Formulas Cullen Zill AEM Chapters 3

I. (Linear, Homogeneous, Constant Coefficients) y'' + Ay' + By = 0 \Rightarrow try $y = e^{rx}$ Characteristic Equation $r^2 + Ar + B = 0$ has roots r_1, r_2 . Three Cases: 1. Real distinct roots $r_1 \neq r_2 \Rightarrow$ (general solution) $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ 2. Real double root $r = r_1 = r_2 \Rightarrow$ (general solution) $y = c_1 e^{rx} + c_2 x e^{rx}$ 3. Complet roots $r = \alpha \pm i\beta \Rightarrow$ (general solution) $y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$ II. (Euler Equation, x > 0) $x^2y'' + Axy' + By = 0$ \Rightarrow try $y = x^r$ (same as $x = e^t \Rightarrow t = \ln(x)$ and change variables to get $\frac{d^2y}{dt^2} + (A-1)\frac{dy}{dt} + By = 0$) Characteristic Equation $r^2 + (A-1)r + B = 0$ has roots r_1, r_2 . Three Cases: 1. Real distinct roots $r_1 \neq r_2 \Rightarrow$ (general solution) $y = c_1 x^{r_1} + c_2 x^{r_2}$ 2. Real double root $r = r_1 = r_2 \Rightarrow$ (general solution) $y = c_1 x^r + c_2 \ln(x) x^r$ 3. Complet roots $r = \alpha \pm i\beta \Rightarrow$ (general solution) $y = c_1 x^{\alpha} \cos(\beta \ln(x)) + c_2 x^{\alpha} \sin(\beta \ln(x))$ y'' + P(x)y' + Q(x)y = R(x) General solution: $y = y_h + y_p$ III. (Nonhomogeneous Linear) y_p is any particular solution of y_h is the general solution of and y'' + P(x)y' + Q(x)y = R(x)y'' + P(x)y' + Q(x)y = 0

There are two methods:

- A. (Undetermined Coefficients) Guess the form of y_p from R(x). This method requires that P and Q to be constants and R is a sum of terms of the form x^k , $x^k e^{\alpha x}$, $x^k e^{\alpha x} \cos(\beta x)$ or $x^k e^{\alpha x} \sin(\beta x)$.
- B. (Variation of Parameters) Look for a particular solution in the form $y_p = uy_1 + vy_2$. This approach leads to

$$y_p(x) = -y_1(x) \int^t \frac{y_2(s)R(s)}{W(s)} \, ds + y_2(x) \int^t \frac{y_1(s)R(s)}{W(s)} \, ds, \quad W(s) = \det \begin{bmatrix} y_1(s) & y_2(s) \\ y_1'(s) & y_2'(s) \end{bmatrix}$$

IV. (Reduction of Order) Suppose that y_1 is a solution of y'' + p(x)y' + q(x)y = 0. A second solution can be found in the form $y_2(x) = v(x)y_1(x)$ where $v = \int \exp\left(-\int^x P(s)\,ds\right)\,dx$ and $P = \frac{(2y'_1 + p(x)y_1)}{y_1}$.

A homogeneous linear differential equation with constant real coefficients of order n has the form

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y = 0.$$
 (*)

We can introduce the notation $D = \frac{d}{dx}$ and write the above equation as

$$P(D)y \equiv \left(D^n + a_{n-1}D^{(n-1)} + \dots + a_0\right)y = 0.$$

By the fundamental theorem of algebra we can factor P(D) as

 $(D-r_1)^{m_1} \cdots (D-r_k)^{m_k} (D^2 - 2\alpha_1 D + \alpha_1^2 + \beta_1^2)^{p_1} \cdots (D^2 - 2\alpha_\ell D + \alpha_\ell^2 + \beta_\ell^2)^{p_\ell},$

where $\sum_{j=1}^{k} m_j + 2 \sum_{j=1}^{\ell} p_j = n.$

There are two types of factors $(D-r)^k$ and $(D^2-2\alpha D+\alpha^2+\beta^2)^k$:

The general solution of
$$(D-r)^k y = 0$$
 is $y = \left(c_1 + c_2 x + \dots + c_k x^{(k-1)}\right) e^{rx}$

The general solution of
$$(D^2 - 2\alpha D + \alpha^2 + \beta^2)^k y = 0$$
 is

$$y = \left(c_1 + c_2 x + \dots + c_k x^{(k-1)}\right) e^{\alpha x} \cos(\beta x) + \left(d_1 + d_2 x + \dots + d_k x^{(k-1)}\right) e^{\alpha x} \sin(\beta x).$$

The general solution contains one such term for each term in the factorization.

We can also argue as before and seek solutions of (*) in the form $y = e^{rx}$ to get a characteristic polynomial

$$r^n + a_{n-1}r^{(n-1)} + \dots + a_0 = 0.$$

In either case we find the general solution consists of a sum of n expressions each term of which contains an arbitrary constant and a term that looks like x^k , $x^k e^{rx}$, $x^k e^{\alpha x} \cos(\beta x)$ or $x^k e^{\alpha x} \sin(\beta x)$.