exactly what is missing, and we have:

Proposition 2.1 A GO-space is metrizable if and only if it is a β -space with a G_{δ} -diagonal.

Proof: Half of the proposition is trivial. To prove the other half, recall that a space X is paracompact because it is a GO-space with a G_{δ} -diagonal [15]. Also recall that any space X is semistratifiable if it is a β -space with a G_{δ}^* -diagonal (see Theorem 7.8(ii) of [12]) and that any paracompact space with a G_{δ} -diagonal has a G_{δ}^* -diagonal. Therefore X is semi-stratifiable. Hence X is metrizable [15]. \Box

Our next result is a general theorem – it is not restricted to GO-spaces.

Proposition 2.2 A T_3 , β -space with a σ -point-finite base is developable. A T_3 space is metrizable if and only if it is a collectionwise normal β -space with a σ -point-finite base.

Proof: The second assertion of the proposition follows from the first because any collectionwise normal developable space is metrizable. To prove the first assertion, suppose $\bigcup \{\mathcal{B}(n) : n \ge 1\}$ is a σ -point-finite base for X. We may modify that base if necessary so that $\mathcal{B}(2k)$ is the collection of all singleton isolated points of X for each $k \ge 1$. We may also assume that each $\mathcal{B}(n)$ is closed under finite intersections so that, if $x \in \bigcup \mathcal{B}(i)$ then there is a member $B(i, x) \in \mathcal{B}(i)$ that is the smallest member of $\mathcal{B}(i)$ that contains x.

Let g(n, x) be a β -function for X. Because X is first-countable, we may assume that $\{g(n, x) : n \ge 1\}$ is a decreasing local base at x for each point $x \in X$ and that if x is isolated, then $g(n, x) = \{x\}$ for each n.

<u>Claim 1</u>: Fix $x \in X$ and $n \ge 1$. Then there is some $m \ge n$ with $x \in \bigcup \mathcal{B}(m)$ and $\mathcal{B}(m, x) \subseteq g(n, x)$, where $\mathcal{B}(m, x)$ is the smallest member of $\mathcal{B}(m)$ that contains x. To prove Claim 1, consider the set $I = \{i \ge 1 : \exists B \in \mathcal{B}(i) \text{ with } x \in B \subseteq g(n, x)\}$. If I is infinite then it certainly contains some $m \ge n$ and this is the desired value of m. Now, for contradiction, suppose I is finite. Note that if x is isolated in X, then each even integer belongs to I. Hence if I is finite, x is not isolated. Let $U = \bigcap \{B(i, x) : i \in I\}$. Then U is an open set containing x, so that there is some point $y \in U - \{x\}$. The set $g(n, x) - \{y\}$ is a neighborhood of x so that there is some k and some $B_0 \in \mathcal{B}(k)$ with $x \in B_0 \subseteq g(n, x) - \{y\}$. Then the set $\mathcal{B}(k, x) \in \mathcal{B}(k)$ exists and has $x \in \mathcal{B}(k, x) \subseteq B_0 \subseteq g(n, x)$ so that $k \in I$. But then we have

$$y \in U = \bigcap \{B(i,x) : i \in I\} \subseteq B(k,x) \subseteq g(n,x) - \{y\}$$

and that is impossible. This establishes Claim 1.

Given Claim 1, for each fixed x and n we may define $\phi(n, x)$ to be the first integer $m \ge n$ having $x \in \bigcup \mathcal{B}(m)$ and $B(m, x) \subseteq g(n, x)$. Observe that for each fixed $x, \phi(n, x) \le \phi(x, n+1)$.

Now define $h(n, x) = \bigcap \{B(i, x) : x \in \bigcup \mathcal{B}(i) \text{ and } i \leq \phi(x, n)\}$. Then $h(n + 1, x) \subseteq h(n, x)$ and $h(n, x) \subseteq g(n, x)$ so that h is also a β -function for X and $\{h(n, x) : n \geq 1\}$ is a local base at x for each point of X.

<u>Claim 2</u>: If $p \in h(n, x_n)$ for each $n \ge 1$, then $\langle x_n \rangle$ clusters to p. We know that $\langle x_n \rangle$ clusters to some point q of X because h is a β -function. For contradiction, suppose $q \ne p$. Because $\{h(n,q) : n \ge 1\}$ is a local base at q there is an N such that $q \in h(N,q) \subseteq X - \{p\}$. Because

 $\langle x_n \rangle$ clusters at q, there is some $n_0 > \phi(N,q)$ with $x_{n_0} \in h(N,q)$. Because $x_{n_0} \in h(N,q) = \bigcap \{B(i,q) : q \in \bigcup \mathcal{B}(i) \text{ and } i \leq \phi(N,q)\}$ we know that

if
$$q \in \bigcup \mathcal{B}(i)$$
 and $i \le \phi(N, q)$ then $x_{n_0} \in B(i, q)$

and, in addition,

$$B(i, x_{n_0})$$
 exists and $B(i, x_{n_0}) \subseteq B(i, q)$.

Observe that $\phi(n_0, x_{n_0}) \ge n_0 > \phi(N, q)$ so that we now have $p \in h(n_0, x_{n_0}) = \bigcap \{B(i, x_{n_0}) : i \le \phi(n_0, x_{n_0}) \text{ and } x_{n_0} \in \bigcup \mathcal{B}(i)\}$ which is a subset of $\bigcap \{B(i, x_{n_0}) : i \le \phi(q, N) \text{ and } x_{n_0} \in \bigcup \mathcal{B}(i)\} \subseteq \bigcap \{B(i, x_{n_0}) : i \le \phi(q, N) \text{ and } q \in \bigcup \mathcal{B}(i)\}.$

But because $\bigcap \{B(i, x_{n_0}) : i \leq \phi(q, N) \text{ and } q \in \bigcup \mathcal{B}(i)\}$ is a subset of $\bigcap \{B(i, q) : i \leq \phi(q, N) \text{ and } q \in \bigcup \mathcal{B}(i)\} = h(q, N)$, we are forced to conclude

$$p \in h(n_0, x_{n_0}) \subseteq h(q, N) \subseteq X - \{p\}$$

which is impossible. Therefore Claim 2 is established.

A theorem of Aull [1] shows that X, having a σ -point-finite base, must be quasi-developable. To complete the proof, all we need to show is that X is perfect. For any closed set C, let $G_n = \bigcup \{h(n, x) : x \in C\}$. Then G_n is an open set and in the light of Claim 2, $\bigcap \{G_n : n \ge 1\} = C$. \Box

We do not know whether the previous proposition can be generalized to quasi-developable spaces. (That would be a generalization, because Aull has proved that any space with a σ -point-finite base is quasi-developable.) A recent paper [16] claimed that any quasi-developable β -space must be developable, but some details of the proof are unclear.

Whether or not each quasi-developable β -space is developable, we have the following equivalence for GO-spaces:

Corollary 2.3 A GO-space is metrizable if and only if it is a quasi-developable β -space.

Proof: To prove the non-trivial half of the corollary, suppose X is a GO-space that is quasidevelopable and a β -space. Then by [3], [15] X has a σ -point-finite base and is collectionwise normal. Now apply Proposition 2.2. \Box

3 The hereditary β -space property

In our paper [6] we proved that any GO-space that is hereditarily a β -space must be hereditarily paracompact. The key to the proof was a pressing down lemma argument that showed:

Lemma 3.1 No stationary subset of a regular uncountable cardinal can be hereditarily a β -space in its relative topology. \Box

In [6], we then combined Lemma 3.1 with a characterization of paracompactness in generalized ordered spaces from [9] to get the desired result. Since the time of that earlier paper, Balogh and Rudin [2] have significantly generalized the result from [9], showing that a monotonically normal space fails to be paracompact if and only if it contains a closed subspace that is homeomorphic to a stationary set in a regular uncountable cardinal. Combining that result with Lemma 3.1 gives:

Corollary 3.2 A monotonically normal space that is hereditarily a β -space is hereditarily paracompact. \Box

In the remainder of this section we prove that the hereditary MCM property is a natural component of metrizability in GO-spaces. We begin by recalling the following lemma [10], [4].

Lemma 3.3 Suppose X is a GO-space with a dense subset that is σ -closed-discrete. Then:

a) X is perfect (i.e., each closed set is a G_{δ} -set) and first-countable;

b) there is a sequence $\{\mathcal{H}(n) : n \ge 1\}$ of open covers of X such that for each $p \in X$, $\bigcap \{St(p, \mathcal{H}(n)) : n \ge 1\}$ has at most two points.

c) (Faber's Metrization Theorem [10]) the GO-space X is metrizable if and only if the sets $R = \{x \in X : [x, \rightarrow) \in \tau\}, L = \{x \in X : (\leftarrow, x] \in \tau\}$ and $I = \{x \in X : \{x\} \in \tau\}$ are each σ -closed-discrete in X. \Box

Theorem 3.4 Let $(X, <, \tau)$ be a GO-space. Then X is metrizable if and only if X has a σ -closed-discrete dense set and is hereditarily a β -space.

Proof: Any metric space has a σ -closed-discrete dense set and is hereditarily a β -space. To prove the converse, suppose X has a σ -closed-discrete dense subset E and is hereditarily a β -space. We will apply Faber's metrization theorem in part (c) of 3.3. The set of isolated points, being a subset of E, is σ -closed-discrete. We prove that the set $R = \{x \in X : [x, \rightarrow) \in \tau\}$ is σ -closed-discrete; the proof for the set $L = \{x \in X : (\leftarrow, x] \in \tau\}$ in Faber's theorem (see Lemma 3.3(c)) is analogous.

By Lemma 3.3, X is perfect so that each relatively discrete subset of X is σ -closed-discrete. Therefore, it will be enough to show that the set R is the union of countably many relatively discrete, but perhaps not closed, subsets. To that end, for each $x \in R$, find a sequence $\{g(n, x) : n \ge 1\}$ of sets that satisfy Lemma 1.2 for the subspace (R, τ_R) . Replacing those sets by smaller sets if necessary, we may assume:

a) $\{g(n, x) : n \ge 1\}$ is a decreasing local base at x in the subspace (R, τ_R) ;

b) each set g(n, x) is contained in some member of the cover $\mathcal{H}(n)$ described in Lemma 3.3(b);

c) $g(n, x) \subseteq [x, \rightarrow)$ for each x and each n;

d) if a < b < c are points of R with $a, c \in g(n, x)$ then $b \in g(n, x)$.

Let $\mathcal{G}(n) = \{g(n,x) : x \in X\}$ and define $R(n) = \{x \in R : St(x,\mathcal{G}(n)) \subseteq [x, \rightarrow)\}$. Then $R(n) \subseteq R(n+1)$ for each n. Let $R^* = \bigcup \{R(n) : n \ge 1\}$. For each $x \in R^*$ there is some n with $St(x,\mathcal{G}(k)) \subseteq [x, \rightarrow)$ for each $k \ge n$. But then g(k,x) is the unique member of $\mathcal{G}(k)$ that contains x for each $k \ge n$ so that the sets $St(x,\mathcal{G}(k)) = g(k,x)$ form a neighborhood base for x in the space (R, τ_R) . Thus, the subspace (R^*, τ_{R^*}) is developable and hence is metrizable. Applying Faber's metrization theorem, we see that the set R^* is the countable union of subspaces that are relatively discrete. We claim $R = R^*$. If not, then there is a point $y \in R - R^*$. Then $y \notin R(n)$ for each n so there must be some points $x_n \in R$ with $y \in g(n, x_n) \nsubseteq [y, \rightarrow)$. Because $g(n, x_n) \subseteq [x_n, \rightarrow)$ we must have $x_n < y$.

There cannot be an infinite sequence $n_1 < n_2 < \cdots$ with $x_{n_1} = x_{n_2} = \cdots$ because then $y \in g(n_k, x_{n_k}) = g(n_k, x_{n_1})$ would make it impossible for the sets $g(n, x_{n_1})$ to be a decreasing local base at the point x_{n_1} . We claim that there cannot be a sequence $m_1 < m_2 < \cdots$ with $x_{m_1} > x_{m_2} > \cdots$. For suppose such a decreasing subsequence exists. Then for each $j \ge m_2$ we have

$$\{x_{m_2}, x_{m_1}, y\} \subseteq [x_{m_j}, y] \cap R \subseteq g(m_j, x_{m_j}) \subseteq g(j, x_{m_j}) \in \mathcal{G}(j)$$

which shows that

$$\{x_{m_2}, x_{m_1}, y\} \subseteq St(y, \mathcal{G}(j)) \subseteq St(y, \mathcal{H}(j))$$

for each $j \ge 2$ and that is impossible in the light of the special properties of the covers $\mathcal{H}(n)$ described in part (b) of Lemma 3.3.

Therefore the sequence $\langle x_n \rangle$ has no constant subsequences and no decreasing subsequences, so there must be a strictly increasing subsequence $x_{n_1} < x_{n_2} < \cdots$. Let $A_k = \{x_{n_i} : i \ge k\}$ and observe that A_k has no limit points in R. Hence $\{A_k : k \ge 1\}$ is a decreasing sequence of closed sets with empty intersection. However, with $G(k, A_k)$ defined as in Lemma 1.2, we have $y \in \bigcap \{G(k, A_k) : k \ge 1\}$ and that is impossible. Hence $R = R^*$, so R is the union of countably many subspaces, each being relatively discrete. The same is true of the subset L and we may now apply Faber's metrization theorem to complete the proof. \Box

Experience has shown that many results proved for GO-spaces having σ -closed-discrete dense sets become axiom-sensitive when stated for the broader class of perfect GO-spaces. It is somewhat surprising that the Theorem 3.4 is not of this type. We begin with a result about dense metrizable subspaces. Then, by combining Theorem 3.4 with some known results about non-archimedean spaces (i.e., spaces with a base that is a tree under reverse inclusion) we obtain a new metrization theorem for perfect GO-spaces.

Proposition 3.5 Let X be a first-countable GO-space that is hereditarily a β -space. Then X has a dense metrizable subspace.

Proof: We need two results from the literature.

a) Any first-countable GO-space contains a dense non-archimedean subspace, i.e., a dense subspace having a base of open, convex sets that is a tree under reverse inclusion.

b) Any first-countable, non-archimedean β -space is metrizable.

The first is due to Qiao and Tall [20] (who proved the result for first-countable LOTS, but a slight modification of their proof establishes the result for first-countable GO-spaces). The second is due to Nyikos [17]. No proof of the second result has appeared in print and we include a proof and relevant definitions in the final section of this paper.

Now suppose X is a first countable GO-space. Let Y be a dense non-archimedean subspace of X. If X is hereditarily a β -space, then Y is a β -space. Now apply assertion b) above to show that Y is metrizable. \Box

Theorem 3.6 : Suppose X is a GO-space. Then X is metrizable if and only if X is perfect and hereditarily MCM.

Proof: To prove the non-trivial part of the theorem, suppose that X is perfect and hereditarily MCM. Apply Proposition 3.5 to find a dense metrizable subspace Y of X. Then Y contains a dense subset D that is the union of countably many subsets D(n), each being relatively discrete. But then, X being perfect, each D(n) is the union of countably many subsets D(n,k) where each D(n,k) is a closed discrete subspace of X. Now apply Theorem 3.4 to conclude that X is metrizable. \Box

As noted in the Introduction, any compact or countably compact space is β -space because every sequence in a countably compact space has a cluster point. Hence the lexicographic square is a β -space, as is the ordinal space $[0, \omega_1)$. However, the *hereditary* β -space property is another matter, and we have the following question.

Question 3.7 Is there a compact, first-countable LOTS X that is hereditarily a β -space and not metrizable?

Note that, in the light of Corollary 3.5, if X is a first-countable compact LOTS that is hereditarily a β -space, then X has a dense metrizable subspace, as does each subspace of X. Also note that by Theorem 3.6 and assertion (b) in the proof of (3.6), many kinds of subspaces of such an X will be metrizable. These include perfect subspaces (a class that includes all separable subspaces and, more generally, all subspaces with a σ -closed discrete dense subset), non-archimedean subspaces, and subspaces with a point-countable base (because, according to a result of Chaber [7] (see also Theorem 7.9 of [12]) any first-countable, paracompact β -space with a point-countable base must be metrizable). Other results in the literature suggest that one place to look for the required example is in the branch spaces of certain trees ([21], [22]).

4 Appendix on non-archimedean spaces

A regular space X is *non-archimedean* if it has a base that is a tree under reverse inclusion. Basic topological results about such spaces were announced by Peter Nyikos in [17], [18], and [19] but, Nyikos has informed us, no proof of the one result needed in this paper (namely that a first-countable non-archimedean β -space is metrizable) has even been published. The goal of this appendix is to provide the required proof. Our approach is as follows. First we will show that any non-archimedean space is paracompact. Next we will show that any first-countable nonarchimedean β -space is developable and then, from general metrization theory, we will conclude that any first-countable, non-archimedean β -space is metrizable. It happens to be true that any non-archimedean space is a GO-space, but we will not use that fact in our proofs.

Lemma 4.1 Suppose \mathcal{B} is a tree-base for the non-archimedean space X. Then:

a) each member of \mathcal{B} is clopen;

b) each subspace of X is ultraparacompact;

c) if $p \in X$ and if $C \subseteq B$ has $p \in \bigcap C$, then either $\bigcap C$ is a neighborhood of p or else $\bigcap C = \{p\}$ and C is a neighborhood base at p.

Proof: For any $p \in X$, let $\mathcal{B}(p) = \{B \in \mathcal{B} : p \in B\}$. Then $\mathcal{B}(p)$ is well-ordered by reverse inclusion and if $p \in B_1 \cap B_2$ (where $B_i \in \mathcal{B}$) then either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

To prove a), let $B \in \mathcal{B}$. Let p be any limit point of B and suppose $p \notin B$. Choose $q \in B$. Because $p \neq q$, we may choose $B' \in \mathcal{B}$ with $p \in B' \subseteq X - \{q\}$. Then $B \cap B' \neq \emptyset$ and $B \subseteq B'$ is impossible, so that $p \in B' \subseteq B$, contrary to $p \notin B$. Hence B is clopen.

To prove b), recall that a space Y is *ultraparacompact* if each open cover of Y has a pairwise disjoint open refinement. Let \mathcal{U} be any collection of open subsets of X. Let \mathcal{C} be the collection of all $B \in \mathcal{B}$ that are contained in some member of \mathcal{U} . Let \mathcal{V} be the collection of all minimal members of \mathcal{C} with respect to the tree ordering (i.e., reverse inclusion) of \mathcal{B} . Then \mathcal{V} refines \mathcal{U} , is pairwise disjoint, and has $\bigcup \mathcal{V} = \bigcup \mathcal{U}$. It follows that every open subspace of X, and hence every subspace of X, is ultraparacompact.

To prove c), suppose $p \in \bigcap C$ and that $\bigcap C$ is not a neighborhood of p. Then p is not isolated in X. We claim that $\bigcap C = \{p\}$. For suppose there are at least two points p, q in $\bigcap C$ and choose any member $B_0 \in \mathcal{B}$ with $p \in B_0 \subseteq X - \{q\}$. Then B_0 meets each $C \in C$ and B_0 cannot contain any member of C. Hence B_0 is a subset of each member of C and therefore $B_0 \subseteq \bigcap C$. But that makes $\bigcap C$ a neighborhood of p which is impossible. Hence $\bigcap C = \{p\}$. Let B_1 be any member of \mathcal{B} that contains p. Because p is not isolated, we may choose $q \in B_1 - \{p\}$ and find $C_1 \in C$ with $p \in C_1 \subseteq X - \{q\}$. Then $C_1 \cap B_1 \neq \emptyset$ and $B_1 \subseteq C_1$ is impossible, so that $C_1 \subseteq B_1$ as required to show that C is a local base at p. \Box

Proposition 4.2 If X is a non-archimedean β -space in which points are G_{δ} -sets, then X is metrizable.

Proof: Part c) of Lemma 4.1 shows that a non-archimedean space in which points are G_{δ} -sets must be first-countable.

Let \mathcal{B} be a tree-base for the space X and let g(n, x) be a β -function for X as described in Section 1. Because we can replace each g(n, x) by a smaller neighborhood of x and still have a β -function, we may assume that $g(n, x) \in \mathcal{B}$ and that $\{g(n, x) : n \ge 1\}$ is a local base at x. We may also assume that g(n + 1, x) is a proper subset of g(n, x) unless x is isolated and that $g(n, x) = \{x\}$ for each n if x is isolated. We now describe a partition process that will be applied to various sets g(n, x). If x is isolated, then $g(n, x) = g(n+1, x) = \{x\}$ and we let $\mathcal{W}(g(n, x)) = \{g(n+1, x)\}$. If x is not isolated, then the set S = g(n, x) - g(n+1, x) is not empty and, by part a) of Lemma 4.1, S is open. Let the members of $\mathcal{W}(g(n, x))$ be g(n+1, x) together with all members of the collection $\{g(k, y) : k \ge n+1 \text{ and } g(k, y) \subseteq S\}$ that are minimal in the ordering of the tree (\mathcal{B}, \supseteq) . Then $\mathcal{W}(g(n, x))$ is a pairwise disjoint open cover of g(n, x) by sets of the form $g(k, y) \in \mathcal{B}$ where $k \ge n+1$. Note that if $g(k, y) \in \mathcal{W}(g(n, x))$ with $y \ne x$, then $x \notin g(k, y)$. For each set $W \in \mathcal{W}(g(n, x))$ choose one point $y(W) \in W$ such that W = g(k, y(W)) and $k \ge n+1$, making sure that if W = g(n+1, x), then y(W) = x. Let $C(g(n, x)) = \{y(W) : W \in \mathcal{W}(g(n, x))\}$.

Let $\mathcal{H}(0) = \{X\}$. Given $\mathcal{H}(n)$ for some *n*, define

$$\mathcal{H}(n+1) = \bigcup \{ \mathcal{W}(g(m,x)) : g(m,x) \in \mathcal{H}(n) \}.$$

Let $C(n) = \{y(W) : W \in \mathcal{H}(n)\}$. Each $\mathcal{H}(n)$ is a pairwise disjoint cover of X by members of \mathcal{B} that have the form g(y, k) for exactly one $y \in C(n)$ and $k \ge n$.

We claim that the sequence $\mathcal{H}(1), \mathcal{H}(2), \cdots$ is a development for X. Fix any $p \in X$. Then p belongs to exactly one member of $\mathcal{H}(n)$ so that $\operatorname{St}(p, \mathcal{H}(n))$ is a member of $\mathcal{H}(n)$ and has the form $g(k_n, y_n)$ where $y_n \in C(n)$ and $k_n \geq n$. Furthermore, $g(k_{n+1}, y_{n+1}) \subseteq g(k_n, y_n)$ because of the way that the collections $\mathcal{H}(n)$ were constructed. Because $k_n \geq n$ we have $p \in g(n, y_n)$ and therefore the sequence y_1, y_2, \cdots must cluster at some point $q \in X$. Because $g(k_{n+1}, y_{n+1}) \subseteq g(k_n, y_n)$ we see that each $g(k_n, y_n)$ contains $\{y_m : m \geq n\}$ and therefore the point q is a point of the closure of each $g(k_n, y_n)$. But $g(k_n, y_n)$ is clopen, being a member of \mathcal{B} , so that $\{p, q\} \subseteq \bigcap\{g(k_n, y_n) : n \geq 1\}$.

If infinitely many terms in sequence y_1, y_2, \cdots are the same, say $y_n = y_N$ for each n in the infinite set I, then because $k_n \ge n$ the sets $g(k_n, y_n)$ form a local base at y_N so that $p, q \in \bigcap\{g(k_n, y_n) : n \ge 1\} = \{y_N\}$ forces $p = q = y_N$ and hence $\{St(p, \mathcal{H}(n)) : n \ge 1\}$ is a local base at $\{p\}$.

If the sequence y_1, y_2, \cdots has no constant subsequences, then there is a subsequence of distinct terms. For notational simplicity, assume that $y_i \neq y_j$ whenever $i \neq j$. Then we know that $y_n \notin g(k_{n+1}, y_{n+1})$ so that the set $T = \bigcap \{g(k_n, y_n) : n \ge 1\}$ contains no point y_k . Hence T cannot be a neighborhood of q even though $q \in T$. But by part c) of Lemma 4.1 we know that since T is not a neighborhood of q, it must be true that $T = \{q\}$ and $\{g(k_n, y_n) : n \ge 1\}$ is a neighborhood base at q. But $\{p, q\} \subseteq T$ then forces p = q so that, once again, $\{\operatorname{St}(p, \mathcal{H}(n)) : n \ge 1\}$ is a local base at p.

At this stage of the proof, we know that X is developable and paracompact (by part (b) of Lemma 4.1) and therefore metrizable. \Box

References

- [1] Aull, C.E., Quasi-developments and $\delta\theta$ -bases, J. London Math. Soc. 9(1974)197-204.
- [2] Balogh, Z., and Rudin, M.E., Monotonically normal spaces, *Topology and its Appl.* 47(1992), 115-127.

- [3] Bennett, H., Point-countability in ordered spaces, *Proc. Amer. Math. Soc.* 28(1971), 598-606.
- [4] Bennett, H., Heath, R., and Lutzer, D., Generalized ordered spaces with σ -closed-discrete dense subsets, *Proc. Amer. Math. Soc.* 129(2000), 931-939.
- [5] Bennett, H., and Lutzer, D., Recent developments in ordered spaces, in *Recent Progress in General Topology, II*, ed. by J. Husek and J. van Mill, Elsevier, Amsterdam, 2002, pp. 83-110.
- [6] Bennett, H., and Lutzer, D., Certain hereditary properties and metrizability in generalized ordered spaces, *Fundamenta Math.* 107(1980), 71-84.
- [7] Chaber, J., On point-countable collections and monotonic properties, *Fundamenta Math.* 94(1977), 209-219.
- [8] Creede, G., Concerning semi-stratifiable spaces, *Pacific J. Math* 32(1070), 47-54.
- [9] Engelking, R., and Lutzer, D., Paracompactness in ordered spaces. *Fundamenta Math.* 94 (1977), 49–58.
- [10] Faber, M., *Metrizability in Generalized Ordered Spaces*, Math Centre Tracts 53 (1974), Mathematical Center Amsterdam.
- [11] Good, C., Knight, R., Stares, I., Monotone countable paracompactness, *Topology and its Appl.* 101 (2000), 281-298.
- [12] Gruenhage, G., Generalized Metric Spaces, in *Handbook of Set-Theoretic Topology*, ed. by K. Kunen and J. Vaughan, North Holland, Amsterdam, 1984.
- [13] Heath, R., Lutzer, D., and Zenor, P., Monotonically Normal Spaces, *Trans. Amer. Math. Soc.* 178(1973), 481-493.
- [14] Hodel, R., Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, *Duke Math. J.* 39(1972), 253-263.
- [15] Lutzer, D., On generalized ordered spaces, Dissertationes Math, 89 (1971).
- [16] Mohamad, A.M., Developable and metrizable spaces and problems of Fletcher and Lindgren and Gittings, Math. Pannon. 13(2002), 129-135.
- [17] Nyikos, P., Some surprising base properties in topology, pp. 427-456 in *Studies in Topology* ed. by Stavrakas, N., and Allen, K., Academic Press, New York, 1975.
- [18] Nyikos, P., A survey of zero-dimensional spaces, pp. 87 -114 in *Topology: Proceedings* of the Memphis State University Conference, ed. by. S. Franklin and B. Thomas, Marcel Decker, New York, 1976.
- [19] Nyikos, P. Order-theoretic base axioms, pp. 367-398 in *Surveys in Topology* ed. by G. M. Reed, Academic Press, New York, 1980.

- [20] Qiao, Y-Q, and Tall. F., Perfectly normal non-metrizable non-archimedean spaces are generalized Souslin lines, *Proc. Amer. Math. Soc.*, to appear.
- [21] Shi, W., A non-metrizable compact LOTS each subspace of which has a σ -minimal base, *Proc. Amer. Math. Soc.* 127(1999), 2783-2791.
- [22] Todorčevic, S., Trees and linearly ordered sets, pp. 235-294 in *Handbook of Set-Theoretic Topology* ed. by K. Kunen and J. Vaughan, North Holland, Amsterdam, 1984.
- [23] Ying, Ge, and Good, C., A note on monotone countable paracompactness, *Comment. Math. Univ. Carolinae*, 42(2001), 771-778.