
Solving PDEs using Laplace Transforms

Given a function u(x, t) defined for all t > 0 and assumed to be bounded. we can apply the
Laplace transform in t considering x as a parameter.

L(u(x, t)) =

∫ ∞
0

e−stu(x, t) dt ≡ U(x, s)

In applications to PDEs we need the following:

L(ut(x, t) =

∫ ∞
0

e−stut(x, t) dt = e−stu(x, t)
∣∣∞
0

+ s

∫ ∞
0

e−stu(x, t) dt = sU(x, s)− u(x, 0)

so we have
L(ut(x, t) = sU(x, s)− u(x, 0)

In exactly the same way we obtain

L(utt(x, t) = s2U(x, s)− su(x, 0)− ut(x, 0).

We also need the corresponding transforms of the x derivatives:

L(ux(x, t)) =

∫ ∞
0

e−stux(x, t) dt = Ux(x, s)

L(uxx(x, t)) =

∫ ∞
0

e−stuxx(x, t) dt = Uxx(x, s)

Consider the following examples.

Example 1.
∂u

∂x
+
∂u

∂t
= x, x > 0, t > 0,

with boundary and initial condition

u(0, t) = 0 t > 0, and u(x, 0) = 0, x > 0.

As above we use the notation U(x, s) = L(u(x, t))(s) for the Laplace transform of u.
Then applying the Laplace transform to this equation we have

dU

dx
(x, s) + sU(x, s)− u(x, 0) =

x

s
⇒ dU

dx
(x, s) + sU(x, s) =

x

s
.

This is a constant coefficient first order ODE. We solve it by finding the integrating factor

µ = e
R
sdx = esx

Thus we have
d

dx
[esxU(x, s)] = esx

x

s
.

We integrate both sides to get

U(x, s) =
e−sx

s

(∫
esrr dr

)
+ Ce−sx.
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We can use integration by parts to evaluate the integral:∫
esxx dx =

∫ (
esx

s

)′
x dx

=
xesx

s
−
∫ (

esx

s

)
dx

xesx

s
− esx

s2
.

So we have

U(x, s) =
e−sx

s

(
xesx

s
− esx

s2

)
+ Ce−sx =

x

s2
− 1

s3
+ Ce−sx.

We can evaluate the constant C using the boundary condition

0 = U(0, s) = − 1

s3
+ C ⇒ C =

1

s3

so we have

U(x, s) =
x

s2
− 1

s3
+
e−sx

s3
.

Taking the inverse Laplace transform we have

u(x, t) = xt− t2

2
+H(t− x)

(t− x)2

2

where H is the unit step function (or Heaviside function)

H(x) =

{
0, x < 0

1, x ≥ 0
.

Example 2.
∂u

∂x
+
∂u

∂t
+ u = 0, x > 0, t > 0,

with boundary and initial condition

u(0, t) = 0 t > 0, and u(x, 0) = sin(x), x > 0.

As above we use the notation U(x, s) = L(u(x, t))(s) for the Laplace transform of u.
Then applying the Laplace transform to this equation we have

dU

dx
(x, s) + sU(x, s)− u(x, 0) + U(x, s) = 0 ⇒ dU

dx
(x, s) + (s+ 1)U(x, s) = sin(x).

This is a constant coefficient first order linear ODE. We solve it by finding the integrating factor

µ = e
R

(s+1)dx = e(s+1)x

Thus we have
d

dx

[
e(s+1)xU(x, s)

]
= e(s+1)x sin(x).

We integrate both sides to get

U(x, s) = e−(s+1)x

(∫
e(s+1)r sin(r) dr

)
+ Ce−(s+1)x.
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We can use integration by parts to evaluate the integral:

e−(s+1)x

(∫ x

0

e(s+1)r sin(r) dr

)
=

(s+ 1) sin(x)− cos(x) + e−(s+1)x)

s2 + 2s+ 2
.

So we have

U(x, s) =
(s+ 1) sin(x)− cos(x) + e−(s+1)x)

s2 + 2s+ 2
+ Ce−(s+1)x.

We can evaluate the constant C using the boundary condition

0 = U(0, s) =
−1 + 1

s2 + 2s+ 2
+ C ⇒ C = 0.

So we have

U(x, s) =
(s+ 1) sin(x)− cos(x) + e−(s+1)x)

s2 + 2s+ 2
.

Taking the inverse Laplace transform we have

u(x, t) = e−t cos(t) sin(x)− e−t sin(t) cos(t) + e−tH(t− x) sin(t− x)

This can be written as

u(x, t) = e−t [sin(x− t) +H(t− x) sin(t− x)] .

Example 3.

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), 0 < x < 2, t > 0,

u(0, t) = 0, u(2, t) = 0

u(x, 0) = 3 sin(2πx).

Take the Laplace transform and apply the initial condition

d2U

dx2
(x, s) = sU(x, s)− u(x, 0) = sU(x, s)− 3 sin(2πx).

We write this equation as a non-homogeneous, second order linear constant coefficient equation for
which we can apply the methods from Math 3354.

d2U

dx2
(x, s)− sU(x, s) = −3 sin(2πx).

The general solution can be written as

U(x, s) = Uh(x, s) + Up(x, s)

where Uh(x, s) is the general solution of the homogeneous problem

Uh(x, s) = c1e
√
sx + c2e

−
√
sx

and Up(x, s) is any particular solution of the non-homogeneous problem

Up(x, s) = A cos(2πx) +B sin(2πx).
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We first use the method of undetermined coefficients to find A and B. To this end we have

d

dx
Up(x, s) = −2πA sin(2πx) + 2πB cos(2πx),

d2

dx2
Up(x, s) = −(2π)2A cos(2πx) + (2π)2B sin(2πx).

Therefore

d2

dx2
Up(x, s)− sUp(x, s)

= (−(2π)2 − s)[A cos(2πx) +B sin(2πx)]

= −3 sin(2πx).

From this we conclude that

−(s+ (2π)2)A = 0, and − (s+ (2π)2)B = −3,

so that

A = 0, B =
3

s+ 4π2
.

Now we have the general solution

U(x, s) = c1e
√
sx + c2e

−
√
sx +

3

(s+ 4π2)
sin(2πx)

We note the the Laplace transforms of the boundary conditions give

u(0, t) = 0 ⇒ U(0, s) = 0, and u(2, t) = 0 ⇒ U(2, s) = 0

So we have
0 = U(0, s) = c1 + c2, 0 = U(2, s) = c1e

√
s2 + c2e

−
√
s2

which gives c1 = c2 = 0 and we have

U(x, s) =
3

(s+ 4π2)
sin(2πx).

To find our solution we apply the inverse Laplace transform

u(x, t) = L−1

(
3

(s+ 4π2)
sin(2πx)

)
= 3e−4π2t sin(2πx).

Just as we would have obtained using eigenfunction expansion methods.

Example 4. Next we consider a similar problem for the 1D wave equation.

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) + sin(πx), 0 < x < 1, t > 0,

u(x, 0) = 0, ut(x, 0) = 0

u(0, t) = 0 u(1, t) = 0.

Taking the Laplace transform and applying the initial conditions we obtain

d2U

dx2
(x, s) = s2U(x, s)− su(x, 0)− ut(x, 0)− sin(πx)

s
= s2U(x, s)− sin(πx)

s
.
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We need to solve the constant coefficient non-homogeneous ODE

d2U

dx2
(x, s)− s2U(x, s) = −sin(πx)

s

Once again we know that
U(x, s) = Uh(x, s) + Up(x, s)

where Uh(x, s) is the general solution of the homogeneous problem

Uh(x, s) = c1e
sx + c2e

−sx

and Up(x, s) is any particular solution of the non-homogeneous problem

Up(x, s) = A cos(πx) +B sin(πx).

We apply the method of undetermined coefficients to find A and B. To this end we have

d

dx
Up(x, s) = −πA sin(πx) + πB cos(πx),

d2

dx2
Up(x, s) = −π2A cos(πx) + π2B sin(πx).

Therefore

d2

dx2
Up(x, s)− s2Up(x, s)

= (−π2 − s2)[A cos(πx) +B sin(πx)]

= −sin(πx)

s
.

From this we conclude that

−(s2 + π2)A = 0, and − (s2 + π2)B = −1

s
,

so that

A = 0, B =
1

s(s2 + π2)
.

So we have

Up(x, s) =
sin(πx)

s(s2 + π2)

and

U(x, s) = c1e
sx + c2e

−sx +
sin(πx)

s(s2 + π2)
.

Next we apply the BCs to find c1 and c2.

0 = U(0, s) = c1 + c2, and 0 = U(1, s) = c1e
s + c2e

−s

which implies c1 = 0 and c2 = 0. So we arrive at

U(x, s) =
sin(πx)

s(s2 + π2)
.
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Finally we apply the inverse Laplace transform to obtain

u(x, t) = L−1(U(x, s)) = L−1

(
1

s(s2 + π2)

)
sin(πx)

=
1

π2
L−1

(
1

s
− s

(s2 + π2)

)
sin(πx)

=
1

π2
(1− cos(πt)) sin(πx).

Here we have done partial fractions

1

s(s2 + π2)
=
a

s
+

bs+ c

(s2 + π2)
=

1

π2

(
1

s
− s

(s2 + π2)

)
.

Example 5. This example shows the real use of Laplace transforms in solving a problem we could
not have solved with our earlier work.

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), −∞ < x <∞, t > 0,

u(x, 0) = f(x)

u(x, t) bounded.

Under the assumption that u(x, t) is bounded we know that the Laplace transform exists and,
indeed, we have

|u(x, t)| ≤M ⇒ |U(x, s)| ≤
∫ ∞

0

e−st|u(x, t)| dt ≤M

∫ ∞
0

e−st dt =
M

s
.

Applying the Laplace transform we obtain

d2U

dx2
(x, s) = sU(x, s)− u(x, 0) = sU(x, s)− f(x).

We write this equation as a non-homogeneous, second order linear constant coefficient equation.

d2U

dx2
(x, s)− sU(x, s) = −f(x).

The general solution can be written as

U(x, s) = Uh(x, s) + Up(x, s)

where Uh(x, s) is the general solution of the homogeneous problem

Uh(x, s) = c1e
√
sx + c2e

−
√
sx

and Up(x, s) is any particular solution of the non-homogeneous problem. We find it using the
method of variation of parameters from Math 3354. For this method we use U1 = e

√
sx, U2 = e−

√
sx.

W (U1, U2) =

∣∣∣∣U1(x, s) U2(x, s)
U ′1(x, s) U ′2(x, s)

∣∣∣∣ = −2
√
s
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Up(x, s) =

∫ x

0

[−U1(x, s)U2(ξ, s) + U2(x, s)U1(ξ, s])(−f(ξ))

W (ξ, s)
dξ

= − 1

2
√
s

∫ x

0

[
e
√
sxe−

√
sξ + e−

√
sxe
√
sξ
]
f(ξ) dξ

= −e
√
sx

2
√
s

∫ x

0

e−
√
sξf(ξ) dξ +

e−
√
sx

2
√
s

∫ x

0

e
√
sξf(ξ) dξ

So the general solution can be written as

U(x, s) =

(
c1 −

1

2
√
s

∫ x

0

e−
√
sξf(ξ) dξ

)
e
√
sx +

(
c2 +

1

2
√
s

∫ x

0

e
√
sξf(ξ) dξ

)
e−
√
sx.

Recall our assumption that u(x, t) be bounded for all −∞ < x <∞ implies that U(x, s) is also
bounded for all −∞ < x <∞ for any fixed s > 0.

Now in order that the first term in the general solution stays bounded as x→∞ we need

lim
x→∞

(
c1 −

1

2
√
s

∫ x

0

e−
√
sξf(ξ) dξ

)
= 0

which implies

c1 =
1

2
√
s

∫ ∞
0

e−
√
sξf(ξ) dξ.

In exactly the same way we must have

lim
x→−∞

(
c2 +

1

2
√
s

∫ x

0

e
√
sξf(ξ) dξ

)
= 0

which implies

c2 =
1

2
√
s

∫ 0

−∞
e−
√
sξf(ξ) dξ.

Thus

U(x, s) =

(
1

2
√
s

∫ ∞
0

e−
√
sξf(ξ) dξ − 1

2
√
s

∫ x

0

e−
√
sξf(ξ) dξ

)
e
√
sx

+

(
1

2
√
s

∫ 0

−∞
e−
√
sξf(ξ) dξ +

1

2
√
s

∫ x

0

e
√
sξf(ξ) dξ

)
e−
√
sx

=

(
e
√
sx

2
√
s

∫ ∞
x

e−
√
sξf(ξ) dξ

)
+

(
e−
√
sx

2
√
s

∫ x

−∞
e
√
sξf(ξ) dξ

)

=
1

2
√
s

∫ ∞
−∞

e−
√
s|x−ξ|f(ξ) dξ

We want to find the inverse Laplace transform

L−1

(
e−
√
s|x−ξ|

2
√
s

)
.
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From our table we have

L−1

(
e−a
√
s

√
s

)
=
e−a

2/(4t)

√
πt

and if we set a = |x− ξ| then we have

L−1

(
e−
√
s|x−ξ|

2
√
s

)
=
e−|x−ξ|

2/(4t)

√
4πt

≡ K(|x− ξ|, t).

So we have

u(x, t) = L−1(U(x, s)) = L−1

(
1

2
√
s

∫ ∞
−∞

e−
√
s|x−ξ|f(ξ) dξ

)

=

∫ ∞
−∞

L−1

(
e−
√
s|x−ξ|

2
√
s

)
f(ξ) dξ

=
1√
4πt

∫ ∞
−∞

e−|x−ξ|
2/(4t) f(ξ) dξ

=

∫ ∞
−∞

K(|x− ξ|, t) f(ξ) dξ

The function

K(x, t) =
e−x

2/(4t)

√
4πt

is called the “Fundamental Heat Kernel”.

8



Table of Laplace Transforms

f(t) for t ≥ 0 f̂ = L(f) =

∫ ∞
0

e−stf(t) dt

1
1

s

eat
1

s− a

tn
n!

sn+1
(n = 0, 1, . . .)

ta
Γ(a+ 1)

sa+1
(a > 0)

sin bt
b

s2 + b2

cos bt
s

s2 + b2

sinh bt
a

s2 − b2

cosh bt
s

s2 − b2

f ′(t) sL(f)− f(0)

f ′′(t) s2L(f)− sf(0)− f ′(0)

tnf(t) (−1)n
dnF

dsn
(s)

eatf(t) L(f)(s− a)

u(t− a) =


0 t ≤ a

1 t > a

e−as

s

u(t− a)f(t− a) e−asL(f)(s)

δ(t− a) e−as

(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ) dτ L(f ∗ g) = L(f)L(g)

9



The “error function” denoted by erf(x) is given by

erf(x) =
2√
π

∫ x

0

e−x
2

dx.

Notice that we can use the properties of integrals to deduce that

erf(−x) = − erf(x).

The complementary error function erfc(x) defined by

erfc (x) =
2

π

∫ ∞
x

e−s
2

ds.

Notice that

erf(x) + erfc(x) =
2√
π

(∫ x

0

e−x
2

dx+

∫ ∞
x

e−s
2

ds

)
= 1.

Additional Laplace Transforms

e−a
2/(4t)

√
πt

e−a
√
s

√
s

ae−a
2/(4t)

2
√
πt3

e−a
√
s

erf (t)
es

2/4 erfc(s/2)

s

erfc

(
a

2
√
t

)
e−a
√
s

s

2

√
t

π
e−a

2/(4t) − a
{

erfc

(
a

2
√
t

)}
e−a
√
s

s
√
s

eb
2t+ab

{
erfc

(
b
√
t+

a

2
√
t

)}
e−a
√
s

√
s(
√
s+ b)

−eb2t+ab
{

erfc

(
b
√
t+

a

2
√
t

)}
+ erfc

(
a

2
√
t

)
be−a

√
s

s(
√
s+ b)
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