
The Dirichlet Problem in a Two Dimensional Rectangle

Section 12.5

1 Dirichlet Problem in a Rectangle

In these notes we will apply the method of separation of variables to obtain solutions to
elliptic problems in a rectangle as an infinite sum involving Fourier coefficients, eigenvalues
and eigenvectors. These problems represent the simplest cases consisting of the Dirichlet
Problem in a 2-Dimensional in a rectangle.

Ω

a

b

f0(x)

f1(x)

g1(y)g0(y)

0

As usual we will start with simplest boundary conditions – Dirichlet boundary conditions –
and a rectangular region Ω. The most general setup in this case is to prescribe a function on
each of the four sides of the rectangle as depicted in the figure. Thus we obtain the problem

uxx(x, y) + uyy(x, y) = 0, (x, y) ∈ [0, a]× [0, b], (1.1)

u(0, y) = g0(y), u(a, y) = g1(y)

u(x, 0) = f0(x), u(x, b) = f1(x)

Analysis of this problem would become rather messy but the principle of superposition allows
us to divide and conquer. We can write the solution to this problem as a sum of solutions
to four simpler problems

The Principle of Superposition

We note that for a linear problem it is always possible to replace a single hard problem by
several simpler problems. More specifically, we can write the solution to a hard problem as
the sum of the solutions to several simpler problems. For example the solution u to (1.1)
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can be obtained as a sum of the solutions to four simpler problems

u(1)
xx (x, y) + u(1)

yy (x, y) = 0, (x, y) ∈ [0, a]× [0, b], (1.2)

u(1)(0, y) = g0(y), u(1)(a, y) = 0

u(1)(x, 0) = 0, u(1)(x, b) = 0

u(2)
xx (x, y) + u(2)

yy (x, y) = 0, (x, y) ∈ [0, a]× [0, b], (1.3)

u(2)(0, y) = 0, u(2)(a, y) = 0

u(2)(x, 0) =, u(2)(x, b) = f1(x)

u(3)
xx (x, y) + u(3)

yy (x, y) = 0, (x, y) ∈ [0, a]× [0, b], (1.4)

u(3)(0, y) = 0, u(3)(a, y) = g1(y)

u(3)(x, 0) = 0, u(3)(x, b) = 0

u(4)
xx (x, y) + u(4)

yy (x, y) = 0, (x, y) ∈ [0, a]× [0, b], (1.5)

u(4)(0, y) = 0, u(4)(a, y) = 0

u(4)(x, 0) = f0(x), u(4)(x, b) = 0

2 Non-Zero Boundary Function of x

To illustrate the method of separation of variables applied to these problems let us consider
the BVP in (1.3). In this case the only non-zero boundary term occurs on the top of the
box when y = b where we have u(2)(x, b) = f1(x).

Ω

a

b

0

u = f1

u = 0

u = 0

u = 0

µn =
(nπ
a

)
, λn = µ2

n, ϕn(x) =

√
2

a
sin(µnx), n = 1, 2, · · · ,

u(2)(x, y) =
∞∑
n=1

bn sinh (µny)ϕn(x)

bn =
1

sinh (µnb)

∫ a

0

f1(x)ϕn(x) dx.
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As usual we look for simple solutions in the form

u(2)(x, y) = ϕ(x)ψ(y).

Substituting into (1.3) and dividing both sides by ϕ(x)ψ(y) gives

ψ′′(y)

ψ(y)
=
−ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of y, it follows that
the expression must be a constant:

ψ′′(y)

ψ(y)
=
−ϕ′′(x)

ϕ(x)
= λ.

(Here ψ′ means the derivative of ψ with respect to y and ϕ′ means means the derivative of
ϕ with respect to x.)

N.B. Notice that we are using the negative of the sign we used for λ in the heat and wave
equation. This is in keeping with standard practice for the Dirichlet problem. So in this case
our eigenvalues will be λn = µ2

n instead of −µ2
n.

We seek to find all possible constants λ and the corresponding nonzero functions ϕ and ψ.
We obtain

ϕ′′ + λϕ = 0, ψ′′ − λψ = 0.

Furthermore, the boundary conditions give

ϕ(0)ψ(y) = 0, ϕ(a)ψ(y) = 0 for all y.

Since ψ(y) is not identically zero we obtain the eigenvalue problem

ϕ′′(x) + λϕ(x) = 0, ϕ(0) = 0, ϕ(a) = 0. (2.1)

We have solved a similar problem many times with the main difference being that now the
eigenvalues are positive.

µn =
(nπ
a

)
, λn = µ2

n, ϕn(x) =

√
2

a
sin(µnx), n = 1, 2, · · · . (2.2)

The general solution of
ψ′′(y)− µ2

nψ(y) = 0

is then
ψ(y) = c1 cosh (µny) + c2 sinh (µny) (2.3)

where c1 and c2 are arbitrary constants. The boundary condition ψ(0) = 0 implies

ψ(y) = sinh (µny) .
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So we look for u as an infinite sum

u(x, y) =
∞∑
n=1

bn sinh (µny)ϕn(x) (2.4)

The only thing remaining is to somehow pick the constants bn so that the initial condition
u(x, b) = f1(x) is satisfied.

Setting y = b in (2.4), we seek to obtain {bn} satisfying

f1(x) = u(x, b) =
∞∑
n=1

bn sinh (µnb)ϕn(x).

This is almost a Sine expansion of the function f1(x) on the interval (0, a). In particular we
obtain

sinh (µnb) bn =

∫ a

0

f1(x)ϕn(x) dx

or

bn =
1

sinh (µnb)

∫ a

0

f1(x)ϕn(x) dx. (2.5)

N.B. In order to obtain the complete solution to the original problem (1.1) we would need
to solve the three other similar problems (1.2), (1.4), (1.5).

Let us now consider an explicit example for f1(x):

Example 2.1. Consider the problem (1.3) with

f1(x) =

{
x 0 ≤ x ≤ a/2,

(π − x) a/2 ≤ x ≤ a.

For this example (2.4) becomes

u(x, y) =
∞∑
n=1

bn sinh (µny) sinh (µny)ϕn(x), with ϕn(x) =

√
2

a
sin(µnx).

In this case we obtain the following results for (2.5) (The explicit integrations are carried
out below)

sinh

(
nπb

a

)
bn =

√
2

a

[∫ a/2

0

x sin
(nπx

a

)
dx+

∫ a

a/2

(a− x) sin
(nπx

a

)
dx

]

=

√
2

a

[( a

nπ

)2

sin
(nπ

2

)
+
( a

nπ

)2

sin
(nπ

2

)]

=

√
2

a

2a2 sin
(nπ

2

)
n2π2
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Which implies

bn =

√
2

a

 2a2 sin
(nπ

2

)
n2π2 sinh (µnb)

 .

Then we arrive at the solution

u(x, y) =
4a

π2

∞∑
n=1

sin
(nπ

2

)
sinh (µny)

n2π2 sinh (µnb)

 sin (µnx) .

To obtain the above formulas we needed to carryout two integration by parts. We do them
separately in the following.∫ a/2

0

x sin
(nπx

a

)
dx =

∫ a/2

0

x
(
− a

nπ
cos
(nπx

a

))′
dx

= x
(
− a

nπ
cos
(nπx

a

)) ∣∣∣∣a/2
0

−
∫ a/2

0

(
− a

nπ
cos
(nπx

a

))
dx

= a/2
(
− a

nπ
cos
(nπ

2

))
+

a

nπ

∫ a/2

0

cos
(nπx

a

)
dx

= − a2

2nπ
cos
(nπ

2

)
+
( a

nπ

)2

sin
(nπx

a

) ∣∣∣∣a/2
0

= − a2

2nπ
cos
(nπ

2

)
+
( a

nπ

)2

sin
(nπ

2

)
.

and∫ a

a/2

(a− x) sin
(nπx

a

)
dx =

∫ a

a/2

(a− x)
(
− a

nπ
cos
(nπx

a

))′
dx

= (a− x)
(
− a

nπ
cos
(nπx

a

)) ∣∣∣∣a
a/2

−
∫ a

a/2

(−1)
(
− a

nπ
cos
(nπx

a

))
dx

= a/2
( a

nπ
cos
(nπ

2

))
− a

nπ

∫ a

a/2

cos
(nπx

a

)
dx

=
a2

2nπ
cos
(nπ

2

)
−
( a

nπ

)2

sin
(nπx

a

) ∣∣∣∣a
a/2

=
a2

2nπ
cos
(nπ

2

)
+
( a

nπ

)2

sin
(nπ

2

)
.

Thus we have

sinh (µnb) bn =

√
2

a

[( a

nπ

)2

sin
(nπ

2

)
+
( a

nπ

)2

sin
(nπ

2

)]
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or finally,

bn =

√
2

a

 2a2 sin
(nπ

2

)
n2π2 sinh (µnb)

 .

3 Non-Zero Boundary Function of y

As another example illustrating the method of separation of variables applied to these prob-
lems let us consider the BVP in (1.4). In this case the only non-zero boundary term occurs
on the right hand side of the box when x = a where we have u(3)(a, y) = g1(y).

µn =
(nπ
b

)
, λn = µ2

n, ϕn(y) =

√
2

b
sin(µny), n = 1, 2, · · ·

u(3)(x, y) =
∞∑
n=1

bn sinh (µnx) sin (µny)

bn =
1

sinh (µna)

∫ b

0

g1(y)ϕn(y) dy.

To obtain this formula we proceed as usual and look for simple solutions in the form

u(3)(x, y) = ϕ(y)ψ(x).

The main difference here is that in this case we interchange the roles of x and y since we will
want to do a Fourier series in y this time instead of x. Substituting into (1.4) and dividing
both sides by ϕ(y)ψ(x) gives

ψ′′(x)

ψ(x)
=
−ϕ′′(y)

ϕ(y)

Since the left side is independent of y and the right side is independent of x, it follows that
the expression must be a constant:

ψ′′(x)

ψ(x)
=
−ϕ′′(y)

ϕ(y)
= λ.

(Here ψ′ means the derivative of ψ with respect to x and ϕ′ means means the derivative of
ϕ with respect to y.) We seek to find all possible constants λ and the corresponding nonzero
functions ϕ and ψ. We obtain

ϕ′′(y) + λϕ(y) = 0, ψ′′(x)− λψ(x) = 0.

Furthermore, the boundary conditions give

ϕ(0)ψ(x) = 0, ϕ(b)ψ(x) = 0 for all x.
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Since ψ(x) is not identically zero we obtain the eigenvalue problem

ϕ′′(y) + λϕ(y) = 0, ϕ(0) = 0, ϕ(b) = 0. (3.1)

Once again we note the main difference now is that the eigenvalues λn are positive.

µn =
(nπ
b

)
, λn = µ2

n, ϕn(y) =

√
2

b
sin(µny), n = 1, 2, · · · . (3.2)

The general solution of
ψ′′(x)− µ2

nψ(x) = 0

is then
ψ(y) = c1 cosh (µnx) + c2 sinh (µnx) (3.3)

where c1 and c2 are arbitrary constants. The boundary condition ψ(0) = 0 implies

ψ(x) = sinh (µnx) .

So we look for u as an infinite sum

u(x, y) =
∞∑
n=1

bn sinh (µnx)ϕn(y) (3.4)

The only remaining part is to find the bn so that the initial condition u(a, y) = g1(y) is
satisfied.

Setting x = a in (2.4), we seek to obtain {bn} satisfying

g1(y) = u(a, y) =
∞∑
n=1

bn sinh (µna) sin (µny) .

This is almost a Sine expansion of the function g1(y) on the interval (0, b). In particular we
obtain

sinh (µna) bn =

∫ b

0

g1(y)ϕn(y) dy. (3.5)

4 The Laplace Equation with other Boundary Condi-

tions

Next we consider a slightly different problem involving a mixture of Dirichlet and Neumann
boundary conditions. To simplify the problem a bit we set a = π and keep b any number.
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Namely we consider

uxx(x, y) + uyy(x, y) = 0, (x, y) ∈ [0, π]× [0, b], (4.1)

u(0, y) = 0, ux(π, y) = 0

uy(x, 0) = 0, u(x, b) = f1(x)

Ω

b

0

u = f1

u = 0 ux = 0

ux = 0 π
Look for simple solutions in the form

u(x, y) = ϕ(x)ψ(y).

Substituting into (4.1) and dividing both sides by ϕ(x)ψ(y) gives

ψ′′(y)

ψ(y)
=
−ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of y, it follows that
the expression must be a constant:

ψ′′(y)

ψ(y)
=
−ϕ′′(x)

ϕ(x)
= λ.

(Here ψ′ means the derivative of ψ with respect to y and ϕ′ means means the derivative of ϕ
with respect to x.) We seek to find all possible constants λ and the corresponding nonzero
functions ϕ and ψ. We obtain

ϕ′′ + λϕ = 0, ψ′′ − λψ = 0.

Furthermore, the boundary conditions give

ϕ(0)ψ(y) = 0, ϕ′(π)ψ(y) = 0 for all y.

Since ψ(y) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x) + λϕ(x) = 0, ϕ(0) = 0, ϕ′(π) = 0. (4.2)

µn =
(2n− 1)

2
, λn = µ2

n, ϕn(x) =

√
2

π
sin(µnx), n = 1, 2, · · · . (4.3)
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The general solution of ψ′′ − µ2
nψ = 0 is

ψ(y) = c1 cosh (µny) + c2 sinh (µny) (4.4)

where c1 and c2 are arbitrary constants. The boundary condition ψ′(0) = 0 implies

ψ(y) = cosh (µny) .

So we look for u as an infinite sum

u(x, y) =
∞∑
n=1

an cosh (µny)ϕn(x). (4.5)

Finally we need to find the constants an so that

f1(x) = u(x, b) =
∞∑
n=1

an cosh (µnb)ϕn(x).

As usual we obtain an expansion of the function f1(x) on the interval (0, π)in the form

cosh (µnb) an =

√
2

π

∫ π

0

f1(x) sin(µnx) dx. (4.6)
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