
Math 3350

1 Chapter 1

Reading assignment for Chapter 1: Study Sections 1.1 and 1.2.

1.1 Material for Section 1.1

An Ordinary Differential Equation (ODE) is a relation between an independent variable x

and and a dependent variable y (i.e., y = y(x) depends on x) and its derivatives y(j) =
djy

dxj

for j = 1, · · · , n. So it is an equation that can be written in the form

F (x, y, y(1), · · · , y(n)) = 0, (1)

For example, in this chapter we will learn to solve equations like the following:

y′ − x cos(x2) = 0, y′ − sin(x+ y) = 0, y′ − 2xy − x = 0, and y′ =
x− y
x+ y

.

There are other types of differential equations most notably partial differential equations

(PDEs). It is easy to distinguish an ODE from a PDE. An Ode always has a single indepen-

dent variable while a PDE always has more that one independent variable and the equation

involves partial derivatives. For example consider a PDE with independent variables x and

y and dependent variable z so that z depends on x and y, i.e., z = z(x, y). Then a general

second order PDE would be an equation of the form

F

(
x, y, z,

∂z

∂x
,
∂z

∂y
,
∂2z

∂x2
,
∂2z

∂y2
,
∂2z

∂x∂y

)
= 0.

We study differential equations because many practical physical systems are govern (or

described by) either ordinary or partial differential equations. Solving ODEs for explicit

solutions can be very difficult or even impossible. But in this class we will focus on the

solution of simple problems in order to give students some idea of what is involved in the

more general case. The main tools needed by the students is a background in college algebra

and calculus (differentiation and integration).
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The goal in “solving” an equation is to find all functions y(x) satisfying the equation (1).

Unfortunately this objective is beyond our reach other than some very special cases. In this

class we will study a few of these special cases.

Notation and Terminology: The following discussion may seem a bit over the top. The

main purpose is to introduce the standard notation and terminology used in talking about

ODEs. DO NOT BE OVERWHELMED they are just words. Also read the book

where more examples are also given. The main words to understand are written in italics

and underlined.

1. Chapter 1 is mostly concerned with notation and terminology. We will need this

material so I will cover it fairly carefully. You need to learn these definitions and

terminology.

2. The order of the highest order derivative, n in (1), is called the order of the equation.

3. If we can solve for the highest order derivative term, then we say the equation can be

put in normal form:

y(n) = f(x, y, y(1), · · · , y(n−1)).

In chapter 2 we will consider only first order equations y
′
= f(x, y).

4. An ODE is said to be Linear if it can be written in the form

an(x)
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1(x)

d1y

dx1
+ a0(x)y(x) = g(x). (2)

In Chapters 3, 4 and 5 we will consider mostly linear equations. They are by far the

easiest - but still not easy. Similarly a linear PDE in two independent variables is

a2,0(x, y)
∂2z

∂x2
+ a0,2(x, y)

∂2z

∂y2
+ a1,1(x, y)

∂2z

∂x∂y
+ a1,0(x, y)

∂z

∂x
+ a0,1(x, y)

∂z

∂y
+ a0,0z = 0.

Notice the equation has independent variables x and y and dependent variable z.

(a) A linear equation is is said to be homogeneous if g(x) = 0. If g(x) 6= 0 then the
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equation is called non-homogeneous.

(b) A solution y(x) may only exist on a certain domain called the interval of existence.

The interval of existence may be open, e.g., (a, b), closed, e.g., [a, b] or it may be

open on one end and closed on the other, e.g., (a, b]. It is possible that this interval

is all of (−∞,∞).

(c) Here are some examples

· (1 + x)y′′ − cos(x2)y′ + exy = cos(x) (second order, linear,ode)

· (1 + y2)y′′′ − x sin(y + y′) = 0 (third order, nonlinear,ode)

· y′ − 2xy − y2 = 0 (first order, nonlinear,ode)

· (y′)2 =
x− y
x+ y

(first order, nonlinear,ode)

· x3y′′′ − x2y′′ + 2xy′ − y = 0 (third order, linear,ode)

· zxx + zyy = 0 (second order, linear, pde)

5. Sometimes it is possible that y = 0 is a solution. In this case we call this the

trivial solution.

6. If we have a solution given in the form y = y(x) then we say that y(x) is an explicit solution.

But very often it is either difficult or possibly impossible to obtain an explicit solution

even if we know that it exists. In this case we may still be able to find a so-called

implicit solution. We define an implicit solution as follows:

A relation G(x, y) = 0 is called an implicit solution of the ODE (1) if by

repeated implicit differentiation of G(x, y) = 0 with respect to x and algebraic

simplification we can arrive at (1).

In the first order case we will say that G(x, y) = 0 is an implicit solution of y′ = F (x, y)

if when we differentiate G(x, y) = 0 implicitly with respect to x and solve for y′ we

obtain y′ = F (x, y). Here is an example. We claim an implicit solution of y′ = −x/y is

G(x, y) = x2 +y2−1 = 0. Notice in this case we cannot solve the equation G(x, y) = 0

for a single function y = f(x) since we arrive at y = ±
√

1− x2 which is not a function.

But if we differentiate x2 + y2 − 1 = 0 with respect to x we arrive at 2x + 2yy′ = 0

which when we solve for y′ gives y′ = −x/y.
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7. Generally speaking an nth order ODE has an n-parameter family of solutions. That

is to say that the solution depends on n arbitrary constants (constants of integra-

tion). Thus we would write an implicit solution as G(x, y, c1, c2, · · · , cn) = 0 where

c1, c2, · · · , cn are arbitrary parameters. If we can find an implicit or explicit solution

containing n arbitrary parameters then we call the solution the general solution. Here

is an example. Consider the differential equation y′′ = 0. we have not yet introduced

methods to solve a Differential Equation (DE) but from calculus we know that if we

integrate both sides with respect to x we get y′ = C1 where C1 is an arbitrary constant.

Then we can integrate both sides again with respect to x and we arrive at y = C1x+C2

where C2 is another arbitrary constant. We claim that the y = C1x + C2 is a general

solution of y′′ = 0.

For example, a general explicit solution of y(3) = 0 is y = c1 + c2x+ c3x
2.

Examples from Section 1.1

1. Given a set of equations and a set of solutions find the best answer (most complete

answer) matching the equation with the solution.

1. y′′ + y = 0

2. y′ + 3y = 0

3. y′ − 3y = 0

4. y′′ − 9y = 0

A. y = e3x

B. y = sin(x)

C. y = e−3x

D. y = e3x, y = e−3x

E. y = cos(x)

F. y = sin(x) and y = cos(x)

We need to match the best answer on the right with the equation on the left. You do

this by trial and error. For example, if we differentiate y = e3x we get y′ = 3e3x = 3y

or y′ − 3y = 0 which is exactly equation 4. You can do this a bit more systematically

as follows (notice for parts with more than one function you need to consider taking

two derivatives and for sines and cosines you must also differentiate twice)

A. y = e3x ⇒ y′ = 3e3x = 3y or y′ − 3y = 0.
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B. y = sin(x) ⇒ y′ = cos(x) ⇒ y′′ = − sin(x) = −y ⇒ y′′ + y = 0 which is equation

is equation 1. But see answer D below.

C. y = e−3x ⇒ y′ = −3e−3x = −3y or y′ + 3y = 0 which is exactly equation 3.

D. y = e3x, y = e−3x In this case we have (as above) y = e3x satisfies y′ − 3y = 0 and

similarly y = e−3x satisfies y′ + 3y = 0 but if we differentiate both of these twice

we see they both satisfy y′′ − 9y = 0 which is equation 5.

E. y = cos(x)⇒ y′ = − sin(x)⇒ y′′ = − cos(x) = −y ⇒ y′′+ y = 0 which is equation

is equation 1. So both B and D satisfy equation 1.

F. y = sin(x) and y = cos(x) The best answer for equation 1 is E since both functions

satisfy the equation.

So we have the best answer

1. E y′′ + y = 0

2. C y′ + 3y = 0

3. A y′ − 3y = 0

4. D y′′ − 9y = 0

2. Consider the problem of finding all solutions in the form y = emx of y′′ − 3y′ + 2y = 0.

Substituting y = emx, y′ = memx and y′′ = m2emx into the equation we have

m2emx − 3memx + 2emx = 0 ⇒ m2 − 3m+ 2 = 0.

We can easily solve this quadratic equation to obtain m = 1, m = 2. So we have

solutions y = ex and y = e2x.

3. Consider the problem of finding all solutions in the form y = xm of x2y′′+xy′−4y = 0.

Substituting y = xm, y′ = mxm−1 and y′′ = m(m− 1)xm−2 into the equation we have

x2m(m− 1)xm−2 + xmxm−1 − 4xm = 0 ⇒ xm(m(m− 1) +m− 4) = 0.

Thus we get m2 − 4 = 0 so that m = −2, 2.
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1.2 Material for Section 1.2

The Initial Value Problem (IVP) is to find a unique solution of (1) which we rewrite here

F (x, y, y(1), · · · , y(n)) = 0

satisfying the n constraints (called initial conditions)

y(x0) = y1, y′(x0) = y2, · · · , y(n−1)(x0) = yn. (3)

Remark 1.1. In order to solve the IVP we first find a general solution which depends on

n parameters c1, c2, · · · , cn. We then apply the n constraints (3) to obtain a system of n

equations in n unknowns to evaluate the constants cj, j = 1, · · · , n and thus to obtain a

unique solution.

Example 1.1. In the example worked above we found two solutions of y′′ − 3y′ + 2y = 0

given by ex and e2x. We claim that y = c1e
x + c2e

2x is a general solution. This will be done

in Chapter 3 but for now let us assume that it is a general solution.

Let us finish this example by solving the IVP

y′′ − 3y′ + 2y = 0 with y(0) = 0 and y′(0) = 1 .

We have y = c1e
x + c2e

2x and y′(x) = c1e
x + 2c2e

2x. Substituting x = 0 into the formulas

for y and y′ and using the initial conditions y(0) = 0 and y′(0) = 1 we have

0 = y(0) = c1 + c2 and 1 = y′(0) = c1 + 2c2.

So we have

 c1 + c2 = 0

c1 + 2c2 = 1
⇒ c1 = −1 c2 = 1

Therefore the unique solution of the IVP is y(x) = e2x − ex.

Example 1.2. By simple integration we see that the general solution to the differential

equation y′ = 3x2 is y(x) = x3 + c where c is an arbitrary constant of integration. The

unique solution satisfying the initial condition y(2) = −1 is y(x) = x3 − 9.

Two very important questions that arise in studying the solution of an IVP is (1) do
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solutions exist and (2) are they unique. The answer to this question leads us to the statement

for a first order IVP of The Fundamental Existence and Uniqueness Theorem.

In this section we will consider first order equations and, for the most part, we are

interested in those equations that can be put in the normal form

y′ = f(x, y) (4)

and the associated IVP

y′ = f(x, y), y(x0) = y0. (5)

Theorem 1.1 (Fundamental Existence Uniqueness Theorem (FEUT)). Let R be a rect-

angular region R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} that contains the point (x0, y0)

in its interior. If f(x, y) and ∂f/∂y are continuous in R, then there exists an interval

I0 = (x0 − h, x+ h) ⊂ (a, b) for a number h > 0, and a unique function y = ϕ(x) defined on

I0 that solves the IVP (5) on I0.

R
(x0, y0)

y = ϕ(x)

x0

y0

I0

a b

c

d

As an example let us consider the IVP y′ = −y2, y(0) = 1. Here f(x, y) = −y2,

fy(x, y) = −2y are both continuous functions everywhere in R2 = {(x, y) : x, y ∈ R}.

Therefore Theorem 1.1 implies that the IVP has a unique solution. Indeed, the general

solution to the ODE is y = (c + x)−1 where c is an arbitrary constant. Then the unique

solution to the IVP is y = (1 + x)−1. Notice that this solution exists for all x > −1. But it

does not exist at x = −1.
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Theorem 1.2 (Fundamental Existence Uniqueness Theorem First Order Linear). Consider

the first order linear IVP

a1(x)y′ + a0(x)y = g(x), y(x0) = y0, (6)

on an interval I = (a, b) = {x : a < x < b} with x0 ∈ I. If the functions a1(x), a0(x) and

g(x) are all continuous on I and a1(x) 6= 0 on all of I, then (6) has a unique soltuion that

exists on the whole interval I.

Here is an example

Example 1.3. Consider the first order linear IVP

(x2 − 9)y′ + x cos(x)y =
x+ 1

x
with y(1) = 5.

In this case a1(x) = (x2 − 9), a0(x) = x cos(x) and g(x) =
x+ 1

x
. The functions a1 and

a0 are continuous on the whole real line but g(x) has a discontinuity at x = 0. Also the

leading coefficient a1(x) = 0 at both x = ±3. The number line is then broken into 4 parts:

−∞ < x < −3, −3 < x < 0, 0 < x < 3 , and 3 < x <∞. Since the initial point x0 = 1 we

see that the solution is guaranteed to exist on the interval 0 < x < 3.

−3 0 3
X X

x0 = 1

Examples from Section 1.2

1. Given the IVP y′ = −2xy2 with y(0) = 1 and given the general solution y(x) =
1

x2 + C
find the unique solution to the IVP.

1 = y(0) =
1

02 + C
=

1

C
⇒ C = 1 ⇒ y(x) =

1

x2 + 1
.

2. Given the IVP y′′ + 16y = 0 with y(π/2) = −2 and y′(π/2) = 4 and given the general

solution y(x) = C1 cos(4x) + C2 sin(4x) find the unique solution to the IVP. In this
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case we have y′(x) = −4C1 sin(4x) + 4C2 cos(4x) so the pair of equations obtained by

setting x = π/2 are

−2 = C1 cos(4 π/2) + C2 sin(4 π/2) = C1 cos(2π) + C2 sin(2π) = C1

4 = −4C1 sin(4 π/2) + 4C2 cos(4 π/2) = −4C1 sin(2π) + 4C2 cos(2π) = 4C2

Therefore C1 = −2 and C2 = 1 and the solution is y(x) = −2 cos(4x) + sin(4x)

3. Given the equation y′ = y2/3 find all (x0, y0) in the plane for which the FEUT guaran-

tees the existence of a unique solution in a neighborhood of x0.

Here we have F (x, y) = y2/3 in the FEUT. Thus we have Fy = (2/3)y−1/3. Notice that

since F (x, y) only depends on y all values of x0 are okay. Also we see that F (x, y) = y2/3

is continuous for all y. But Fy = (2/3)y−1/3 does not exist for y = 0 (why?). But it is

continuous for all y > 0 and all y < 0. So the answer is

The IVP has a unique solution in a neighborhood of any (x0, y0) in the plane for which

x0 is arbitrary and y0 > 0 or y0 < 0.

4. Given the equation xy′ = y find all (x0, y0) in the plane for which the FEUT guarantees

the existence of a unique solution in a neighborhood of x0.

Here we have F (x, y) = y/x (here we divided both sides by x) in the FEUT. Thus we

have Fy = 1/x. Notice that F (x, y) depends on both x and y all values of y0 are okay

since it is continuous for all y as long as x 6= 0. The same is true of Fy = 1/x which

does not exist for x = 0 (why?). But it is continuous for all x > 0 and all x < 0 for all

y. So the answer is

The IVP has a unique solution in a neighborhood of any (x0, y0) in the plane for which

y0 is arbitrary and x0 > 0 or x0 < 0.

5. Let us reconsider the previous example considered as a first order linear IVP. The

equation can be written as xy′ − y = 0 which is in the form a1(x)y′ + a0(x)y = 0

(see equation (2)) so the leading coefficient is a1 = x and the other coefficients are

both constants, a0 = −1 and g(x) = 0. Since all the coefficients are continuous
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everywhere we only need to consider where the leading coefficient can be equal to zero.

a1(x) = x = 0 when x = 0 so we can only choose x0 > 0 or x0 < 0. Appealing to

Theorem 1.2 we see that:

(a) If x0 > 0 and y0 is arbitrary, a unique solution will exist for all x > 0.

(b) If x0 < 0 and y0 is arbitrary, a unique solution will exist for all x < 0.

We note that the solution of this problem is y = x which actually exists for all x.

Notice that Theorem 1.2 is much stronger than Theorem 1.1.

6. Given the linear IVP (x2−9)y′+
1

x
y = cos(x) find the interval of existence guaranteed

by Theorem 1.2. The coefficients a1(x) = (x2 − 9) and g(x) = cos(x) are continuous

functions for all real numbers. The function a0(x) = 1/x is continuous for all x 6= 0.

Finally, the leading coefficient a1(x) = (x2− 9) = 0 when x = ±3. So we must exclude

x = 0,−3, 3

−3 0 3
X XX

Using this number line we can give the interval of existence determined by the initial

condition y(x0) = y0

(a) y(−5) = 17 solution exists on −∞ < x < −3

(b) y(−1) = 12 solution exists on −3 < x < 0

(c) y(2) = −17 solution exists on 0 < x < 3

(d) y(7) = 22 solution exists on 3 < x <∞

7. Given the linear IVP (x2−9)y′+x cos(x)y =
(x+ 1)

x
and IC y(1) = 7 find the interval

of existence guaranteed by Theorem 1.2. The coefficients a1(x) = (x2−9) and a0(x) =

x cos(x) are continuous functions for all real numbers. The function a0(x) = (x+ 1)/x

is continuous for all x 6= 0. Finally, the leading coefficient a1(x) = (x2 − 9) = 0 when

x = ±3. So we must exclude x = 0,−3, 3. So we have the same number line picture

as above. And, if x0 = 1 then the solution exits on the interval 0 < x < 3.
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2 Chapter 2

Reading assignment: Your need to study Chapter 2, Sections 2.1 through 2.5.

2.1 Autonomous Equations

The first order autonomous equations y′ = f(y) are particularly interesting and the behavior

of solutions can be described rather nicely even without solving the equation.

Autonomous Equations

In contrast to the general case above for which it can be very difficult to find explicit

solutions, there is a class of problems for which it is possible to obtain a somewhat more

detailed description of the behavior of the solutions without actually finding the solution.

These are the first order autonomous equations y′ = f(y) (notice the independent variable x

does not appear on the right hand side) which are particularly interesting and the behavior

of solutions can be described rather nicely even without solving the equation.

In particular, it is possible to visualize the qualitative properties of the solution using

the so called Phase Line which consists of a one dimensional plot of the critical points (also

called the equilibria points or nodes) together with arrows depicting whether a solution is

increasing or decreasing.

We begin our analysis by looking for solutions of the equation that are very simple.

Namely we look for what are called equilibrium solutions which are solutions that don’t

depend on the independent variable, in other words they are constants. If a solution is a

constant then it is of the form y(x) = y0 where y0 is a real number. But then we see that

y′(x) = 0 for all x so the left side of the equation is zero, which in turn means the right

hand side must be zero. In other words we need f(y0) = 0. These real numbers are the

equilibrium points (also called fixed point, critical points or nodes).

Qualitative information about the equilibrium points of the differential equation y′ = f(y)

can be obtained from special diagrams called phase diagrams.

A phase line diagram for the autonomous equation y′ = f(y) is a line segment with labels

for all the nodes, i.e., one for each root of f(y) = 0, i.e. each equilibrium.
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We can classify the possible behavior of a solution that begins in between two nodes

according to a simple classification of the three types of nodes: Asymptotically Stable (AS),

Unstable (US) or Semi-Stable (SS).

1. An equilibrium y0 is called Asymptotically Stable if solutions that begin near y0 at

x = 0 approach y0 as x → ∞. Such an equilibrium is also called a sink because it

attracts nearby solutions, i.e., if y(0) is close to y1, then |y(x) − y0|
x→∞−−−→ 0. In other

words y(x) moves toward y1.

2. An equilibrium y0 is called Unstable if solutions that begin near y0 at x = 0 move away

from y0 as x → ∞. Such an equilibrium y0 is said to repel nearby solutions and it is

called a source, i.e., if y(0) is close to y0, then |y(x)− y0| increases as x→∞. In other

words y(x) moves away from y0.

3. An equilibrium y0 which is neither a sink or a source is called a Semi-Stable node. In

this case solutions that begin near y0 on one side (either greater than or less than y0)

will approach y0 on one side but move away on the other side.

Classification of Nodes

In order to determine where a node is AS, US or SS we only need to determine the sign

of f(y) for y near the node.

1. AS: In this case we must have f(y) > 0 for y < y0 and f(y) < 0 for y > y0. Here

f(y) > 0 indicates that y′(x) = f(y(x)) > 0 which means that y(x) is increasing (or

moving to the right on the number line). And, y′(x) = f(y(x)) < 0 means that y(x) is

decreasing (or moving to the left on the number line).

2. US: In this case we must have f(y) < 0 for y < y1 and f(y) > 0 for y > y1.

3. SS: In this case there are two possibilities: we could have f(y) < 0 for y < y2 and

f(y) < 0 for y > y2. Or we could have, f(y) > 0 for y < y2 and f(y) > 0 for y > y2.

In other words the sign of f(y) is the same on both sides of y2.

The following figure gives the important distinctions using arrows indicating whether the

solution y is increasing > or decreasing <.
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Suppose for example that y′ = f(y) and f(y) = 0 has four nodes y1 < y2 < y3 < y4 and

suppose when we plot these values on a phase line and sketch f(y) we arrive at the following

diagram

Notice that y1 is AS, y2 is US, y3 is SS and y4 is AS. We usually give the answer as a

pair as

(y1, AS), (y2, US), (y3, SS), (y4, AS).

Example 2.1. Let us consider an example given by

y′ = y(y + 1)(y − 2)2(y + 3)3(y − 4).

So we have f(y) = y(y+1)(y−2)2(y+3)3(y−4) which has critical points y = −3,−1, 0, 2, 4

and we want to classify each of the nodes. So we draw a phase line on which we plot all

these critical points and indicate, using a simple sketch with + and − signs of where f(y) is

positive and negative.

Finally then we have (−3, AS), (−1, US), (0, AS), (2, SS), (4, US).

Some Examples of Autonomous Equations

In these examples we consider an autonomous equation in the form y′ = f(y) where y

is a function of the independent variable x (Note that the independent variable could be

anything, for example it could be t). So the equation could read x′ = f(x). In our examples

we will stick with the examples as they are in the book and use y = y(x).

1. Given the equation y′ = y2 − 3y we have f(y) = y2 − 3y = 0 implies that y = 0, 3
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+++ + + + +-  -   -   -   -  - 
AS US

3

So we see that y = 0 is an Asymptotically Stable node (sink) and y = 3 is an Unstable

node (source).

2. Given the equation y′ = y2 − y3 we have f(y) = y2 − y3 = y2(1− y) = 0 implies that

y = 0, 1

So we see that y = 0 is a Semi-Stable node and y = 1 is an Asymptotically Stable node

(sink).

2.2 Separable Equations

A very important class of problem (autonomous and nonautonomous) are ones that can be

“separated.” These are problems that can be written in the form

dy

dx
= f(y)g(x).

In this case we can rewrite the problem in the form

1

f(y)

dy

dx
= g(x)

or
1

f(y)

dy

dx
= g(x).

Integrating both sides we arrive at

∫
1

f(y)

dy

dx
dx =

∫
g(x) dx+ C
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or ∫
1

f(y)
dy =

∫
g(x) dx+ C

and we say the problem is solved “up to quadrature.” So to solve the problem we must

evaluate the indefinite integrals.

This shows already how hard solving differential equations are since it is easy to write

down functions that cannot be integrated exactly in terms of elementary functions. For

example,

y′ = e−x
2

has solution which can be expressed as

y(x) =

∫ x

0

e−s
2

ds+ C

but it is well known that this integral cannot be expressed “in closed form.”

In spite of this example, the simplest class of separable first order equations are ones in

the form y′ = f(x) which can be written in the separated form dy = f(x) dx. Therefore by

the Fundamental Theorem of Calculus y =
∫
f(x) dx+ C.

You will be required to make substitutions many times when doing integrals. Suppose,

for example, you want to integrate
∫
e3xdx then you need to use the substitution

u = 3x => du = 3dx

and the integral becomes

1/3

∫
eudu = 1/3eu + C = 1/3e3x + C.

More generally let us replace
∫
e3xdx by

∫
ekxdx and use the same type substitution

u = kx => du = kdx
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so the integral becomes

1/k

∫
eudu = 1/keu + C = 1/kekx + C.

Remark 2.1. Suppose in general you need to integrate
∫
f(kx)dx and you know an an-

tiderivative for f(x) is F (x), i.e., F ′(x) = f(x), then using the substitution u = kx would

give ∫
f(kx)dx = 1/kF (kx) + C.

We will use this idea maybe even a hundred times this semester so I would learn it. Just

remember this simple fact and you won’t have to make all these trivial substitutions.

Example 2.2. Consider the differential equation y′ = (x+ 1) cos(x2 + 2x). We separate the

equation and integrate to find the solution.

dy = (x+ 1) cos(x2 + 2x)dx

so that ∫
dy =

∫
(x+ 1) cos(x2 + 2x)dx+ C.

By the power rule the integral of dy is y so we have

y =

∫
(x+ 1) cos(x2 + 2x)dx+ C.

To carry out the integral on the right we need to use a simple substitution u = x2 + 2x

which implies du = 2(x+ 1)dx and we have

y =

∫
(x+ 1) cos(x2 + 2x)dx+ C =

1

2

∫
cos(u) du+ C =

1

2
sin(x2 + 2x) + C.

Example 2.3. Consider the differential equation y′ = −2xy2. We separate the dependent

and independent variables and integrate to find the solution.

dy

dx
= −2xy2

16



y−2 dy = −2x dx∫
y−2 dy = −2

∫
x dx+ c

− y−1 = −x2 + c

y =
1

x2 − c

But since c is an arbitrary constant we can just as easily write y =
1

x2 + c
.

Example 2.4. The equation y′ = y − y2 is separable and we find

dy

y − y2
= dx

On the left we expand in partial fractions and integrate.

∫ (
1

y
− 1

y − 1

)
dy =

∫
dx+ c

ln |y| − ln |y − 1| = x+ c

This is an implicit solution for y(x). We can solve for y(x) to obtain an explicit solution as

follows.

ln

∣∣∣∣ y

y − 1

∣∣∣∣ = x+ c ⇒
∣∣∣∣ y

y − 1

∣∣∣∣ = ex+c ⇒ y

y − 1
= ±ex+c

y

y − 1
= c1e

x (Here we have substituted c1 for ±ec.)

y =
−c1ex

c1ex − 1
(which is the same as)

y =
1

1 + 1/c1e−x
(divided top and bottom by −c1 and ex.)

y =
1

1 + Ce−x
(finally we set C = 1/c1.)

Here are a list of some separable equations with partial details.

Supplemental Separable Equations

1. y′ =
1− x2

y2
⇒ y2dy = (1− x2)dx ⇒ y = (3x− x3 + k)1/3

17



2. y′ = 3yx2 ⇒ dy

y
= 2x2dx ⇒ y = kex

3

3. xy′ =
1− y2

2y
⇒ 2y

y2 − 1
= −dx

x
⇒ y = ±(1 + kx−1)1/2

4. y′ =
cos2(y)x

1 + x2
⇒ sec2(y)dy =

xdx

1 + x2
⇒ y = tan−1(ln(1 + x2)1/2 + k)

5. y′ = 4x3(1− y), y(0) = 3 ⇒ dy

1− y
= 4x3dx ⇒ y = kex

4

+ 1, y = 2ex
4

+ 1

6. y′ = 2
√
y + 1 cos(x), y(π) = 0 ⇒ 1/2(y + 1)−1/2dy = cos(x)dx ⇒

(y + 1)1/2 = sin(x) + C ⇒ y = (sin(x) + k)2 − 1, y = sin2(x) + 2 sin(x)

7. y′ =
3x2 + 4x+ 2

2y + 1
, y(0) = −1 ⇒ (2y + 1)dy = (3x2 + 4x + 2)dx ⇒ y2 + y =

x3 + 2x2 + 2x+ C, y2 + y = x3 + 2x2 + 2x

8. y′ = 2x sin2(y), y(0) = π/4 ⇒ csc2(y)dy = 2xdx ⇒ − cot(y) = x2 + C, y =

cot−1(1− x2)

9.
√

1− y2dx =
√

1− x2dy, y(0) =

√
3

2
⇒ dy√

1− y2
=

dx√
1− x2

⇒ sin−1(y) =

sin−1(x) + C ⇒ y = sin(sin−1(x) + C ⇒ y = sin(sin−1(x)− π/3)

10.
dx

dt
= 4(x2 + 1), x(π/4) = 1 ⇒ dx

(x2 + 1)
= 4dt ⇒ tan−1(x) = 4t+ C

⇒ x = tan(4t+ C) ⇒ x = tan(4t− 3π/4)

11. x2y′ = y − xy, y(−1) = −1 ⇒ dy

y
=

1− x
x2

⇒ ln(|y|) = (−x−1 − ln(|x|)) + C

⇒ −y = e−x
−1−ln(|x|)+C =

kex
−1

−x
⇒ y =

e−(x
−1+1)

x

2.3 First Order Linear Equations

The first order, linear, non-homogeneous differential equation has the form

dy

dx
+ p(x)y = f(x). (7)

This equation is not (in general) separable. To solve Equation (7), we multiply by an

integrating factor.
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The integrating factor for this first order linear equation is

µ(x) = ce
∫
p(x) dx.

So to solve the equation (7) we multiply by the integrating factor and integrate. Notice

that µ satisfies
dµ

dx
= p(x)µ so multiplying the equation by µ we have

µ
dy

dx
+ p(x)µy = µf(x)

or

µ
dy

dx
+
dµ

dx
y = µf(x).

But by the product rule the left hand side is the exact derivative [µy]′ so we have

[µy]′ = µf(x)

and integrating both sides gives

µy =

∫
µ(x)f(x) dx+ C,

or finally

y =
1

µ

∫
µ(x)f(x) dx+

C

µ
.

Remark 2.2. First Order, Linear Homogeneous Differential Equations. We have

just shown that the first order, linear, homogeneous differential equation,

dy

dx
+ p(x)y = 0,

has the general solution

y = Ce−
∫
p(x) dx. (8)

The solution obtained above is exactly
C

µ
. In other words the solution of the non-homogeneous

problem always contains the solution of the homogeneous problem.
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A very big point here is that the general solution of a non-homogeneous first order

linear problem is the sum of two terms, i.e., the general solution is y = yp + yc where yp

is called a particular solution and it satisfies y′ + p(x)y = f(x), and the general solution

of the homogeneous problem, yc, that satisfies y′ + p(x)y = 0. In the book yc is called the

complementary solution.

Let us show that yp satisfies the non-homogeneous problem, where

yp = e−
∫
p dx

(∫
e
∫
p dxf(x) dx

)
.

We have by the product rule and the chain rule

y′p = −pe−
∫
p dx

(∫
e
∫
p dxf(x) dx

)
+ e−

∫
p dx
(
e
∫
p dxf(x)

)
= −pyp + f(x),

and therefore

y′p + yp = f(x).

Example 2.5. Find the general solution of

y′ +
1

x
y = 4x2.

First we find the integrating factor.

µ(x) = exp

(∫
1

x
dx

)
= elnx = x

We multiply by the integrating factor

dy

dx
(xy) = 4x3

and integrate

xy = x4 + C
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Dividing by the integrating factor we have

y = x3 +
C

x
.

The particular and complementary solutions are

yp = x3 and yc =
C

x
.

Note that the general solution to the differential equation must contain an arbitrary constant.

Example 2.6. Solve the IVP y′ + 3x2y = 6x2, y(0) = 1 ⇒ µ = e
∫
3x2 dx = ex

3

. Thus we

have [
ex

3

y
]′

= 6x2ex
3

which implies

ex
3

y = 6

∫
x2ex

3

dx+ C = 2ex
3

+ C.

So we have ex
3
y = 2ex

3
+ C and we can apply the IC y(0) = 1 to find C. Namely,

1 = 2 + C ⇒ C = −1

Therefore

y = 2− e−x3

.

Example 2.7. Solve the iVP xy′ − y = x2 sin(x) with y(π) = 0. First we must write the

equation as y′ − 1

x
y = x sin(x) from which we find µ = e−

∫
dx/x = e− ln(x) = x−1. So we find

[
x−1y

]′
= sin(x)

which implies

x−1y =

∫
sin(x) dx+ C = − cos(x) + C

and applying the IC y(π) = 0 we have

0 = 1 + C → C = −1
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so the unique solution is

y = −x(cos(x) + 1).

Remark 2.3 (Integration by Parts Formula). The next problem requires the use of integra-

tion by parts. You can do integration by parts any way you know how but I will show the

way I do it which is the way I will do it in class. First let me derive the integration by parts

formula from the product rule

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x) ⇒ f ′(x)g(x) = [f(x)g(x)]′ − f(x)g′(x)

Next we integrate both sides and use the fundamental theorem of calculus (which gives∫
[f(x)g(x)]′ dx = f(x)g(x)) to obtain the integration by parts formula for indefinite inte-

grals ∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x) dx (9)

For a definite integral the above formula becomes

∫ b

a

f ′(x)g(x) dx = f(x)g(x)
∣∣b
a
−
∫ b

a

f(x)g′(x) dx.

The way you use it is to write one of the given functions as a derivative and then apply

the above formula. Here are some examples:

1. Evaluate

∫
x ln(x) dx

∫
x ln(x) dx =

∫ (
x2

2

)′
ln(x) dx

=
x2

2
ln(x)−

∫
x2

2

1

x
dx

=
x2

2
ln(x)− 1

2

∫
xdx

=
x2

2
ln(x)− 1

4
x2 + C
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2. Evaluate

∫
xex dx

∫
xex dx =

∫
x (ex)′ dx

= xex −
∫
ex dx

= xex − ex + C

3. Evaluate

∫
x cos(x) dx

∫
x cos(x) dx =

∫
x (sin(x))′ dx

= x sin(x)−
∫

sin(x) dx

= x sin(x) + cos(x) + C

Example 2.8. (x + 1)y′ + y = ln(x) with y(1) = 1. The equation must be written as

y′ +
1

(x+ 1)
y =

ln(x)

(x+ 1)
from which we find µ = e

∫
dx/(x+1) = eln(x+1) = (x+ 1). So we have

[(x+ 1)y]′ = ln(x)

which implies (notice to integrate ln(x) we need integration by parts)

∫
ln(x) dx =

∫
(x)′ ln(x) dx = x ln(x)−

∫
x

(
1

x

)
dx = x ln(x)− x.

So we have

(x+ 1)y =

∫
ln(x) dx+ C = (x ln(x)− x) + C.

At this point we evaluate the constant C using y(1) = 1

(1 + 1)× 1 = (0− 1) + C ⇒ C = 3.
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and therefore

y =
(x ln(x)− x+ 3)

(x+ 1)
.

In the next three examples we consider problems with a right hand side defined in pieces.

Example 2.9. y′ − 1

x
y =

0, 1 ≤ x < 2

2x, x ≥ 2

with y(1) = 1. We need to solve two separate

problems in a certain order. First we solve y′ + (1/x)y = 0 with y(1) = 1 on the interval

1 ≤ x < 2. For this problem the integrating factor is µ = e−
∫
dx/x = x−1 so we have

[x−1y]′ = 0 which, after integration, implies x−1y = C. The initial condition gives 1 = C so

C = 1. This gives y = x for all 1 ≤ x < 2. Now the continuity of the solution then requires

that

y(2) = lim
x→2

y(x) = lim
x→2

x = 2.

So we now solve y′ − 1

x
y = 2x with y(2) = 2. Again we have the same integrating factor

µ = x−1 so we get [x−1y]′ = 2 so that (on integrating) x−1y = 2x+C so that 1 = 4 +C and

C = −3. Finally we have x−1y = 2x− 3 so the explicit solution is y = 2x2 − 3x.

Example 2.10. y′ + 2y =

2, 0 ≤ x < 3

0, x ≥ 3

with y(0) = 0. We need to solve two separate

problems in a certain order. First we solve y′ + 2y = 2 with y(0) = 0 on the interval

0 ≤ x < 3. For this problem the integrating factor is µ = e2x so we have [e2xy]′ = 2e2x

which, after integration, implies e2xy = e2x + C. The initial condition gives 0 = 1 + C so

C = −1. This gives y = 1− e−2x for all 0 ≤ x < 3. Now the continuity of the solution then

requires that

y(3) = lim
x→3

y(x) =
(
1− e−6

)
.

This now becomes the initial condition for the second problem:

y′ + 2y = 0 with y(3) =
(
1− e−6

)
for x ≥ 3.

Solving this problem we get (notice we have the same integrating factor) [e2xy]′ = 0 so
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e2xy = C and the initial condition implies C = e6
(
1− e−6

)
=
(
e6 − 1

)
. Finally then we get

y =
(
e6 − 1

)
e−2x for x ≥ 3.

Putting these solutions together we have

y(x) =

(1− e−2x) , 0 ≤ x < 3

(e6 − 1) e−2x, x ≥ 3

Example 2.11. y′+ 2xy =

2x, 0 ≤ x < 1

0, x ≥ 1

with y(0) = 2. We need to solve two separate

problems in a certain order. First we solve y′ + 2xy = 2x with y(0) = 2 on the interval

0 ≤ x < 1. For this problem the integrating factor is µ = ex
2

so we have [ex
2
y]′ = 2xex

2

which, after integration, implies ex
2
y = ex

2
+ C. The initial condition gives 2 = 1 + C so

C = 1. This gives y = 1 + e−x
2

for all 0 ≤ x < 1. Now the continuity of the solution then

requires that

y(1) = lim
x→1

y(x) =
(
1 + e−1

)
.

Then we need to solve

y′ + 2xy = 0 with y(1) =
(
1 + e−1

)
for x ≥ 1.

Solving this problem we get (notice we have the same integrating factor) [ex
2
y]′ = 0 so

ex
2
y = C and the initial condition implies C = e1

(
1 + e−1

)
=
(
e6 + 1

)
. Finally then we get

y = (e+ 1) e−x
2

for x ≥ 1.

Putting these solutions together we have

y(x) =


(

1 + e−x
2
)
, 0 ≤ x < 1

(e+ 1) e−x
2
, x ≥ 1
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2.4 Exact Equations

Any first order ordinary differential equation of the first degree can be written (in infinitely

many ways) in differential form,

M(x, y) dx+N(x, y) dy = 0.

We know from Calculus III that if F (x, y) is a function satisfying

dF = M dx+N dy = 0,

then this equation is called exact and an (implicit) general solution of the differential equation

is

F (x, y) = c,

where c is an arbitrary constant. Since the differential of a function, F (x, y), is

dF ≡ ∂F

∂x
dx+

∂F

∂y
dy,

M and N are the partial derivatives of F :

M(x, y) =
∂F

∂x
, N(x, y) =

∂F

∂y
.

A necessary and sufficient condition for exactness. Consider the ODE written in

differential form,

M dx+Ndy = 0.

A necessary and sufficient condition for exactness is

∂M

∂y
=
∂N

∂x
.

What this means is that if the equation is exact then we are guaranteed there exists a
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function F (x, y) so that

M =
∂F

∂x
and N =

∂F

∂y
(10)

and therefore a general solution to the problem can be written as F (x, y) = 0.

More importantly (10) provides a method for finding F (x, y). Namely, integrating the

first equation of we see that

F (x, y) =

∫
M(ξ, y) dξ + f(y),

for some f(y).

If we differentiate this equation with respect to y and use the the second equation in (10)

∂F

∂y
= N(x, y)

we arrive at an equation

∫
My(x, y) dx+ f ′(y) =

∂F

∂y
= N(x, y).

It can be shown that, after simplifying, we will arrive at an equation only in y for which

we can find f(y) by integration.

Let us consider a simple example

Example 2.12.

xdx+ ydy = 0.

Here M = x and N = y so
∂M

∂y
= 0 =

∂N

∂x

so the equation is exact and we know there exists a function F (x, y) so that Fx = M = x

and Fy = N = y.

Integrating Fx = M with respect to x we have

F (x, y) =

∫
x dx =

x2

2
+ h(y).
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Differentiating with respect to y and using Fy = N we have

y = N = Fy = h′(y) ⇒ h′(y) = y.

Now, integrating we obtain

h(y) =
y2

2

and we find

F (x, y) =
x2

2
+
y2

2
.

The implicit general solution is
x2

2
+
y2

2
= c

which, by renaming the constant c can be written as

x2 + y2 = c.

Example 2.13.

(2x− 1)dx+ (3y + 7)dy = 0.

Here M = (2x− 1) and N = (3y + 7) so

∂M

∂y
= 0 =

∂N

∂x

so the equation is exact and we know there exists a function F (x, y) so that Fx = M = 2x−1

and Fy = N = 3y + 7.

Integrating Fx = M = (2x− 1) with respect to x we have

F (x, y) =

∫
(2x− 1) dx = x2 − x+ h(y).

Differentiating with respect to y and using Fy = N we have

(3y + 7) = N = Fy = h′(y) ⇒ h′(y) = 3y + 7.
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Now, integrating we obtain

h(y) =
3y2

2
+ 7y

and we find

F (x, y) = x2 − x+
3y2

2
+ 7y.

The implicit general solution is

x2 − x+
3y2

2
+ 7y = c.

Example 2.14.

(2xy2 − 3)dx+ (2x2y + 4)dy = 0.

Here M = (2xy2 − 3) and N = (2x2y + 4) so

∂M

∂y
= 4xy =

∂N

∂x

so the equation is exact and we know there exists a function F (x, y) so that Fx = M =

(2xy2 − 3) and Fy = N = (2x2y + 4).

Integrating Fx = M = (2xy2 − 3) with respect to x we have

F (x, y) =

∫
(2xy2 − 3) dx = x2y2 − 3x+ h(y).

Differentiating with respect to y and using Fy = N we have

(2x2y + 4) = N = Fy = 2x2y + h′(y) ⇒ h′(y) = 4.

Now, integrating we obtain

h(y) = 4y

and we find

F (x, y) = x2y2 − 3x+ 4y.
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The implicit general solution is

x2y2 − 3x+ 4y = c.

Example 2.15.

(x2 − y2)dx+ (y2 + 2xy)dy = 0.

Here M = (x2 − y2) and N = (y2 + 2xy) so

∂M

∂y
= −2y 6= 2y =

∂N

∂x

so the equation is not exact.

Example 2.16.

(2x− y3 + y2 sin(x))dx− (3xy2 + 2y cos(x))dy = 0.

Here M = (2x− y3 + y2 sin(x)) and N = −(3xy2 + 2y cos(x)) so

∂M

∂y
= −3y2 + 2y sin(x) =

∂N

∂x

so the equation is exact and we know there exists a function F (x, y) so that Fx = M =

(2x− y3 + y2 sin(x)) and Fy = N = −(3xy2 + 2y cos(x)).

Integrating Fx = M = (2x− y3 + y2 sin(x)) with respect to x we have

F (x, y) =

∫
(2x− y3 + y2 sin(x)) dx = x2 − xy3 − y2 cos(x) + h(y).

Differentiating with respect to y and using Fy = N we have

−(3xy2 + 2y cos(x)) = N = Fy = −3xy2 − 2y cos(x) + h′(y) ⇒ h′(y) = 0.

Now, integrating we obtain

h(y) = 0
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and we find

F (x, y) = x2 − xy3 − y2 cos(x).

The implicit general solution is

x2 − xy3 − y2 cos(x) = c.

Example 2.17.

(y ln(y)− e−xy)dx+ (y−1 + x ln(y))dy = 0.

Here M = (y ln(y)− e−xy) and N = (y−1 + x ln(y)) so

∂M

∂y
= ln(y) + 1 + xe−xy 6= ln(y) =

∂N

∂x

so the equation is not exact.

Example 2.18.

(2xex − y + 6x2)dx− xdy = 0.

Here M = (2xex − y + 6x2) and N = −x so

∂M

∂y
= −1 =

∂N

∂x

so the equation is exact and we know there exists a function F (x, y) so that Fx = M =

(2xex − y + 6x2) and Fy = N = −x.

Integrating Fy = N = −x with respect to y we have

F (x, y) =

∫
(−x) dy = −xy + h(x).

Differentiating with respect to x and using Fx = (2xex − y + 6x2) we have

(2xex − y + 6x2) = M = Fx = −y + h′(x) ⇒ h′(x) = (2xex + 6x2).
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Now, integrating we obtain

h(y) =

∫
(2xex + 6x2) dx

The first integral on the right requires integration by parts

∫
xex dx =

∫
x (ex)′ dx = xex −

∫
ex dx = xex − ex

So we have

h(y) = 2xex − 2ex + 2x3

and we find

F (x, y) = −xy + 2xex − 2ex + 2x3.

The implicit general solution is

−xy + 2xex − 2ex + 2x3 = c.

Example 2.19.

(tan(x)− sin(x) sin(y))dx+ (cos(x) cos(y))dy = 0.

Here M = (tan(x)− sin(x) sin(y)) and N = (cos(x) cos(y)) so

∂M

∂y
= − sin(x) cos(y) =

∂N

∂x

so the equation is exact and we know there exists a function F (x, y) so that Fx = M =

(tan(x)− sin(x) sin(y)) and Fy = N = (cos(x) cos(y)).

Integrating Fy = N = (cos(x) cos(y)) with respect to y we have

F (x, y) =

∫
(cos(x) cos(y)) dy = cos(x) sin(y) + h(x).
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Differentiating with respect to x and using Fx = − sin(x) sin(y) we have

(tan(x)− sin(x) sin(y)) = M = Fx = − sin(x) cos(y) + h′(x) ⇒ h′(x) = tan(x).

Now, integrating we obtain

h(y) =

∫
tan(x) dx

The first integral on the right requires a special substitution. Writing tan(x) = sin(x)/ cos(x)

we set u = cos(x) which implies du = − sin(x) dx and the integral becomes

∫
tan(x) dx = −

∫
du

u
= − ln(|u|) = − ln(| cos(x)|)

So we have

h(y) = − ln(| cos(x)|)

and we find

F (x, y) = cos(x) sin(y)− ln(| cos(x)|).

The implicit general solution is

cos(x) sin(y)− ln(| cos(x)|) = c.

Integrating Factors

Consider a differential equation written in differential form

M̃ dx+ Ñ dy = 0.

When this equation is not exact it can sometimes be made exact using an integrating factor.

The idea is this, it may be that M̃y 6= Ñx but we can look for a function µ to multiply times

the equation so that the resulting equation

µM̃ dx+ µÑ dy = 0
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is exact, i.e., Defining M = µM̃ and N = µÑ we obtain an exact equation M dx+N dy = 0.

The problem of finding such an integrating factor can be very difficult and we will only

investigate two possible scenarios. We may look for an integrating factor that is a function

of x alone, i.e., µ = µ(x). To test the new equation for exactness we would seek µ(x) so that

(µ(x)M̃)y − (µ(x)Ñ)x = µ(x)M̃y − µ(x)Ñx − µ′(x)Ñ = 0

This can be rewritten as

µ′(x)−

(
M̃y − Ñx

Ñ

)
µ(x) = 0.

Assuming that (
M̃y − Ñx

Ñ

)
≡ f(x)

is a function of x alone then denoting it by f(x) we obtain a first order linear equation

µ′(x)− f(x)µ(x) = 0,

with solution

µ(x) = C exp

(∫
f(x) dx

)
.

Thus we obtain the following

If f(x) =

(
M̃y − Ñx

Ñ

)
⇒ µ(x) = exp

(∫
f(x) dx

)
(11)

In a similar way we could ask if there is an integrating factor as a function of y alone.

To test the new equation for exactness we would seek µ(y) so that

(µ(y)M̃ − (µ(y)Ñ)x = µ′(y)M̃ + µ(y)M̃)y − µ(y)Ñx = 0

This can be rewritten as

µ′(y) +

(
M̃y − Ñx

M̃

)
µ(y) = 0.
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Assuming that (
M̃y − Ñx

M̃

)
is a function of y alone then denoting it by g(y) we obtain a first order linear equation

µ′(y) + g(y)µ(y) = 0,

with solution

µ(y) = C exp

(
−
∫
g(y) dy

)
.

Thus we obtain the following

If g(y) =

(
M̃y − Ñx

M̃

)
⇒ µ(y) = exp

(
−
∫
g(y) dy

)
(12)

Example 2.20. Consider y dx− x dy = 0. We have M̃ = y and Ñ = −x and

M̃y − Ñx = 1 + 1 = 2.

If we divide by Ñ we obtain a function of x alone

f(x) =
M̃y − Ñx

Ñ
=

2

−x
.

We obtain

µ(x) = e
∫
f(x) dx = e

∫
−2dx/x = e−2 ln(x) = x−2.

Multiplying the equation through by µ(x) we have

yx−2 dx− x−1 dy = 0

so M = yx−2 and N = −x−1 and this equation is exact since

My = x−2 = Nx.
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If we divide by M̃ we obtain a function of y alone

g(y) =
M̃y − Ñx

M̃
=

2

y
.

We obtain

µ(y) = e−
∫
g(y) dy = e

∫
−2dy/y = e−2 ln(y) = y−2.

Multiplying the equation through by µ we have

y−1 dx− xy−2 dy = 0

so M = y−1 and N = −xy−2 and this equation is exact since

My = −y−2 = Nx.

Example 2.21. Consider (2y2+3x) dx+2xy dy = 0. We have M̃ = (2y2+3x) and Ñ = 2xy

and

M̃y − Ñx = 4y − 2y = 2y.

If we divide by Ñ we obtain a function of x alone

f(x) =
M̃y − Ñx

Ñ
=

4y − 2y

2xy
=

2y

2xy
=

1

x
.

We obtain

µ = e
∫
f(x) dx = e

∫
dx/x = eln(x) = x.

Multiplying the equation through by µ we have

(2xy2 + 3x2) dx+ 2x2y dy = 0

so M = (2xy2 + 3x2) and N = 2x2y and this equation is exact since

My = 4xy = Nx.
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Example 2.22. Consider (2x+ yx−1) dx+ (xy − 1) dy = 0. We have M̃ = (2x+ yx−1) and

Ñ = (xy − 1) and

M̃y − Ñx = x−1 − y.

If we divide by Ñ we obtain a function of x alone

f(x) =
M̃y − Ñx

Ñ
=
x−1 − y
xy − 1

= −1

x

xy − 1

xy − 1
= −1

x
.

We obtain

µ = e
∫
f(x) dx = e−

∫
dx/x = e− ln(x) = x−1.

Multiplying the equation through by µ we have

(2 + yx−2) dx+ (y − x−1) dy = 0

so M = (2 + yx−2) and N = (y − x−1) and this equation is exact since

My = x−2 = Nx.

Example 2.23. Consider (y2 +2xy) dx−x2, dy = 0. We have M̃ = (y2 +2xy) and Ñ = −x2

and

M̃y − Ñx = (2y + 2x)− (−2x) = 2y + 4x.

If we divide by M̃ we obtain a function of y alone

g(y) =
M̃y − Ñx

M̃
=

2y + 4x

(y2 + 2xy)
=

2

y

(y + 2x)

(y + 2x)
=

2

y
.

We obtain

µ = e−
∫
g(y) dy = e−2

∫
dy/y = e−2 ln(y) = y−2.

Multiplying the equation through by µ we have

(1 + 2xy−1) dx− (x2y−2) dy = 0
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so M = (1 + 2xy−1) and N = −(x2y−2) and this equation is exact since

My = −2xy−2 = Nx.

Example 2.24. Consider (xy) dx + (2x2 + 3y2 − 20) dy = 0. We have M̃ = (xy) and

Ñ = (2x2 + 3y2 − 20) and

M̃y − Ñx = (x)− (4x) = −3x.

If we divide by M̃ we obtain a function of y alone

g(y) =
M̃y − Ñx

M̃
=
−3x

(xy)
=
−3

y
.

We obtain

µ = e−
∫
g(y) dy = e3

∫
dy/y = e3 ln(y) = y3.

Multiplying the equation through by µ we have

(xy4) dx+ (2x2y3 + 3y5 − 20y3) dy = 0

so M = (xy4) and N = (2x2y3 + 3y5 − 20y3) and this equation is exact since

My = 4xy3 = Nx.

Example 2.25. Consider (x + y) sin(y) dx + (x sin(y) + cos(y)) dy = 0. We have M̃ =

(x+ y) sin(y) and Ñ = (x sin(y) + cos(y)) and

M̃y − Ñx = (sin(y) + (x+ y) cos(y))− sin(y) = (x+ y) cos(y).

If we divide by M̃ we obtain a function of y alone

g(y) =
M̃y − Ñx

M̃
=

(x+ y) cos(y)

(x+ y) sin(y)
=

cos(y)

sin(y)
.
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We obtain

µ = e−
∫
g(y) dy = e−

∫
cos(y)/ sin(y) dy = e−

∫
du/u = e− ln(u) = u−1 =

1

sin(y)
.

Multiplying the equation through by µ we have

(x+ y) dx+ (x+ cot(y)) dy = 0

so M = (x+ y) and N = (x+ cot(y)) and this equation is exact since

My = 1 = Nx.

Example 2.26. Solve the IVP (3exy + 4) dx + ex dy = 0 with y(0) = 0. First let us find a

general solution.

We have M̃ = (3exy + 4) and Ñ = ex and

M̃y − Ñx = 3ex − ex = 2ex.

If we divide by Ñ we obtain a function of x alone

f(x) =
M̃y − Ñx

Ñ
=

2ex

ex
= 2.

We obtain

µ = e
∫
f(x) dx = e

∫
2dx = e2x.

Multiplying the equation through by µ we have

(3e3xy + 4e2x) dx+ e3x dy = 0

so M = (3e3xy + 4e2x) and N = e3x and this equation is exact since

My = 3e3x = Nx.
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So now we need to find the general solution of the exact equation (3e3xy + 4e2x) dx +

e3x dy = 0 Fx = (3e3xy + 4e2x) and Fy = e3x Integrating Fy with respect to y gives

F =

∫
Fy dy =

∫
e3x dy = ye3x + h(x).

Differentiating this with respect to x and using Fx = (3e3xy + 4e2x) we have

(3e3xy + 4e2x) = Fx = 3ye3x + h′(x)

so

h′(x) = 4e2x, ⇒ h(x) =

∫
4e2x dx = 2e2x.

Therefore a general solution is

ye3x + 2e2x = C.

We now apply the initial condition y(0) = 0 to obtain C = 2 and we have ye3x + 2e2x = 2

which is an implicit solution. Finally then we can obtain an explicit solution by solving for

y

y = 2e−x − 2e−3x.

Example 2.27. Find an integrating factor in the form µ = xnym for the equation

(2y2 − 6xy) dx+ (3xy − 4x2) dy = 0 (13)

So we have M̃ = (2y2 − 6xy), Ñ = (3xy − 4x2) and we seek an integrating factor µ. This

means we need (µM̃)y = (µÑ)x or

∂ [xnym(2y2 − 6xy)]

∂y
=
∂ [xnym(3xy − 4x2)]

∂x

Simplifying this a bit by collecting the x and y terms we obtain

∂(2xnym+2 − 6xn+1ym+1)

∂y
=
∂(3xn+1ym+1 − 4xn+2ym)

∂x
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or

2(m+ 2)xnym+1 − 6(m+ 1)xn+1ym = 3(n+ 1)xnym+1 − 4(n+ 2)xn+1ym.

Now on each side we have powers of the form xnym+1 and xn+1ym and the corresponding

coefficients of these terms on each side must be the same so that implies

2(m+ 2) = 3(n+ 1) and − 6(m+ 1) = −4(n+ 2)

or

3n− 2m = 1

2n− 3m = −1

To solve this system system of equations you could multiply the first equation by −2/3 and

add it to the second equation (so that the n’s cancel) to get

3n− 2m = 1

−5/3m = −5/3

From the second equation we get m = 1 and then the first equation becomes 3n − 2 = 1

which implies n = 1 so we obtain an integrating factor µ = xy.

Lets check to make sure it works. Multiplying the differential equation (13) by µ we get

(2xy3 − 6x2y2) dx+ (3x2y2 − 4x3y) dy = 0.

So M = (2xy3 − 6x2y2) and N = (3x2y2 − 4x3y) and we have

My = (6xy2 − 12x2y) and Nx = (6xy2 − 12x2y)

and since My = Nx the equation is exact.
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2.5 Substitutions

2.5.1 Homogeneous Equations

Consider a first order equation
dy

dx
= f(x, y).

We say that this equation is Homogeneous if the right hand side can be written in the form

dy

dx
= F (y/x). (14)

If this is possible then we can reduce the equation to a separable equation using the change

of dependent variable

u = y/x.

Note that u = y/x implies y = xu which, in turn, implies

dy

dx
= u+ x

du

dx
.

Therefore the equation (14) can be written as

u+ x
du

dx
= F (u)

which is separable. Namely, we can write

du

F (u)− u
=
dx

x

and we obtain an implicit solution by integration

∫
du

F (u)− u
=

∫
dx

x
+ C.

Example 2.28. Consider the problem

x
dy

dx
=
y2

x
+ y, y(1) = 1.
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Dividing by x we obtain
dy

dx
=
(y
x

)2
+
(y
x

)
.

Proceeding as above, we set u = y/x implies y = xu which, in turn, implies

dy

dx
= u+ x

du

dx
.

Thus the equation becomes

u+ x
du

dx
= u2 + u.

Now we simplify by subtracting the u on both sides and separate the variables to obtain

du

u2
=
dx

x
.

Integrating both sides we have

−1

u
= ln |x|+ C.

So we get

u =
−1

ln |x|+ C

or
y

x
=

−1

ln |x|+ C

From the IC we have

1 =
−1

ln |1|+ C
=
−1

C
⇒ C = −1.,

which gives
y

x
=

−1

ln |x| − 1

and finally

y =
x

1− ln |x|

Example 2.29. Consider the problem (x − y) dx + x dy = 0, y(1) = 1. The equation can

be written as
dy

dx
=
y − x
x

=
y

x
− 1.
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Set u = y/x implies y = xu which implies

dy

dx
= u+ x

du

dx
.

Thus the equation becomes

u+ x
du

dx
= u− 1.

Now we simplify by subtracting the u on both sides and separate the variables to obtain

du = −dx
x
.

Integrating both sides we have

u = − ln |x|+ C.

So we get
y

x
= − ln(|x|) + C

From the initial conditions we have C = 1 so

y = x(1− ln(x)).

Example 2.30. Consider the problem

dy

dx
=
y − x
y + x

.

Dividing the top and bottom by x we have

dy

dx
=

(y/x)− 1

(y/x) + 1
.

Set u = y/x implies y = xu which implies

dy

dx
= u+ x

du

dx
.
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Thus the equation becomes

u+ x
du

dx
=
u− 1

u+ 1
.

Now we subtract the u from both sides

x
du

dx
=
u− 1

u+ 1
− u =

(u− 1)− u(u+ 1)

u+ 1
=
−(u2 + 1)

u+ 1
.

Separate variables to get
(u+ 1)du

u2 + 1
= −dx

x
.

Integrating both sides we have

∫
u du

u2 + 1
+

∫
du

u2 + 1
= − ln |x|+ C.

For the first integral use the substitution w = u2 + 1 which implies dw = 2udu and the

integral becomes

∫
u du

u2 + 1
=

1

2

∫
dw

w
=

1

2
ln(|w|) =

1

2
ln(u2 + 1) = ln((y/x)2 + 1)1/2

and ∫
du

u2 + 1
= tan−1(u) = tan−1(y/x).

Combining these results we have

ln((y/x)2 + 1)1/2 + tan−1(y/x) = − ln |x|+ C.

Example 2.31. Consider the similar problem

dy

dx
=
y + x

y − x
.

Dividing the top and bottom by x we have

dy

dx
=

(y/x) + 1

(y/x)− 1
.
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Set u = y/x implies y = xu which implies

dy

dx
= u+ x

du

dx
.

Thus the equation becomes

u+ x
du

dx
=
u+ 1

u− 1
.

Now we subtract the u from both sides

x
du

dx
=
u+ 1

u− 1
− u =

(u+ 1)− u(u− 1)

u− 1
=
−(u2 − 2u− 1)

u− 1
.

Separate variables to get
(u− 1)du

u2 − 2u− 1
= −dx

x
.

Integrating both sides we have

∫
(u− 1) du

u2 − 2u− 1
= − ln |x|+ C.

For the integral on the left use the substitution w = u2−2u−1 which implies dw = 2(u−1)du

and the integral becomes

∫
(u− 1) du

u2 − 2u− 1
=

1

2

∫
dw

w
=

1

2
ln(|w|) =

1

2
ln(u2 − 2u− 1) = ln((y/x)2 − 2(y/x)− 1)1/2

Combining these results we have

ln((y/x)2 − 2(y/x)− 1)1/2 = − ln |x|+ C.

Example 2.32. Consider the IVP

dy

dx
=
x+ yey/x

xey/x
, y(1) = 0.
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Dividing the top and bottom by x we have

dy

dx
=

1 + (y/x)ey/x

ey/x
.

Set u = y/x implies y = xu which implies

dy

dx
= u+ x

du

dx
.

Thus the equation becomes

u+ x
du

dx
=

1 + ueu

eu
= e−u + u.

Now we subtract the u from both sides

x
du

dx
= e−u.

Separate variables to get

eu du =
dx

x
.

Integrating both sides we have

eu = ln(|x|) + C.

Applying the IC we get

1 = 0 + C ⇒ C = 1.

Combining these results we have

ey/x = ln(|x|) + 1.

Take logarithm of both sides to get

y

x
= ln(ln(|x|) + 1)
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and finally

y = x ln(ln(|x|) + 1).

Example 2.33. Consider the IVP

dy

dx
=
y2 − x2

2xy
, y(1) = 1.

Dividing the bottom into the top

dy

dx
=

1

2

[(y
x

)
−
(
x

y

)]
.

Set u = y/x implies y = xu which implies

dy

dx
= u+ x

du

dx
.

Thus the equation becomes

u+ x
du

dx
=

1

2

[
u− 1

u

]
.

Now we subtract the u from both sides

x
du

dx
= −1

2

[
u+

1

u

]
= −1

2

[
u2 + 1

u

]
.

Separate variables to get
2u du

u2 + 1
= −dx

x
.

Integrating both sides we have

∫
2u du

u2 + 1
= − ln(|x|) + C.

If we set w = u2 + 1 then dw = 2udu and the integral on the left becomes

∫
2u du

u2 + 1
=

∫
dw

w
= ln(|w|)
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so we have

ln(u2 + 1) = − ln(|x|) + C

or

ln((y/x)2 + 1) = − ln(|x|) + C

Applying the IC we get

ln(2) = 0 + C ⇒ C = ln(2).

Combining these results we have (notice x = 1 > 0 which implies ln(|x|) = ln(x))

ln((y/x)2 + 1) = − ln(|x|) + ln(2) = ln(2/x).

Exponentiate both sides to get

(y/x)2 + 1 = 2/x

and the multiply by x2,

y2 + x2 = 2x

move x2 to the right and take the square root

y =
√

2x− x2.

Notice we take the positive square root since (from the IC) y > 0.

2.5.2 Bernoulli equations

A Bernoulli equation is any equation that can be written in the form

y′ + p(x)y = f(x)yn, n 6= 0, 1. (15)

Note that if n = 0, 1 then the equation is first order linear.

The Bernoulli equation can be reduced to a first order linear equation using the following
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substitution:

u = y1−n.

This relation implies
du

dx
= (1− n)y−n

dy

dx
.

Multiplying the Bernoulli equation by (1− n)y−n we see that it can be written as

(1− n)y−n
dy

dx
+ (1− n)p(x)y1−n = (1− n)f(x)yny−n

which simplifies to

u′ + (1− n)p(x)u = (1− n)f(x), (16)

which is first order linear and can be solved using the methods discussed in the Section on

first order linear problems.

Example 2.34. Consider the problem

y′ + y = y4.

This is a Bernoulli equation with n = 4 so (1−n) = −3 and we set u = y−3. Then we obtain

the linear equation

u′ − 3u = −3.

To solve this problem we find the integrating factor

µ = e−3
∫

dx = e−3x.

Multiplying by µ we obtain (
e−3xu

)′
= −3e−3x.

Next we integrate to obtain

∫ (
e−3xu

)′
dx =

∫
−3e−3x dx

50



which gives

e−3xu = e−3x + C

or

u(x) = 1 + Ce3x.

Finally, converting back to y we have

y(x)−3 = 1 + Ce3x.

Example 2.35. Consider the problem

xy′ + y = y−2 with y(1) = 2.

First we note the equation is not in the correct form and we must divide by x to get

y′ +
1

x
y = x−1y−2.

This is a Bernoulli equation with n = −2 so (1− n) = 3 and we set u = y3. Then we obtain

the linear equation

u′ +
3

x
u =

3

x
.

To solve this problem we find the integrating factor

µ = e3
∫
dx/x = e3 ln(x) = x3.

Multiplying by µ we obtain (
x3u
)′

= 3x2.

Next we integrate to obtain

∫ (
x3u
)
dx =

∫
3x2, dx = x3 + C
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which gives

x3u = x3 + C

or

x3y3 = x3 + C

Applying the IC we have

8 = 1 + C ⇒ C = 7

x3y3 = x3 + 7

Dividing by x3 and taking the cube root of both sides gives

y(x) = (1 + 7/x3)1/3.

Example 2.36. Consider the problem

xy′ + y = y2 with y(1) =
1

2
.

First we note the equation is not in the correct form and we must divide by x to get

y′ +
1

x
y = x−1y2.

This is a Bernoulli equation with n = 2 so (1−n) = −1 and we set u = y−1. Then we obtain

the linear equation

u′ − 1

x
u = −1

x
.

To solve this problem we find the integrating factor

µ = e−
∫
dx/x = e− ln(x) = x−1.

Multiplying by µ we obtain (
x−1u

)′
= −x−2.
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Next we integrate to obtain

∫ (
x−1u

)
dx = −

∫
x−2, dx = x−1 + C

which gives

x−1u = x−1 + C

or

x−1y−1 = x−1 + C

Applying the IC we have

2 = 1 + C ⇒ C = 1

x−1y−1 = x−1 + 1

Multiply by x and raising both sides to the (−1) power we have

y(x) =
1

x+ 1
.

Example 2.37. Consider the problem

y′ − 3

x
y = 9x4y1/3 with y(1) = 8.

This is a Bernoulli equation with n = 1/3 so (1 − n) = 2/3 and we set u = y2/3. Then we

obtain the linear equation

u′ − 2

x
u = 6x4.

To solve this problem we find the integrating factor

µ = e−2
∫
dx/x = e−2 ln(x) = x−2.

Multiplying by µ we obtain (
x−2u

)′
= 6x2.
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Next we integrate to obtain

∫ (
x−2u

)
dx = 6

∫
x2, dx = 2x3 + C

which gives

x−2u = 2x3 + C

or

x−2y2/3 = 2x3 + C

Applying the IC we have

4 = 2 + C ⇒ C = 2

x−2y2/3 = 2x3 + 2

Multiply by x2 and raising both sides to the (3/2) power we have

y(x) = (2x5 + 2x2)3/2.

Example 2.38. Consider the problem

y′ +
4

x
y = 16x−4y−3/4 with y(1) = 1.

This is a Bernoulli equation with n = −3/4 so (1− n) = 7/4 and we set u = y7/4. Then we

obtain the linear equation

u′ +
7

x
u = 28x−4.

To solve this problem we find the integrating factor

µ = e7
∫
dx/x = e7 ln(x) = x7.

Multiplying by µ we obtain (
x7u
)′

= 28x3.
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Next we integrate to obtain

∫ (
x7u
)
dx = 28

∫
x3 dx = 7x3 + C

which gives

x7u = 7x3 + C

or

x7y7/4 = 7x3 + C

Applying the IC we have

1 = 7 + C ⇒ C = −6

x7y7/4 = 7x3 − 6

Divide by x7 and raising both sides to the (4/7) power we have

y(x) =

(
7x3 − 6

x7

)4/7

.

Example 2.39. Consider the problem

y′ + 2xy = 2xy2 with y(0) = −1.

This is a Bernoulli equation with n = 2 so (1−n) = −1 and we set u = y−1. Then we obtain

the linear equation

u′ − 2xu = −2x.

To solve this problem we find the integrating factor

µ = e−2
∫
xdx = e−x

2

.

Multiplying by µ we obtain (
e−x

2

u
)′

= −2xe−x
2

.
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Next we integrate to obtain

∫ (
e−x

2

u
)
dx =

∫
−2xe−x

2

dx = +C

We integrate the right hand side using a simple substitution w = −x2 which implies dw =

−2x dx ∫
−2xe−x

2

dx =

∫
ew dw = ew = e−x

2

.

which gives

e−x
2

u = e−x
2

+ C

or

e−x
2

y−1 = e−x
2

+ C

Applying the IC we have

−1 = 1 + C ⇒ C = −2

e−x
2

y−1 = e−x
2 − 2

Multiply by ex
2

and raising both sides to the (−1) power we have

y(x) =
(

1− 2ex
2
)−1

.

2.5.3 RHS in the form f(ax + by + c)

If for the equation y′ = f(x, y) right hand side can be written as function of a linear relation

in x and y, i.e., it has the form f(ax + by + c) then a simple substitution transforms the

problem into a separable problem. Namely, if we set v = ax + by + c then v′ = a + bf(v)

which is separable.

Example 2.40. Consider the problem

y′ = e−(x+y) − 1, with y(0) = 0.
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We set v = x+ y which implies v′ = 1 + y′ = 1 + (e−v − 1) = e−v. The equation v′ = e−v is

separable and separating the variables we have

ev
dv

dx
= 1 ⇒ ev dv = dx ⇒ ev = x+ C ⇒ ex+y = x+ C.

Thus we have an implicit general solution ex+y = x+ C.

Next we apply the IC to get

1 = 0 + C ⇒ C = 1

so we have

ex+y = x+ 1.

Finally we take the natural log of both sides and subtract x from both sides to get

y(x) = ln(x+ y)− x.

Example 2.41. Consider the problem

y′ = (x+ y + 1)2, with y(1) = −2.

We set v = x + y + 1 which implies v′ = 1 + y′ = 1 + v2 which is separable and separating

the variables we have

∫
dv

v2 + 1
=

∫
dx = x+ C ⇒ tan−1(v) = x+ C.

Thus we have an implicit general solution tan−1(x+ y + 1) = x+ C.

Next we apply the IC to get

tan−1(0) = 1 + C ⇒ C = −1
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so we have

tan−1(x+ y + 1) = x− 1.

Finally we take tan of both sides and subtract x+ 1 from both sides to get

y(x) = tan(x− 1)− (x+ 1).

Example 2.42. Consider the problem

y′ = tan2(x+ y), with y(1) = −1.

We set v = x+ y which implies v′ = 1 + y′ = 1 + tan2(v) which is separable and separating

the variables we have ∫
dv

tan2(v) + 1
=

∫
dx = x+ C.

So the main problem is that we need to evaluate the integral

∫
dv

tan2(v) + 1

Here re recall a main trig identity sin2(θ) + cos2(θ) = 1 which, dividing by cos2(θ), gives

tan2(θ) + 1 = sec2(θ). So we have

∫
dv

tan2(v) + 1
=

∫
dv

sec2(v)
=

∫
cos2(v) dv

At this point we need another trig identity (the half angle formula)

cos2(v) =
1 + cos(2v)

2

and our integral becomes

∫
dv

tan2(v) + 1
=

1

2

∫
(1 + cos(2v)) dv =

1

2

(
v +

1

2
sin(2v)

)
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Thus we have an implicit general solution

1

2

(
v +

1

2
sin(2v)

)
= x+ C

or
1

2

(
x+ y +

1

2
sin(2(x+ y))

)
= x+ C

Next we apply the IC to get

1

2

(
0 +

1

2
sin(0)

)
= 1 + C ⇒ C = −1

so we have
1

2

(
x+ y +

1

2
sin(2(x+ y))

)
= x− 1

Solving for y would not be easy so we stop with a little algebraic simplifying

(
x+ y +

1

2
sin(2(x+ y))

)
= 2x− 2

or

sin(2(x+ y)) = 2(x− y − 2).

Example 2.43. Consider the problem

y′ = cos(x+ y), with y(0) = π/2.

We set v = x + y which implies v′ = 1 + y′ = 1 + cos(v) which is separable and separating

the variables we have ∫
dv

1 + cos(v)
=

∫
dx = x+ C.

So the main problem is that we need to evaluate the integral

∫
dv

1 + cos(v)

Here re recall a main trig identity sin2(θ) + cos2(θ) = 1 which implies sin2(θ) = 1− cos2(θ).
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So we multiply the numerator and denominator by 1− cos(v) and we have

∫
dv

1 + cos(v)
=

∫
(1− cos(v))

(1− cos(v))

dv

1 + cos(v)
=

∫
(1− cos(v)) dv

sin2(v)

=

∫
(csc2(v)− csc(v) cot(v)) dv = − cot(v) + csc(v)

Thus we have an implicit general solution

csc(x+ y)− cot(x+ y) = x+ C

Next we apply the IC to get

csc(π/2)− cot(π/2) = 0 + C

We have csc(π/2) = 1 and cot(π/2) = 0 so C = 1 and we have the implicit solution

csc(x+ y)− cot(x+ y) = x+ 1.

Example 2.44. Consider the problem

y′ = tan(x+ y)− 1.

We set v = x+ y which implies v′ = 1 + y′ = 1 + tan(v)− 1 = tan(v) which is separable and

separating the variables we have

∫
cot(v) dv =

∫
dx = x+ C.

So the main problem is that we need to evaluate the integral

∫
cos(v) dv

sin(v)
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We use the simple substitution w = sin(v) which implies dw = cos(v)dv

∫
cos(v) dv

sin(v)
=

∫
dw

w
= ln(w).

Thus we have an implicit general solution

ln(sin(x+ y)) = x+ C

Example 2.45. Consider the problem

y′ =
y − x+ 1

y − x+ 2
.

There are several choices here for v but we set v = y − x + 2 which implies v′ = y′ − 1 =
v − 1

v
− 1 = −1

v
which is separable and separating the variables we have

∫
v dv = −

∫
dx = −x+ C.

So the main problem is that we need to evaluate the integral

∫
v dv =

1

2
v2 =

1

2
(x− y + 2)2

Thus we have an implicit general solution

1

2
(x− y + 2)2 = −x+ C

If we had chose a different value for v, e.g., v = y − x then we would have gotten

v′ = y′ − 1 = v+1
v+2
− 1 = −1

v+2
which is separable and separating the variables we have

∫
(v + 2) dv = −

∫
dx = −x+ C.
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So the main problem is that we need to evaluate the integral

∫
(v + 2) dv =

1

2
v2 + 2v =

1

2
(y − x)2 + 2(y − x)

Thus we have an implicit general solution

1

2
(y − x)2 + 2(y − x) = −x+ C.

The two different answers given above only differ by a constant.

On the other hand, if we integrate
∫

(v + 2) dv without breaking it up we get

∫
(v + 2) dv =

(v + 2)2

2
=

(y − x+ 2)2

2

exactly as before.
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