I. (RHS only contains
$$x$$
) $y' = f(x)$ \Rightarrow $y = \int f(x) dx$
II. (Separable) $f(y)y' = g(x)$ \Rightarrow $\int f(y) dy - \int g(x) dx = C$

Implicit and explicit:

- 1. If we can write the answer as $y = \varphi(x)$ then we have an explicit answer.
- 2. If we leave the answer in the form F(x, y) = C we have an implicit solution.

III. (First Order Linear)
$$y' + P(x)y = Q(x)$$
 Integrating Factor $\mu = e^{\int Pdx}$ and
the General Solution is $y = 1/\mu(x) \left[\int^x \mu(t)Q(t) dt + C \right]$
IV. (Exact) $M(x,y) dx + N(x,y) dy = 0$ is exact if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. If exact then there
exists $F(x,y)$ so that $M = \frac{\partial F}{\partial x}$, $N = \frac{\partial F}{\partial y}$. Use these to find solution $F(x,y) = C$.
V. (Substitution: RHS Linear in x and y) $y' = f(ax + by + c)$ transforms the problem to
 $v = ax + by + c \Rightarrow v' = a + bf(v)$ which is separable.
VI. (Substitution: RHS is a function of y/x) $y' = f(y/x)$ $v = y/x \Rightarrow xv' + v = f(v)$
is separable.

VII. (Substitution: Bernoulli) $y' + P(x)y = Q(x)y^n, n \neq 0, 1$ then the substitution $v = y^{1-n}$ provides a first oder linear equation for v v' + (1-n)P(x)v = (1-n)Q(x) which is First Order Linear.

VIII. (Euler's Numerical Method) For the initial value problem $y' = f(x, y), \quad y(x_0) = y_0$ set $x_n = x_0 + nh, \ n = 0, 1, \cdots$ (small h) and set $y_n \approx y(x_n)$ given by $y_{n+1} = y_n + hf(x_n, y_n)$.