Solving PDEs using Laplace Transforms

Given a function u(zx,t) defined for all ¢ > 0 and assumed to be bounded. we can apply the
Laplace transform in ¢ considering = as a parameter.

L(u(x,t)) = /000 e Stu(z,t)dt = Uz, s)

In applications to PDEs we need the following;:
L(u(z,t) = / e *ug(x, t) dt = e u(x, t)!go + s/ e *tu(z,t)dt = sU(x,s) — u(z,0)
0 0

so we have
L(uy(z,t) = sU(x,s) —u(zx,0)
In exactly the same way we obtain

L(ug(z,t) = s*U(z, s) — su(x,0) — uy(z,0).

We also need the corresponding transforms of the x derivatives:

L(ug(z,t)) = /OOO e *uy(z,t) dt = Uy(x, s)

Lty (z,t)) = / e Mgy (,t) dt = Upp(x, 5)
0
Consider the following examples.

Example 1.
ou  Ou

or ot

with boundary and initial condition

z, x>0, t>0,

uw(0,t) =0 t >0, and u(z,0)=0, x>0.

As above we use the notation U(z,s) = L(u(z,t))(s) for the Laplace transform of u.
Then applying the Laplace transform to this equation we have

d—U(x, s)+ sU(z,s) —u(z,0) = %

avu x
T = —(z,s)+sU(x,s) = <

dx
This is a constant coefficient first order ODE. We solve it by finding the integrating factor

_ fsdx _ sz
h=e =e

Thus we have

ST _ s:cg
%[e Ulz,s)] =e S

We integrate both sides to get

Ulx,s) = - </ e*r dr) + Ce™ ™.
s
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We can use integration by parts to evaluate the integral:

s\ /
/eswxd:r:/(6—> T dx
s
()
s s

So we have

67821'/' xesﬂ? 65([ T 1
o= (Y e 5 L e

S S 52

We can evaluate the constant C' using the boundary condition

1 1
0=U(0,s)=——=+C = (C=—

53 53
so we have
T 1 e
U(.’L’, S) = —2 — —3 3
s S s

Taking the inverse Laplace transform we have

u(m,t):xt—§+H(t—x)<t_m)2

where H is the unit step function (or Heaviside function)

0, <0
H(:z:):{l P50

?

Example 2.
Ju  Ou

o + en +u
with boundary and initial condition

=0, >0, t>0,

u(0,t) =0 t >0, and wu(z,0)=sin(x), = >0.

As above we use the notation U(zx,s) = L(u(x,t))(s) for the Laplace transform of u.
Then applying the Laplace transform to this equation we have

%(w,s) +sU(x,s) —u(z,0) +U(xz,s) =0 = %(w,s) + (s+ )U(x,s) = sin(z).

This is a constant coefficient first order linear ODE. We solve it by finding the integrating factor

= ef(s-l-l)dx _ €(s+1)a:

Thus we have

di [e(SJ’l)xU(x, s)] = e sin ().
x

We integrate both sides to get
U(ZE, 8) = 6—(S+1)I (/ 6(8-{-1)7‘ Sil’l(?") d?”) + Ce—(s—i-l)m‘
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We can use integration by parts to evaluate the integral:

z 1) sin(z) — ~(s+1)a)
6—(5+1)z / e(s-l-l)r SiD(T’) dr | = (S + ) SID(ZIZ'; COS(ZL’) +e '
0 §°+ 2542

So we have
(5 + 1) sin(z) — cos(z) + e~ (+D2)

s2+2s+2
We can evaluate the constant C' using the boundary condition

U(x,s) = 4 Ce stz

—-1+1

So we have

(5 + 1) sin(z) — cos(x) + e~ 5+

Uz, s) = 52425+ 2

Taking the inverse Laplace transform we have
u(w,t) = e " cos(t)sin(z) — e "sin(t) cos(t) + e "H(t — z)sin(t — x)
This can be written as
u(z,t) = e '[sin(x — t) + H(t — z) sin(t — )] .
Example 3.

82

8—Z(az,t), O<ax<2 t>0,
x

u(0,t) =0, u(2,t)=0

t
u(z,0) = 3sin(27x).

ou
%(1‘70

Take the Laplace transform and apply the initial condition

d2
d_xlzj(x7 S) = SU(ZL’, S) - u(xa 0) = SU(x, S) — 3Sin(27rx).

We write this equation as a non-homogeneous, second order linear constant coefficient equation for
which we can apply the methods from Math 3354.

%(m, s) —sU(x,s) = —3sin(2rz).
The general solution can be written as
U(z,s) = Uy(x,s) + Uy(z,s)
where Uy(z, s) is the general solution of the homogeneous problem
Un(z,5) = c1eV*" + cpe™ V"

and U, (z, s) is any particular solution of the non-homogeneous problem

Uy(x,s) = Acos(2rx) + Bsin(27z).
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We first use the method of undetermined coefficients to find A and B. To this end we have

d
%Up(as, s) = —2nAsin(2mx) + 27 B cos(2mz),

d2

dz?

Uy(r,s) = —(2m)*Acos(2mx) + (27)* B sin(27z).
Therefore
d2

da?

Uy(z,s) — sUpy(z, s)

= (—(27)* — s)[A cos(27z) + Bsin(27x)]
= —3sin(2mz).

From this we conclude that
—(s+(2m)*)A=0, and - (s+ (2m)?)B = -3,

so that

Now we have the general solution

Uz, s) = c1eV5% + ce™ V50 4 sin(27mx)

(s + 4m?)
We note the the Laplace transforms of the boundary conditions give
uw(0,t) =0 = U(0,s) =0, and u(2,t)=0 = U(2,s)=0

So we have
0=U(0,s)=c14+c, 0=U(25s)= creV®? 4 cpe V52

which gives ¢; = ¢o = 0 and we have

U(z,s) =

G sin(27x).

To find our solution we apply the inverse Laplace transform

3
u(z,t) = L1 <m sin(27rx)) = 3¢ sin(2mx).

Just as we would have obtained using eigenfunction expansion methods.

Example 4. Next we consider a similar problem for the 1D wave equation.

0? 02 '

a—;;(iv,t) = CQa—;(x,t) +sin(rz), 0<z <1, ¢t>0,
u(z,0) =0, uz,0)=0
u(0,t) =0 wu(l,t) =0

Taking the Laplace transform and applying the initial conditions we obtain

2
%(m, s) = s*U(z,s) — su(x,0) — uy(z,0) —

sin(mz) _ sin(mx) '

= s°U(z, s)

S S

4



We need to solve the constant coefficient non-homogeneous ODE

dQ—U(x, s) — s*U(z,s) = _sin(ma)

da? S

Once again we know that
U(z,s) =Uy(x,s)+ Uy(x,s)

where Uy (z, s) is the general solution of the homogeneous problem
Un(x,s) = c1€®* + coe™**
and U,(x, s) is any particular solution of the non-homogeneous problem
Uy(z,s) = Acos(mz) + Bsin(mz).

We apply the method of undetermined coefficients to find A and B. To this end we have

diUp(x, s) = —wAsin(rz) + 7B cos(mx),
T

d2
@Up(:p, 5) = —mn*Acos(rx) + 7*Bsin(mz).
Therefore

%Up(x, s) — s*Uy(z, s)
= (—m% — 5%)[Acos(nz) + Bsin(nz)]

_ sin(mz) |

S

From this we conclude that

1
—(s2+71)A=0, and —(s*+7%)B=—

B
S

so that )
A=0, B=——7——.
’ s(s? 4 m2)
So we have ()
sin(mwx
U, =
p(@:5) s(s? + 2)
and ()
s . sin(mx
U(._'L',S) = C1€ +626 +5<32——|—7T2)

Next we apply the BCs to find ¢; and c,.
0=U(0,s) =c1+cy, and 0=U(1,s) =cie’+ e
which implies ¢; = 0 and ¢, = 0. So we arrive at

sin(mx)

U(Ls):m.
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Finally we apply the inverse Laplace transform to obtain

(e, t) = LN (U, ) = L (ﬁ) sin(rz)

L (1 - L) sin(rz)

s (s?+m7?)

= F(l — cos(mt)) sin(mzx).

Here we have done partial fractions

1 _a n bs+c 1 (1 s
s(s2+m2) s (s2+47w2) m\s (s2472))°
Example 5. This example shows the real use of Laplace transforms in solving a problem we could
not have solved with our earlier work.

ou 0*u
E(:c,t) @(aj,t}, —co<x<oo, t>0,
u(z,0) = f(z)
t

u(z,t)  bounded.

Under the assumption that u(z,t) is bounded we know that the Laplace transform exists and,
indeed, we have

oo o0 M
lu(z,t)| <M = |U(z,s)| < / e |u(z, t)| dt < M/ e Stdt = —.
0 0

s
Applying the Laplace transform we obtain

%(gj,s) =sU(x,s) —u(x,0) = sU(z,s) — f(x).

We write this equation as a non-homogeneous, second order linear constant coefficient equation.

dQ—U(ac,s) —sU(z,s) = —f(x).

dx?
The general solution can be written as
U(x,s) = Uy(z,s) + Uy(x,s)
where Uy (z, s) is the general solution of the homogeneous problem
Up(x,s) = 1V 4 eV

and U,(x,s) is any particular solution of the non-homogeneous problem. We find it using the
method of variation of parameters from Math 3354. For this method we use U; = eV**, Uy = e~ V5%,

Uy(z,s) Us(z,s)

WO = el s) vyt )| = 2V



_ [T U, )Ua (&, ) + Ua(z, s)Ui (€ s)) (= (£))
U = W(E ) h
= _% [e\/gxeﬂ/gf + e*\/gxex/gé} F(€)de

e\[m
_ / xf&f 2\/_ / f&f ) dé

So the general solution can be written as

U(x,s):(cl——/ VR £ (¢ )dg) Vi 4 (c2+_/ R e) dg) v

Recall our assumption that u(z,t) be bounded for all —oo < x < oo implies that U(z, s) is also
bounded for all —oco < x < oo for any fixed s > 0.
Now in order that the first term in the general solution stays bounded as x — oo we need

lim (01 — 2—\1/5 / eVEF(E) dg) =0
T—00 0

o= % /O eV (E) d.

In exactly the same way we must have

i <+$ / eV f(€) ds) =
0
czzz—;g | e

Ues) = (5 [ ees@ae - oz [T sierac) e
= [ esie ae)

B e _E e~
(5 o)

_ T e
- 57 / e GL:

We want to find the inverse Laplace transform

L*l e_ﬁlx_gl
(2

which implies

which implies

Thus




From our table we have

and if we set a = |x — £| then we have

. e~ Vslz—¢ e~ lz—¢€%/(4t)
( 2¢/s > Vart

= K([z =¢&l.1).

So we have

[ () o

— \/%/ el EP /4 (e qg

_ /m K(|jz — €],t) f(£)de

The function

is called the “Fundamental Heat Kernel”.



Table of Laplace Transforms

f(t) fort>0

F=r(f)= / et dt

1
1 il
s
at 1
¢ s—a
n!
t" 5n+1( =0,1,...)
r 1
o (;‘a: ) (a>0)
. b
sin bt TP
s
cos bt T
sinh bt 2 i 72
cosh bt = i 7
f(@) sL(f) — f(0)
f'(t) s?L(f) = sf(0) — f'(0)
d"F
() (1S (s)
e f(t) L(f)(s—a)
0 t< —as
u(t —a) = ’ ‘ .
1 t>a

e L(f)(s)

—as

(f *g)(t) =

ft=7)g(r)dr

L(fxg)=L(f)L(g)




The “error function” denoted by erf(x) is given by

2 ("
erf(x) = —/ e " dx.
VT Jo
Notice that we can use the properties of integrals to deduce that
erf(—x) = —erf(x).

The complementary error function erfc(x) defined by

2 [ o
erfc (z) = —/ e ¥ ds.

™

Notice that ) . .
erf(x) + erfe(z) = — (/ e de +/ e~ ds> =1.
(@) + exte(w) = - (| x

Additional Laplace Transforms

e_aQ/(4t) e_a\/g
Vit Vs
—a?/(4t)
ae e_a\/g
2V t3
s2/4
exf (1) e’ /" erfe(s/2)
s
erfc (L) e
2/t S
—ay/5
2\/36_“2/(40 —a {erfc (L> } ¢
T 2/t ENG
—av/s
eb*ttab {erfc <b\/¥ + i) } _c
2Vt Vs(Vs+b)
—ay/s
b2t+ab a a be
—e erfe | bv/t + —) } + erfc (—) —
{ ( 2Vt 2Vt s(vs+b)
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