
Section 12.6: Non-homogeneous Problems

1 Introduction

Up to this point all the problems we have considered are we what we call homogeneous
problems. This means that for an interval 0 < x < ` the problems were of the form

ut(x, t) = kuxx(x, t),

B0(u) = 0, B1(u) = 0

u(x, 0) = f(x)

In contrast, in Section we are concerned with some non-homogeneous cases:

ut(x, t) = kuxx(x, t) +R(x),

B0(u) = γ0, B1(u) = γ1

u(x, 0) = f(x)

where γj are constants and R is a function of x but not t. I would like to do the case where
it is a function of t but the book does not and there is no time.

Here we have used the notation Bj(u) to indicate our usual boundary conditions

B0(u) = α0ux(0, t) + α1u(0, t), B1(u) = β0ux(`, t) + β1u(`, t).

Specifically then for Dirichlet boundary conditions we have B0(u) = u(0, t), B1(u) = u(`, t)
and for Neumann conditions we have B0(u) = ux(0, t), B1(u) = ux(`, t).

1.1 Non-Homogeneous Equation, Homogeneous Dirichlet BCs

We first show how to solve a non-homogeneous heat problem with homogeneous Dirichlet
boundary conditions

ut(x, t) = kuxx(x, t) +R(x), 0 < x < `, t > 0 (1)

u(0, t) = 0, u(`, t) = 0

u(x, 0) = f(x)
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Let us recall from all our examples involving Dirichlet BC the Sturm-Liouville problem gives

λn = −µ2
n, µn =

nπ

`
, ϕn(x) =

√
2

`
sin(µnx).

To solve this problem we look for a function ψ(x) so that the change of dependent vari-
ables u(x, t) = v(x, t) + ψ(x) transforms the non-homogeneous problem into a homogeneous
problem. In particular we have

R = ut − kuxx = (v + ψ)t − k(v + ψ)xx = vt − kvxx − kψ′′.

So if we want vt − kvxx = 0 then we need

ψ′′ = −1

k
R.

In addition we want ψ to satisfy the BCs so we look for ψ satisfying:

ψ′′(x) = −1

k
f(x), 0 < x < `,

ψ(0) = 0, ψ(`) = 0.

Notice this is a non-homogeneous second order constant coefficient boundary value problem.

At t = 0 we have v(x, 0) = u(x, 0) − ψ(x) = f(x) − ψ(x) so the heat problem for v has a
different initial condition.

Thus, in order to solve (1) we need to solve the following:

ψ′′(x) = −1

k
f(x), 0 < x < `,

ψ(0) = 0, ψ(`) = 0.

and then

vt(x, t) = kvxx(x, t),

v(x, 0) = 0, v(`, t) = 0

v(x, 0) = f(x)− ψ(x) ≡ v0(x)

to obtain

u(x, t) = v(x, t) + ψ(x).

We already know how to solve the heat problem:

v(x, t) =
∞∑
n=1

cne
kλntϕn(x),

cn =

∫ `

0

v0(x)ϕn(x) dx.
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Before we turn to finding ψ let us make a very important remark.

Remark 1.1. The solution v approaches zero as t goes to infinity which means that u
converges to a non-constant steady state, i.e., the solution consists of two parts which are
often referred to as the transient and the steady state.

u(x, t) = v(x, t) + ψ(x)→ ψ(x) as t→∞.

This is a very important property of the heat equation. Solutions tend to a equilibrium
solution., i.e., a solution for which ut(x, t) = 0 which means a solution of

0 = kuxx +R(x), u(x, t) = 0, u(`, t) = 0.

Example 1.1. Find the steady state solution for the heat problem

ut(x, t) = uxx(x, t)− 6x, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = ϕ(x)

As described in the remark the steady state problem is obtained by setting ut = 0 and
solving the non-homogeneous BVP

ψ′′(x) = 6x, 0 < x < 1,

ψ(0) = 0, ψ(1) = 0

For this problem we apply the techniques from an elementary ODE class. Namely, we know
that the general solution is the sum of the general solution of the homogenous problem ψh
and any particular solution ψp. The general solution of the homogeneous problem ψ′′(x) = 0
is ψh(x) = c1x + c2 and it is clear that ψp(x) = x3 is a particular solution. N.B. Remember
we learned two methods to find a particular solution: Undetermined Coefficients, Variation
of Parameters.

So we have ψ(x) = ψh(x) + ψp(x) = c1x+ c2 + x3. Now we try to find c1 and c2 so that the
boundary conditions are satisfied. We need

0 = ψ(0) = c2, and 0 = ψ(1) = c1 + 13

which implies c1 = −1 and
ψ(x) = x3 − x.

Thus for every initial condition ϕ(x) the solution u(x, t) to this forced heat problem satisfies

lim
t→∞

u(x, t) = ψ(x).

More generally we can give a formula for the solution of the steady state problem

ψ′′ = −1

k
R, ψ(0) = 0, ψ(`) = 0
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using the method of variation of parameters.

First the general solution of the homogeneous problem ψ′′ = 0 is ψh = c1 + c2x. So we next
need to find a particular solution yp and then the general solution is y = yh + yp.

The method of Variation of Parameters is used to give a particular solution yp for a problem
y′′ + P (x)y′ + Q(x)y = R(x). It requires having a pair of linearly independent solutions of
the homogeneous problem, y1 and y2. The formula is

yp(x) = −y1(x)

∫ t y2(s)R(s)

W (s)
ds+ y2(x)

∫ t y1(s)R(s)

W (s)
ds, W (s) = det

[
y1(s) y2(s)

y′1(s) y′2(s)

]

In our case we take y1 = 1 and y2 = x and notice that the right hand side has 9− 1/k)r(x)
so we have

W (s) = det

[
1 x

0 1

]
= 1.

yp(x) =
1

k

(∫ x

0

sR(s) ds− x
∫ x

0

R(s) ds

)
.

Then the general solution is

ψ(x) =
1

k

(∫ x

0

sR(s) ds− x
∫ x

0

R(s) ds

)
+ c1 + c2x.

Next we apply the BCs to find c1 and c2.

0 = ψ(0) = c1 c1 ⇒ 0.

Next

0 = ψ(`) =
1

k

(∫ `

0

sR(s) ds− `
∫ x

0

R(s) ds

)
+ c2`

This implies

c2 =
1

k`

(
−
∫ `

0

sR(s) ds+ `

∫ `

0

R(s) ds

)
so we have

ψ(x) =
1

k

(∫ x

0

sR(s) ds− x
∫ x

0

R(s) ds+
x

`

(
−
∫ `

0

sR(s) ds+ `

∫ `

0

R(s) ds

))
.

This can be considerably simplified by factoring out an ` to obtain

ψ(x) =
1

k`

(
`

∫ x

0

sR(s) ds− x`
∫ x

0

R(s) ds− x
∫ `

0

sR(s) ds+ x`

∫ `

0

R(s) ds

)
.

in the denominator then combining the first and third integrals and the second and fourth
integrals. We have

`

∫ x

0

sR(s) ds− x
∫ `

0

sR(s) ds = (`− x)

∫ x

0

sR(s) ds+ x

∫ `

x

sR(s) ds
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and

−x`
∫ x

0

R(s) ds+ x`

∫ `

0

R(s) ds = x`

∫ `

x

R(s) ds.

Combining these results we have

ψ(x) =
1

k`

(
(`− x)

∫ x

0

sR(s) ds+ x

∫ `

x

(`− s)R(s) ds

)
.

Collecting these results we have the following results.

ψ′′(x) = −1

k
R(x), 0 < x < `,

ψ(0) = 0, ψ(`) = 0.

has solution

ψ(x) =
1

k`

(
(`− x)

∫ x

0

sR(s) ds+ x

∫ `

x

(`− s)R(s) ds

)
.

1.2 Non-homogeneous Dirichlet Boundary Conditions

In this section we consider forcing through Dirichlet boundary conditions

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (2)

u(0, t) = γ0, u(`, t) = γ1

u(x, 0) = f(x)

In order to obtain a continuous solution we also need to impose the compatibility conditions

f(0) = γ0, f(`) = γ1.

Our method to solve this problem is to transform it to a homogeneous problem like we did
in the previous section. In order to do this we introduce the function

h(x) = γ0 +
x

`
(γ1 − γ0).

Then we introduce a new function v(x, t) by

w(x, t) = u(x, t)− h(x).

Our goal is to see what problem w(x, t) satisfies. To this end we note that

hxx(x) = 0 ht(x) = 0
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We see that
wt − kwxx = (u(x, t)− h(x))t − k (u(x, t)− h(x))xx = 0

and

w(0, t) = u(0, t)− h(0) = γ0 − γ0 = 0, w(`, t) = u(`, t)− h(`) = γ1 − γ1 = 0.

w(x, 0) = u(x, 0)− h(x) = f(x)−
(
γ0 +

x

`
(γ1 − γ0)

)
≡ w0(x). (3)

Collecting this information we find that w(x, t) satisfies

wt(x, t) = kwxx(x, t), 0 < x < `, t > 0 (4)

w(0, t) = 0, w(`, t) = 0

w(x, 0) = w0(x)

So we can apply our earlier results to obtain a formula for w(x, t).

Once we do this (see below) we can obtain the desired solution from

u(x, t) = w(x, t) + h(x).

Then for the initial condition we compute

w0(x) =
∞∑
n=1

bnϕn(x). (5)

where

cn =

∫ `

0

ϕn(x)w0(x) dx. (6)

Combining these results we obtain

w(x, t) =
∞∑
n=1

cne
kλntϕn(x) (7)

and finally
u(x, t) = w(x, t) + h(x).

Notice in this case, just as in the case of the non-homogeneous equation, that as t→∞ all
the exponential terms in the sum tend to zero and we have

lim
t→∞

u(x, t) = h(x).

This represents a nonzero and non constant steady state temperature profile.
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1.3 More General Non-homogeneous Boundary Conditions

In this section we consider forcing through Neumann boundary conditions.

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (8)

u(0, t) = γ0, ux(`, t) + k1u(`, t) = γ1

u(x, 0) = f(x)

The primary difference between this problem and that considered in the previous section
(i.e., (2)) is that we need a different function h.

In order to find an appropriate function h let us examine the properties we desire. We want
a function that satisfy the following conditions:

ht = 0, hxx = 0, h(0) = γ0, hx(`) + k1h(`) = γ1.

We see that this first suggests h not depend on t and since hxx = 0 we would have h(x) =
c1x+ c2. Applying the boundary conditions we would have

γ0 = h(0) = c2, γ1 = h′(`) + k1h(`) = c1(1 + k1`) + k1c2.

This implies

c2 = γ0, c1 =
(γ1 − k1γ0)

(1 + k1`)
.

So we have

h(x) =
(γ1 − k1γ0)

(1 + k1`)
x+ γ0.

Next we make a change of variables u(x, t) = w(x, t) + h(x) and we find

wt(x, t) = kwxx(x, t), 0 < x < `, t > 0 (9)

wx(0, t) = 0, wx(`, t) + k1w(`, t) = 0

w(x, 0) = w0(x) = f(x)− h(x).

Notice once again that the initial condition w0 is not just the original initial condition and
we obtain

u(x, t) = w(x, t) + h(x).

The only thing that remains is to solve for w and we do this using an eigenfunction expansion.
In this case, due to the boundary conditions, we have Sturm-Liouville problem

ϕ′′ = λϕ, ϕ(0) = 0, ϕ′(`) + k1ϕ(`) = 0.

We can readily show that the eigenvalues are negative since

λ‖ϕ‖2 =

∫ `

0

ϕ′′(x)ϕ(x) dx = −‖ϕ′‖2 + ϕ′(x)ϕ(x)
∣∣`
0

= −‖ϕ′‖2 − k1ϕ(`)2.
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So λ = −µ2 and ϕ(x) = a cos(µx) + b sin(µx). To satisfy the first boundary condition we
need

0 = ϕ(0) = a ⇒ a = 0, ⇒ ϕ(x) = b sin(µx).

Then we need
0 = vp′(`) + k1ϕ(`) = bµ cos(µ`) + k1b sin(µ`),

which implies

tan(µ`) = − µ
k1

.

This equation has infinitely solutions which diverge to infinity but we cannot solve for them in
closed form. We denote them, the associated eigenvalues and the normalized eigenfunctions
by

µn, λn = −µ2
n, ϕn(x) = κn sin(µnx).

Then the solution of our heat problem for w is

w(x, t) =
∞∑
n=1

cne
kλntϕn(x), where cn =

∫ `

0

w0(x)ϕn(x) dx.

Now, once again, since the λn < 0 (and tend to minus infinity) we have

sup
x∈[0,`]

|w(x, t)| t→∞−−−→ 0.

Therefore we have
u(x, t) = w(x, t) + h(x)

t→∞−−−→ h(x).

1.4 Heat Equation with Conduction and Convection

Another variation on the heat equation is to add extra terms that correspond to heat con-
duction and convection.

ut(x, t) = k
(
uxx(x, t)− 2au(x, t)x + bu(x, t)

)
, 0 < x < `, t > 0 (10)

u(0, t) = 0, (11)

u(`, t) = 0, (12)

u(x, 0) = ϕ(x). (13)

There are many different ways to approach this problem. One such method would be to apply
separation of variable directly. The dissadvantange to this is that one gets a more complicated
ode for ϕ(x) and there is a more difficult analysis of the eigenvalues and eigenvectors.

We will take a different approach which allows us to use our earlier work after a change of
dependent variables. So to this end let us define v(x, t) via

u(x, t) = eax+βtv(x, t), β = k(b− a2). (14)

Thus we have
v(x, t) = e−(ax+βt)u(x, t)
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and we can compute

vt − kvxx = e−(ax+βt) (−βu+ ut)− k
[
e−(ax+βt) (−au+ ux)

]
x

= e−(ax+βt) {(−βu+ ut)− k [−a(−au+ ux) + (−aux + uxx)]}
= e−(ax+βt)

[
ut − k(uxx − 2aux + a2u) + βu

]
= e−(ax+βt)

[
ut − k(uxx − 2aux + a2u+ (b− a2)u)

]
= e−(ax+βt) [ut − k(uxx − 2aux + bu)] = 0.

Furthermore
v(0, t) = e−βtu(0, t) = 0, v(`, t) = e−(a`+βt)u(`, t) = 0

and
v(x, 0) = e−axu(x, 0) = e−axϕ(x).

Therefore, v(x, t) is the solution of

vt(x, t) = kvxx(x, t)

v(0, t) = 0, v(`, t) = 0

v(x, 0) = e−axϕ(x).

We have eigenvalues and eigenfunctions

µn =
(nπ
`

)
, λn = −µ2

n, ϕn(x) =

√
2

`
sin (µnx)

and we obtain the solution to this problem as

v(x, t) =
∞∑
n=1

bne
kλnt sin

(nπ
`
x
)

with bn =

∫ `

0

e−axϕ(x)ϕn(x) dx.

Finally our solution to (10)-(13) can be written as

u(x, t) = eax+βt
∞∑
n=1

bne
kλnt sin

(nπ
`
x
)
.
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