
Chapter 12 PDEs in Rectangles

1 2-D Second Order Equations: Separation of Variables

1. A second order linear partial differential equation in two variables x and y is

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = G. (1)

2. If G = 0 we say the problem is homogeneous otherwise it is nonhomogeneous.

3. A Solution is a function u(x, y) that has the required differentiability and satisfies the equation.
Unlike the case of ODEs the idea of a general solution is not very clear. We will look for particular
solutions.

4. A very useful method for looking for solutions is the Method of Separation of Variables in which we
look for a solution in the form u(x, y) = ϕ(x)ψ(y).

5. (Principle of Superposition) Since the problem is linear, if we find several solutions, say {uj(x, y)}nj=1

then for all constants {cj}nj=1

u(x, y) =
n∑
j=1

cjuj(x, y)

is also a solution.

6. Equations in the form (1) can be classified as one three types of equations by

(a) Hyperbolic if B2 − 4AC > 0
(b) Parabolic if B2 − 4AC = 0
(c) Elliptic if B2 − 4AC < 0

7. Main Classical Examples: (replacing y by t in the hyperbolic and parabolic cases)

(a) Hyperbolic Wave equation
∂2u

∂t2
(x, t) = a2∂

2u

∂x2
(x, t)

(b) Parabolic Heat equation
∂u

∂t
(x, t) = k

∂2u

∂x2
(x, t)

(c) Elliptic Laplace’s equation
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0

8. Examples of separation of variables for main examples:

(a) For
∂2u

∂t2
= a2∂

2u

∂x2
seek u(x, t) = ϕ(x)ψ(t) ⇒ ψ′′(t)

a2ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ where λ is a constant.

(b) For
∂u

∂t
= k

∂2u

∂x2
seek u(x, t) = ϕ(x)ψ(t) ⇒ ψ′(t)

kψ(t)
=
ϕ′′(x)

ϕ(x)
= λ where λ is a constant.

(c) For
∂2u

∂x2
+
∂2u

∂y2
= 0 seek u(x, y) = ϕ(x)ψ(y) ⇒ ϕ′′(x)

ϕ(x)
+
ψ′′(y)

ψ(y)
= λ where λ is a constant.
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9. Boundary Conditions are given on the physical boundary of the spatial domain, i.e., at the ends of
a heated rod or vibrating string. The most common BCs are

(a) Dirichlet Homogeneous BC at x = a is u(a, t) = 0, Nonhomogeneous BC is u(a, t) = γ(t)
(b) Neumann Homogeneous BC at x = a is ux(a, t) = 0, Nonhomogeneous BC is ux(a, t) = γ(t)
(c) Robin Homogeneous BC at x = a is ux(a, t) ± ku(a, t) = 0, Nonomogeneous BC is ux(a, t) ±

ku(a, t) = γ(t) where k > 0 is a constant and (±) is determined by which end of the rod or
string.

2 Regular Sturm-Liouville problem

One of the most important ideas in functional analysis is contained in the following discussion which is very
much related to the idea of eigenvalues and an orthonormal basis of eigenvectors. Consider the boundary
value problem.

ϕ′′(x)− q(x)ϕ(x) = λϕ(x),
α1ϕ

′(a) + α2ϕ(a) = 0,
β1ϕ

′(b) + β2ϕ(b) = 0
(2)

This is an eigenvalue problem which is referred to as a Regular Sturm-Liouville problem.

Theorem 2.1. The problem (2) has infinitely many eigenpairs {λn, ϕn(x)} which satisfy the following
properties:

1. The eigenvalues are all simple, i.e. they are eigenvalues of multiplicity one which means that λj 6= λk
for j 6= k.

2. The eigenvalues are all real and all but a finite number are negative. If |α1|+ |α2| 6= 0, |β1|+ |β2| 6= 0
then all (but possibly one) of the eigenvalues are less than or equal to zero.

3. If we order the eigenvalues in decreasing order by

λn < λn−1 < · · · < λ2 < λ1, and λn → −∞ as n→∞.

4. The eigenfunctions are all real and ϕn(x) has exactly (n− 1) zeros in the interval (a, b).

5. The eigenfunctions form a Complete Orthonormal Set in the following sense∫ b

a

ϕn(x)ϕm(x) dx = δn,m =

{
0, n 6= m

1, n = m

and if f(x) is piecewise smooth (PC(1)(a, b) in my notation in class), then

(f(x+) + f(x−))

2
=
∞∑
n=1

cnϕn(x), a < x < b, where cn =

∫ b

a

f(x)ϕn(x) dx.

For any f such that ‖f‖ =

(∫ b

a

f 2(x) dx

)1/2

<∞ we have

∥∥∥∥∥f(x)−
N∑
n=1

cnϕn(x)

∥∥∥∥∥ N→∞−−−→ 0, i.e.,

f(x) =
∞∑
n=1

cnϕn(x) in the sense of L2(a, b).
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3 1-D Heat Equation: Eigenvalues and Eigenvectors

Our first PDE is the heat equation on a finite rod a ≤ x ≤ b.

ut(x, t) = kuxx(x, t), a < x < b, t > 0

u(x, 0) = f(x)

There are three main types of boundary conditions imposed at the ends of the rod. The two main conditions
are

u(a, t) = 0, u(b, t) = 0 Dirichlet Conditions

ux(a, t) = 0, ux(b, t) = 0 Neumann Conditions

α1ux(a, t) + α2u(a, t) = 0, β1ux(b, t) + β1u(b, t) = 0 Robin Conditions

We can also have any combination of these conditions, i.e., we could have a Dirichlet condition at x = a
and Neumann condition at x = b. Notice that Dirichlet and Neumann BCs are special cases of the Robin
BCs.

There is also a more general problem involving two extra terms that correspond to heat conduction and
convection.

ut(x, t) = k
(
uxx(x, t)− 2au(x, t)x + bu(x, t)

)
, 0 < x < `, t > 0

u(x, 0) = f(x).

Let us consider the heat equation on a ≤ x ≤ b.

ut(x, t) = kuxx(x, t), a < x < b, t > 0

α1ux(a, t) + α2u(a, t) = 0,

β1ux(b, t) + β2u(b, t) = 0

u(x, 0) = ϕ(x)

Applying separation of variables we seek simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

This gives
ψ′(t)

kψ(t)
=
ϕ′′(x)

ϕ(x)

and since the left side is independent of x and the right side is independent of t, it follows that the
expression must be a constant:

ψ′(t)

kψ(t)
=
ϕ′′(x)

ϕ(x)
= λ

We seek to find all possible constants λ and the corresponding nonzero functions ϕ and ψ. The equation
ψ′ − kλψ = 0 has general solution

ψ(t) = Cekλt (3)

where C is an arbitrary constant.
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We also obtain
ϕ′′ − λϕ = 0

Furthermore, the boundary conditions give

(α1ϕ
′(a)− α2ϕ(a))ψ(t) = 0, (β1ϕ

′(b) + β2ϕ(b))ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0,

α1ϕ
′(a) + α2ϕ(a) = 0,

β1ϕ
′(b) + β2ϕ

′(b) = 0.

By the Sturm-Liouville Theorem there are infinitely many eigenpairs {λn, ϕn(x)} with the {ϕn}∞n=1 are
orthonormal, i.e.,

〈ϕn, ϕm〉 =

∫ b

a

ϕn(x)ϕm(x) dx = δn,m =

{
0, n 6= m

1, n = m
.

We seek a solution to heat problem in the form

u(x, t) =
∞∑
n=1

cne
λntϕn(x). (4)

We need two things:

1. When t = 0 we find values for {cn} so that

f(x) = u(x, 0) =
∞∑
n=1

cnϕn(x)

given by

cn =

∫ b

a

f(x)ϕn(x) dx.

2. Next we need for the infinite sum in (7) to represent a solution to the equation. This is formally true
since

∂u

∂t
(x, t) =

∞∑
n=1

cn
deλnt

dt
ϕn(x)

=
∞∑
n=1

cnλne
λntϕn(x)

=
∞∑
n=1

cne
λnt
d2ϕn
dx2

(x) =
∂2u

∂x2
(x, t)

A rigorous proof in the case f is smooth or if we use convergence in L2(a, b) and study weak solutions
(a topic beyond the scope of this class).
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4 1-D Wave Equation: Eigenvalues and Eigenvectors

The one dimensional wave equation modeling the displacement of a vibrating string of length ` = (b− a)
covering the interval a < x < b is

utt(x, t) = c2uxx(x, t), a < x < b, t > 0 (5)

u(x, 0) = f(x)

ut(x, 0) = g(x)

Once again we have the same three main types of boundary conditions imposed at the ends of the string:
Dirichlet Conditions, Neumann Conditions, and Robin Conditions. These are all special cases of the
general BCs

α1ϕ
′(a) + α2ϕ(a) = 0, β1ϕ

′(b) + β2ϕ(b) = 0.

Let us consider the heat equation on a ≤ x ≤ b.

utt(x, t) = c2uxx(x, t), a < x < b, t > 0

α1ux(a, t) + α2u(a, t) = 0,

β1ux(b, t) + β2u(b, t) = 0

u(x, 0) = f(x), ut(x, 0) = g(x)

Applying separation of variables we seek simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

This gives
ψ′′(t)

c2ψ(t)
=
ϕ′′(x)

ϕ(x)

and since the left side is independent of x and the right side is independent of t, it follows that the
expression must be a constant:

ψ′′(t)

c2ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ

We seek to find all possible constants λ and the corresponding nonzero functions ϕ and ψ.

In the x variable we have
ϕ′′ − λϕ = 0

Furthermore, the boundary conditions give

(α1ϕ(a) + α2ϕ(a))ψ(t) = 0, (β1ϕ(b) + β2ϕ(b))ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0,

α1ϕ
′(a) + α2ϕ(a) = 0,

β1ϕ
′(b) + β2ϕ(b) = 0.
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By the Sturm-Liouville Theorem there are infinitely many eigenpairs {λn, ϕn(x)} with the eigenfunctions
forming a complete orthonormal set.

In most practical problems we have λn = −µ2
n so the problem for ψ becomes ψ′′ + c2µ2

nψ = 0 has general
solution

ψn(t) = an cos(cµnt) + bn sin(cµnt) (6)

where an and bn are arbitrary constants.

At least for continuous initial conditions ϕ we obtain a solution to wave equation in the form

u(x, t) =
∞∑
n=1

(an cos(cµnt) + bn sin(cµnt))ϕn(x). (7)

where

1. f(x) = u(x, 0) =
∞∑
n=1

anϕn(x) with an =

∫ b

a

f(x)ϕn(x) dx.

2. g(x) = ut(x, 0) =
∞∑
n=1

(cµn)bnϕn(x) with bn = (cµn)−1

∫ b

a

g(x)ϕn(x) dx.

3. Next we need for the infinite sum in (7) to represent a solution to the equation. This is formally true
since

∂2u

∂t2
(x, t) =

∞∑
n=1

cn
d2

dt2
(an cos(cµnt) + bn sin(cµnt))ϕn(x)

=
∞∑
n=1

cn(−cµn)2 (an cos(cµnt) + bn sin(cµnt))ϕn(x)

=
∞∑
n=1

cn(c2λn) (an cos(cµnt) + bn sin(cµnt))ϕn(x)

= c2
∞∑
n=1

cn (an cos(cµnt) + bn sin(cµnt))
d2ϕn
dx2

(x)

= c2
∂2u

∂x2
(x, t)
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