
Chapter 12 Heat Examples in Rectangles

1 Heat Equation Dirichlet Boundary Conditions

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (1.1)

u(0, t) = 0, u(`, t) = 0

u(x, 0) = f(x)

1. Separate Variables Look for simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

Substituting into (1.1) and dividing both sides by ϕ(x)ψ(t) gives

ψ′(t)

kψ(t)
=
ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of t, it follows that the
expression must be a constant:

ψ′(t)

kψ(t)
=
ϕ′′(x)

ϕ(x)
= λ.

We seek to find all possible constants λ and the corresponding nonzero functions ϕ and ψ.

We obtain
ϕ′′ − λϕ = 0, ψ′ − kλψ = 0.

The solution of the second equation is
ψ(t) = Cekλt (1.2)

where C is an arbitrary constant. Furthermore, the boundary conditions give

ϕ(0)ψ(t) = 0, ϕ(`)ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0, ϕ(0) = 0, ϕ(`) = 0. (1.3)

2. Find Eigenvalues and Eignevectors The next main step is to find the eigenvalues and eigenfunc-
tions from (1.3). There are, in general, three cases:

(a) If λ = 0 then ϕ(x) = ax+ b so applying the boundary conditions we get

0 = ϕ(0) = b, 0 = ϕ(`) = a` ⇒ a = b = 0.

Zero is not an eigenvalue.
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(b) If λ = µ2 > 0 then
ϕ(x) = a cosh(µx) + b sinh(µx).

Applying the boundary conditions we have

0 = ϕ(0) = a⇒ a = 0 0 = ϕ(`) = b sinh(µ`) ⇒ b = 0.

Therefore, there are no positive eigenvalues.

Consider the following alternative argument: If ϕ′′(x) = λϕ(x) then multiplying by ϕ we have
ϕ(x)ϕ′′(x) = λϕ(x)2. Integrate this expression from x = 0 to x = `. We have

λ

∫ `

0

ϕ(x)2 dx =

∫ `

0

ϕ(x)ϕ′′(x) dx = −
∫ `

0

ϕ′(x)2 dx+ ϕ(x)ϕ′(x)

∣∣∣∣`
0

.

Since ϕ(0) = ϕ(`) = 0 we conclude

λ = −

∫ `

0

ϕ′(x)2 dx∫ `

0

ϕ(x)2 dx

and we see that λ must be less than or equal to zero.

(c) So, finally, consider λ = −µ2 so that

ϕ(x) = a cos(µx) + b sin(µx).

Applying the boundary conditions we have

0 = ϕ(0) = a⇒ a = 0 0 = ϕ(`) = b sin(µ`).

From this we conclude sin(µ`) = 0 which implies

µ =
nπ

`
.

So we have eigenfunctions bn sin(µnx) and we choose the constant bn so that∫ `

0

ϕn(x)2 dx = 1 ⇒ bn =

√
2

`

and therefore

λn = −µ2
n = −

(nπ
`

)2

, ϕn(x) =

√
2

`
sin(µnx), n = 1, 2, · · · . (1.4)

From (1.2) we also have the associated functions ψn(t) = ekλnt.

3. Write Formal Sum From the above considerations we can conclude that for any integer N and
constants {bn}Nn=0

uN(x, t) =
N∑
n=1

cnψn(t)ϕn(x).

satisfies the differential equation in (1.1) and the boundary conditions.
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4. Use Fourier Series to Find Coefficients The only problem remaining is to somehow pick the
constants bn so that the initial condition u(x, 0) = f(x) is satisfied. To do this we consider what we
learned from Fourier series. In particular we look for u as an infinite sum

u(x, t) =
∞∑
n=1

cne
kλntϕn(x)

and we try to find {cn} satisfying

f(x) = u(x, 0) =
∞∑
n=1

cnϕn(x)

But this nothing more than a Sine expansion of the function ϕ on the interval (0, `).

cn =

∫ `

0

ϕ(x)ϕn(x) dx. (1.5)

Example 1.1. As an explicit example for the initial condition consider ` = 1, k = 1/10 and f(x) = x(1−x).

Let us recall that µn =
(nπ
`

)
which in this case reduces to nπ.

cn =
√

2

∫ 1

0

x(1− x) sin (nπx) dx

=
√

2

∫ 1

0

x(1− x)

(
−cos (nπx)

nπ

)′
dx

=

√
2

nπ

[
−x(1− x)

cos(nπx)

nπ

∣∣∣∣1
0

+

∫ 1

0

(1− 2x)
cos(nπx)

µn
dx

]

=

√
2

nπ

∫ 1

0

(1− 2x)

(
sin (nπx)

nπ

)′
dx

=

√
2

nπ

[
(1− 2x)

sin(nπx)

nπ

∣∣∣∣1
0

−
∫ 1

0

(−2)
sin (nπx)

nπ
dx

]

=
2
√

2

(nπ)2

∫ 1

0

sin(nπx) dx =
2
√

2

(nπ)2

[
−cos(nπx)

nπ

∣∣∣∣1
0

]
=

2
√

2 [1− (−1)n]

(nπ)3

We arrive at the solution

u(x, t) =
4

π3

∞∑
n=1

[1− (−1)n]

n3
e−n

2π2t/10 sin (nπx) . (1.6)

where

x(1− x) =
4

π3

∞∑
n=1

[1− (−1)n]

n3
sin (nπx) .
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As an example with N = 3 we have

x(1− x) ≈ 8

π3

(
sin(πx) +

sin(3πx)

27

)
.

In the following figure we plot the left and right hand side of the above.
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Finally we plot the approximate solution at times t = 0, t =, t = 2, t = 3

u(x, t) =
4

π3

3∑
n=1

[1− (−1)n]

n3
e−n

2π2t/10 sin (nπx) .
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2 Heat Equation Neumann Boundary Conditions

ut(x, t) = uxx(x, t), 0 < x < `, t > 0 (2.7)

ux(0, t) = 0, ux(`, t) = 0

u(x, 0) = f(x)
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1. Separate Variables Look for simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

Substituting into (2.7) and dividing both sides by ϕ(x)ψ(t) gives

ψ′(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of t, it follows that the
expression must be a constant:

ψ′(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ.

We seek to find all possible constants λ and the corresponding nonzero functions ϕ and ψ.

We obtain
ϕ′′ − λϕ = 0, ψ′ − λψ = 0.

The solution of the second equation is
ψ(t) = Ceλt (2.8)

where C is an arbitrary constant. Furthermore, the boundary conditions give

ϕ′(0)ψ(t) = 0, ϕ′(`)ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0, ϕ′(0) = 0, ϕ′(`) = 0. (2.9)

2. Find Eigenvalues and Eignevectors The next main step is to find the eigenvalues and eigenfunc-
tions from (2.9). There are, in general, three cases:

(a) If λ = 0 then ϕ(x) = ax+ b so applying the boundary conditions we get

0 = ϕ′(0) = a, 0 = ϕ′(`) = a ⇒ a = 0.

Notice that b is still an arbitrary constant. We conclude that λ0 = 0 is an eigenvalue with
normalized eigenfunction ϕ0(x) = 1/

√
`.

(b) If λ = µ2 > 0 then
ϕ(x) = a cosh(µx) + b sinh(µx)

and
ϕ′(x) = aµ sinh(µx) + bµ cosh(µx).

Applying the boundary conditions we have

0 = ϕ′(0) = bµ⇒ b = 0 0 = ϕ′(`) = aµ sinh(µ`) ⇒ a = 0.

Therefore, there are no positive eigenvalues.

Consider the following alternative argument: If ϕ′′(x) = λϕ(x) then multiplying by ϕ we have
ϕ(x)ϕ′′(x) = λϕ(x)2. Integrate this expression from x = 0 to x = `. We have

λ

∫ `

0

ϕ(x)2 dx =

∫ `

0

ϕ(x)ϕ′′(x) dx = −
∫ `

0

ϕ′(x)2 dx+ ϕ(x)ϕ′(x)

∣∣∣∣`
0

.
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Since ϕ′(0) = ϕ′(`) = 0 we conclude

λ = −

∫ `

0

ϕ′(x)2 dx∫ `

0

ϕ(x)2 dx

and we see that λ must be less than or equal to zero ( zero only if ϕ′ = 0).

(c) So, finally, consider λ = −µ2 so that

ϕ(x) = a cos(µx) + b sin(µx)

and
ϕ′(x) = −aµ sin(µx) + bµ cos(µx).

Applying the boundary conditions we have

0 = ϕ′(0) = bµ⇒ b = 0 0 = ϕ′(`) = −aµ sin(µ`).

From this we conclude sin(µ`) = 0 which implies µ =
nπ

`
. So we have eigenfunctions an cos(µnx)

and we choose the constant an so that∫ `

0

ϕn(x)2 dx = 1 ⇒ an =

√
2

`

and therefore

λn = −µ2
n = −

(nπ
`

)2

, ϕn(x) =

√
2

`
cos(µnx), n = 1, 2, · · · .. (2.10)

From (2.8) we also have the associated functions ψn(t) = eλnt.

3. Write Formal Infinite Sum From the above considerations we can conclude that for any integer
N and constants {an}Nn=0

un(x, t) = c0 +
N∑
n=1

cnψn(t)ϕn(x)

satisfies the differential equation in (2.7) and the boundary conditions.

4. Use Fourier Series to Find Coefficients The only problem remaining is to somehow pick the
constants an so that the initial condition u(x, 0) = f(x) is satisfied. To do this we consider what we
learned from Fourier series. In particular we look for u as an infinite sum

u(x, t) = c0 +
∞∑
n=1

cne
λntϕn(x)

and we try to find {an} satisfying

ϕ(x) = u(x, 0) = c0 +
∞∑
n=1

cnϕn(x).

But this nothing more than a Cosine expansion of the function ϕ on the interval (0, `).

Our work on Fourier series showed us that

cn =

∫ `

0

f(x)ϕn(x) dx. (2.11)
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As an explicit example for the initial condition consider ` = 1 and f(x) = x(1 − x). In this case (2.11)
becomes

cn =

∫ 1

0

f(x)ϕn(x) dx.

We have

c0 =

∫ 1

0

ϕ(x) dx =

∫ 1

0

x(1− x) dx

=

[
x2

2
− x3

3

] ∣∣∣∣1
0

=
1

6
.

and for n > 0

cn =
√

2

∫ 1

0

ϕ(x) cos (nπx) dx = 2

∫ 1

0

x(1− x) cos (nπx) dx

=
√

2

∫ 1

0

x(1− x)

(
sin (nπx)

nπ

)′
dx

=
√

2

[
x(1− x)

sin (nπx)

nπ

∣∣∣∣1
0

−
∫ 1

0

(1− 2x)
sin (nπx)

nπ
dx

]

=

√
2

nπ

∫ 1

0

(1− 2x)

(
cos (nπx)

nπ

)′
dx

=

√
2

nπ

[
(1− 2x)

cos (nπx)

nπ

∣∣∣∣1
0

−
∫ 1

0

(−2)
cos (nπx)

nπ
dx

]

=

√
2

nπ

[
−cos (nπ)

nπ
− 1

nπ

]

=
−
√

2

(nπ)2
((−1)n + 1) =


−2
√

2

(nπ)2
, n even

0, n odd

.

In order to eliminate the odd terms in the expansion we introduce a new index, k by n = 2k where
k = 1, 2, · · · . So finally we arrive at the solution

u(x, t) =
1

6
− 1

π2

∞∑
k=1

1

k2
e−4k2π2t cos(2kπx). (2.12)

As an example with N = 4 we have

x(1− x) ≈ 1

6
− 1

π2

(
4∑

n=1

cos(2kπx)

k2

)
.
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Notice that as t→∞ the infinite sum converges to zero uniformly in x. Indeed,∣∣∣∣∣
∞∑
k=1

1

k2
e−4k2π2t cos(2kπx)

∣∣∣∣∣ ≤ e−4π2t

∞∑
k=1

1

k2
=
π2

6
e−4π2t.

So the solution converges to a nonzero steady state temperature which is exactly the average value of the
initial temperature distribution.

lim
t→∞

u(x, t) =
1

6
=

∫ 1

0

f(x) dx.

In the following figure we plot the left and right hand side of the above.

x
0 0.2 0.4 0.6 0.8 1.0

0

0.05

0.10

0.15

0.20

0.25

Finally we plot the approximate solution at times t = 0, t = 1/10, t = 2/10, t = 3/10.
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2.1 Heat Equation Dirichlet-Neumann Boundary Conditions

ut(x, t) = uxx(x, t), 0 < x < `, t > 0

u(0, t) = 0, ux(`, t) = 0

u(x, 0) = f(x)

Apply Separation of Variables to obtain the Sturm-Liouville problem for {λn, ϕn(x)}. Find Eigen-
values and Eignevectors The next main step is to find the eigenvalues and eigenfunctions. There are,
in general, three cases:

1. If λ = 0 then ϕ(x) = ax+ b so applying the boundary conditions we get

0 = ϕ(0) = b, 0 = ϕ′(`) = a ⇒ a = b = 0.

Zero is not an eigenvalue.

2. If λ = µ2 > 0 then
ϕ(x) = a cosh(µx) + b sinh(µx)

and
ϕ′(x) = aµ sinh(µx) + bµ cosh(µx).

Applying the boundary conditions we have

0 = ϕ′(0) = aµ⇒ a = 0 0 = ϕ′(`) = bµ cosh(µ`) ⇒ b = 0.

Therefore, there are no positive eigenvalues.

Consider the following alternative argument: If ϕ′′(x) = λϕ(x) then multiplying by ϕ we have
ϕ(x)ϕ′′(x) = λϕ(x)2. Integrate this expression from x = 0 to x = `. We have

λ

∫ `

0

ϕ(x)2 dx =

∫ `

0

ϕ(x)ϕ′′(x) dx = −
∫ `

0

ϕ′(x)2 dx+ ϕ(x)ϕ′(x)

∣∣∣∣`
0

.

Since ϕ(0) = ϕ′(`) = 0 we conclude

λ = −
∫ `

0
ϕ′(x)2 dx∫ `

0
ϕ(x)2 dx

and we see that λ must be less than or equal to zero.

3. So, finally, consider λ = −µ2 so that

ϕ(x) = a cos(µx) + b sin(µx)

and
ϕ′(x) = −aµ sin(µx) + bµ cos(µx).

Applying the boundary conditions we have

0 = ϕ(0) = aµ⇒ a = 0 0 = ϕ′(`) = bµ cos(µ`).
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From this we conclude cos(µ`) = 0 which implies

µ =
(2n− 1)π

2`

So we have eigenfunctions bn sin(µnx) and we choose the constant bn so that∫ `

0

ϕn(x)2 dx = 1 ⇒ bn =

√
2

`

and therefore

λn = −µ2
n = −

(
(2n− 1)π

2`

)2

, ϕn(x) =

√
2

`
sin(µnx), n = 1, 2, · · · . (2.13)

From (1.2) we also have the associated functions ψn(t) = eλnt.

Write Formal Infinite Sum From the above considerations we can conclude that for any integer N and
constants {bn}Nn=0

un(x, t) =
N∑
n=1

cnψn(t)ϕn(x).

satisfies the heat equation and the boundary conditions.

Use Fourier Series to Find Coefficients The only problem remaining is to somehow pick the constants
cn so that the initial condition u(x, 0) = f(x) is satisfied. To do this we consider what we learned from
Fourier series. In particular we look for u as an infinite sum

u(x, t) =
∞∑
n=1

cne
λntϕn(x)

and we try to find {bn} satisfying

f(x) = u(x, 0) =
∞∑
n=1

cnϕn(x).

But this nothing more than a Sine type expansion of the function ϕ on the interval (0, `) and we have

f(x) =
∞∑
n=1

cnϕn(x).

cn =

∫ `

0

f(x)ϕn(x) dx. (2.14)

As an explicit example let ` = 1 so that ϕn(x) =
√

2 sin(µnx) and for the initial condition consider

f(x) = x. Let us recall that µn =

(
(2n− 1)π

2`

)
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cn =

√
2

1

∫ 1

0

ϕ(x)ϕn(x) dx =
2

1

∫ 1

0

x sin (µnx) dx

=
√

2

∫ 1

0

x

(
−cos (µnx)

µn

)′
dx

=
√

2

[
−xcos(µnx)

µn

∣∣∣∣1
0

+

∫ 1

0

cos(µnx)

µn
dx

]

=
√

2

[
−1

cos(µn1)

µn
+

sin(µnx)

µ2
n

∣∣∣∣1
0

]

=
√

2

[
−1

cos((2n− 1)π/2)

µn
+

sin((2n− 1)π/2)

µ2
n

]

=
4
√

21(−1)n+1

(2n− 1)2π2

We arrive at the solution

u(x, t) =
8

π2

∞∑
n=1

(−1)n+1

(2n− 1)2
eλnt sin (µnx) . (2.15)
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