
Eigenvalues & Eigenvectors for Periodic Boundary Conditions

The main idea of these notes is to give you a hand doing one of the homework problems.

Consider the eigenvalue problem

y′′(x) = λy(x), y(0) = y(`), y′(0) = y′(`)

1. You show that λ = 0 is an eigenvalue and find the normalized eigenfunction.

2. For λ = µ2 < 0, our ODE becomes y′′ − µ2y = 0 which implies y = c1e
µx + c2e

−µx.
Now we try to satisfy the BCs.

y(0) = y(`) ⇒ c1 + c2 = c1e
µ` + c2e

−µ`

or
(1− eµ`)c1 + (1− e−µ`)c2 = 0.

Then
y′(0) = y′(`) ⇒ µc1 − µc2 = c1µe

µ` − µc2e−µ`

or, dividing by µ,
(1− eµ`)c1 + (1 + e−µ`)c2 = 0.

For this system of equations to have a non-zero solution we would need the determinant
of the coefficient matrix would need to be zero. That is, we would need to find a µ so
that this determinant is zero.∣∣∣∣(1− eµ`) (1− e−µ`)

(1− eµ`) (1 + e−µ`)

∣∣∣∣ = e−µ`(1− eµ`)

and this is only zero when µ = 0. So λ = µ2 > 0 cannot be an eigenvalue for any µ.

3. For λ = −µ2 < 0, I will help you show that there is a infinite set of numbers {µn}∞n=1

giving eigenvalues λn = −µ2
n. The main difference with this case and the Regular

Sturm-Liouville case is that these eigenvalues have multiplicity two.

The means that for each eigenvalue λn there are two (normalized) linearly independent
eigenfunctions y1

n(x) and y1
n(x) satisfying

(yjn)′′(x) = λny
j
n(x), yjn(0) = yjn(`), ; (yjn)′(0) = (yjn)′(`), j = 1, 2.

In fact these eigenfunctions are orthonormal, i.e.,∫ λ

0

yn(x)ym(x) dx = δn,m.

To see this we note that the ODE for this case is y′′+µ2y = 0 and the general solution
is

y(x) = a sin(µx) + b cos(µx).
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We see that

y(0)− y(`) = 0 ⇒ b− (a sin(µ`) + b cos(µ`)) = 0

and
y′(0)− y′(`) = 0 ⇒ aµ− (aµ cos(µ`)− bµ sin(µ`)) = 0

or (
− sin(µ`) 1− cos(µ`)

µ(1− cos(µ`)) µ sin(µ`)

)(
a
b

)
=

(
0
0

)
.

We obtain a nontrivial solution if∣∣∣∣ − sin(µ`) 1− cos(µ`)
µ(1− cos(µ`)) µ sin(µ`)

∣∣∣∣ = −µ sin2(µ`)− µ(1− cos(µ`))2 = 0.

Expanding the second term and simplifying we arrive at cos(µ`) = 1 and so

µ =
2nπ

`
, n = 1, 2, · · ·

In this case a, b are arbitrary and so to each eigenvalue

λn =

(
2nπ

`

)
n = ±1,±2, · · ·

we have

yn(x) = an sin

(
2nπ

`
x

)
+ bn cos

(
2nπ

`
x

)
where a and b are arbitrary. So, for example we could take a = C and b = 0 to get

eigenfunctions C sin

(
2nπ

`
x

)
or we could take a = 0 and b = C to get eigenfunctions

C cos

(
2nπ

`
x

)
. From this we conclude that for each eigenvalue there are two linearly

independent eigenfunctions.
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