
Heat & Wave Equation in a Rectangle

Section 12.8

1 Heat Equation in a Rectangle

In this section we are concerned with application of the method of separation of variables ap-
plied to the heat equation in two spatial dimensions. In particular we will consider problems
in a rectangle.

Thus we consider

ut(x, y, t) = k (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, a]× [0, b], (1.1)

u(0, y, t) = 0, u(a, y, t) = 0, u(x, 0, t) = 0, u(x, b, t) = 0

u(x, y, 0) = f(x, y)

u(x, y) = X(x)Y (y)T (t).

Substituting into (2.1) and dividing both sides by kX(x)Y (y)T (t) gives

T ′(t)

kT (t)
=
Y ′′(y)

Y (y)
+
X ′′(x)

X(x)

Since the left side is independent of x, y and the right side is independent of t, it follows
that the expression must be a constant:

T ′(t)

kT (t)
=
Y ′′(y)

Y (y)
+
X ′′(x)

X(x)
= λ.

We seek to find all possible constants λ and the corresponding nonzero functions T , X and
Y . We obtain

T ′(t)− kλT (t) = 0,
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and
X ′′(x)

X(x)
= λ− Y ′′(y)

Y (y)
.

But since the left hand side depends only on x and the right hand side only on y, we conclude
that there is a constant α

X ′′ − αX = 0.

On the other hand we could also write

Y ′′(y)

Y (y)
= λ− X ′′(x)

X(x)

so there exists a constant β so that

Y ′′ − βY = 0.

Thus we have

X ′′ − αX = 0, Y ′′ − βY = 0, T ′(t)− kλT (t) = 0 and λ = α + β.

Furthermore, the boundary conditions give

X(0)Y (y) = 0, X(a)Y (y) = 0, for all y.

Since Y (y) is not identically zero we obtain the desired eigenvalue problem

X ′′(x)− αX(x) = 0, X(0) = 0, X(a) = 0. (1.2)

We have solved this problem many times and we have α = −µ2 so that

X(x) = c1 cos(µx) + c2 sin(µx).

Applying the boundary conditions we have

0 = X(0) = c1 ⇒ c1 = 0 0 = X(a) = c2 sin(µa).

From this we conclude sin(µa) = 0 which implies

µ =
nπ

a

and therefore

αn = −µ2
n = −

(nπ
a

)2

, Xn(x) =

√
2

a
sin(µnx), n = 1, 2, · · · . (1.3)

Now from the boundary condition

X(x)Y (0) = 0, X(x)Y (b) = 0 for all x.
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This gives the problem

Y ′′(y)− βY (y) = 0, Y (0) = 0, Y (b) = 0. (1.4)

This is the same as the problem (2.2) so we obtain eigenvalues and eigenfunctions

βm = −ν2
m = −

(mπ
b

)2

, Ym(y) =

√
2

b
sin(νmy), n = 1, 2, · · · . (1.5)

So we obtain eigenvalues of the main problem given by

λn,m = −
((nπ

a

)2

+
(mπ
b

)2
)

(1.6)

and corresponding eigenfunctions

ϕn,m(x, y) =
2√
ab

sin(µnx) sin(νmy).

We also find the solution to T ′(t)− kλn,mT (t) = 0 is given by

T (t) = ekλn,mt.

So we look for u as an infinite sum

u(x, y, t) =
2√
ab

∞∑
n,m=1

cn,me
kλn,mt sin

(nπx
a

)
sin
(mπy

b

)
. (1.7)

The only problem remaining is to somehow pick the constants cn,m so that the initial condi-
tion u(x, y, 0) = f(x, y) is satisfied, i.e.,

f(x, y) = u(x, y, 0) =
∞∑

n,m=1

cn,mϕn,m(x, y). (1.8)

with

cn,m =

(
2√
ab

)∫ b

0

∫ a

0

f(x, y) sin
(nπx

a

)
sin
(mπy

b

)
dx dy

for n = 1, 2, · · · , m = 1, 2, · · · .

Example 1.1 (Dirichlet BCs). To simplify the problem a bit we set a = 1 and b = 1.
Namely we consider

ut(x, y, t) = k (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, 1]× [0, 1] (1.9)

u(0, y, t) = 0, u(1, y, t) = 0, u(x, 0, t) = 0, u(x, 1, t) = 0

u(x, y, 0) = x(1− x)y(1− y)
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In this case we obtain eigenvalues

λn,m = −π2(n2 +m2), αn = −π2n2, βm = −π2m2, n,m = 1, 2, · · · .

The corresponding eigenfunctions are given by

Xn(x) =
√

2 sin(nπx), Ym(y) =
√

2 sin(mπy).

Our solution is given by

u(x, y, t) = 2
∞∑
n=1

cn,me
kλn,mt sin(nπx) sin(mπy).

The coefficients cn,m are obtained from

x(1− x)y(1− y) = 2
∞∑

n,m=1

cn,m sin(nπx) sin(mπy).

We have

cn,m = 2

∫ 1

0

∫ 1

0

x(1− x)y(1− y) sin(nπx) sin(mπy) dx dy =
8((−1)n − 1)((−1)m − 1)

n3m3π6
.

u(x, y, t) = 2
∞∑

n,m=1

cn,me
kλn,mt sin (nπx) sin (mπy) . (1.10)

That is

u(x, y, t) =
16

π6

∞∑
n,m=1

((−1)n − 1)((−1)m − 1)ekλn,mt

n3m3
sin (nπx) sin (mπy) . (1.11)

Example 1.2 (Mixed Dirichlet and Neumann BCs). To simplify the problem a bit again
set a = 1 and b = 1. Namely we consider

ut(x, y, t) = k (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, 1]× [0, 1] (1.12)

u(0, y, t) = 0, u(1, y, t) = 0, uy(x, 0, t) = 0, uy(x, 1, t) = 0

u(x, y, 0) = x(1− x)y

In this case we obtain eigenvalues

λn,0 = −π2n2, Y0(y) = 1,

and

λn,m = −π2(n2 +m2), αn = −π2n2, βm = −π2m2, n,m = 1, 2, · · · ,

with corresponding eigenfunctions are given by

Xn(x) =
√

2 sin(nπx), Ym(y) =
√

2 cos(mπy).
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Our solution is given by

u(x, y, t) =
∞∑
n=1

cn,0e
kλn,0t

√
2 sin(nπx) +

∞∑
n,m=1

cn,me
kλn,mt

√
2 sin(nπx)

√
2 cos(mπy).

Setting t = 0 we obtain

x(1− x)y =
∞∑
n=1

cn,0
√

2 sin(nπx) +
∞∑

n,m=1

cn,m
√

2 sin(nπx)
√

2 cos(mπy).

This double Fourier series is evaluated again using orthogonality relations. We have

cn,m = 2

∫ 1

0

∫ 1

0

x(1− x)y sin(nπx) cos(mπy) dx dy =
−8((−1)n − 1)((−1)m − 1)

n3m2π5
.

Finally we obtain the coefficients cn,0 from

cn,0 =
√

2

∫ 1

0

∫ 1

0

x(1− x)y sin(nπx) dx dy =
−
√

2((−1)n − 1)

n3π3
.

u(x, y, t) = 2
∞∑
n=1

(1− (−1)n)

n3π3
ekλn,0t sin(nπx)

− 16

π5

∞∑
n,m=1

((−1)n − 1)((−1)m − 1)ekλn,mt

n3m2
sin(nπx) cos(mπy).

2 Wave Equation in Higher Dimensions

In this section we are concerned with application of the method of separation of variables
applied to the wave equation in a two dimensional rectangle. Thus we consider

utt(x, y, t) = c2 (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, a]× [0, b], (2.1)

u(0, y, t) = 0, u(a, y, t) = 0, u(x, 0, t) = 0, u(x, b, t) = 0

u(x, y, 0) = f(x, y), ut(x, y, 0) = g(x, y)
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u(x, y) = X(x)Y (y)T (t).

Substituting into (2.1) and dividing both sides by X(x)Y (y) gives

T ′′(t)

c2T (t)
=
Y ′′(y)

Y (y)
+
X ′′(x)

X(x)

Since the left side is independent of x, y and the right side is independent of t, it follows
that the expression must be a constant:

T ′′(t)

c2T (t)
=
Y ′′(y)

Y (y)
+
X ′′(x)

X(x)
= λ.

We seek to find all possible constants λ and the corresponding nonzero functions T , X and
Y . We obtain

X ′′(x)

X(x)
= λ− Y ′′(y)

Y (y)
T ′′(t)− c2λT (t) = 0.

Thus we conclude that there is a constant α

X ′′ − αX = 0.

On the other hand we could also write

Y ′′(y)

Y (y)
= λ− X ′′(x)

X(x)

so there exists a constant β so that

Y ′′ − βY = 0.

Furthermore, the boundary conditions give

X(0)Y (y) = 0, X(a)Y (y) = 0 for all y.

Since Y (y) is not identically zero we obtain the desired eigenvalue problem

X ′′(x)− αX(x) = 0, X(0) = 0, X(a) = 0. (2.2)

We have solved this problem many times and we have α = −µ2 so that

X(x) = c1 cos(µx) + c2 sin(µx).

Applying the boundary conditions we have

0 = X(0) = c1 ⇒ c1 = 0 0 = X(a) = c2 sin(µa).

From this we conclude sin(µa) = 0 which implies

µ =
nπ

a
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and therefore

αn = −µ2
n = −

(nπ
a

)2

, Xn(x) =

√
2

a
sin(µnx), n = 1, 2, · · · .. (2.3)

Now from the boundary condition

X(x)Y (0) = 0, X(x)Y (b) = 0 for all x.

This gives the problem

Y ′′(y)− βY (y) = 0, Y (0) = 0, Y (b) = 0. (2.4)

This is the same as the problem (2.2) so we obtain eigenvalues and eigenfunctions

βm = −ν2
m = −

(mπ
b

)2

, Ym(y) =

√
2

b
sin(νmy), n = 1, 2, · · · .. (2.5)

So we obtain eigenvalues of the main problem given by

λn,m = −
((nπ

a

)2

+
(mπ
b

)2
)

(2.6)

and corresponding eigenfunctions

ϕn,m(x, y) =
2√
ab

sin(µnx) sin(νmy).

We also find the solution to T ′′(t)− c2λn,mT (t) = 0 is given by

Tn,m(t) = [an,m cos(cωn,mt) + bn,m sin(cωn,mt)]

where we have defined

ωn,m =

√(nπ
a

)2

+
(mπ
b

)2

.

So we look for u as an infinite sum

u(x, y, t) =
2√
ab

∞∑
n,m=1

[an,m cos(cωn,mt) + bn,m sin(cωn,mt)] sin
(nπx

a

)
sin
(mπy

b

)
. (2.7)

We have left to find the constants an,m and bn,m so that the initial condition u(x, y, 0) =
f(x, y) and ut(x, y, 0) = g(x, y) are satisfied, i.e.,

f(x, y) = u(x, y, 0) =
2√
ab

∞∑
n,m=1

an,m sin
(nπx

a

)
sin
(mπy

b

)
. (2.8)
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Thus we conclude that

an,m =

(
2√
ab

)∫ b

0

∫ a

0

f(x, y) sin
(nπx

a

)
sin
(mπy

b

)
dx dy

for n = 1, 2, · · · , m = 1, 2, · · · .

In a similar way we have

g(x, y) = ut(x, y, 0) =
2√
ab

∞∑
n,m=1

cωn,mbn,m sin
(nπx

a

)
sin
(mπy

b

)
. (2.9)

with

bn,m =

(
2√

ab ωn,m

)∫ b

0

∫ a

0

g(x, y) sin
(nπx

a

)
sin
(mπy

b

)
dx dy

for n = 1, 2, · · · , m = 1, 2, · · · .

Example 2.1. In this example we set c = 1, a = π and b = π. Namely we consider

utt(x, y, t) = (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, π]× [0, π] (2.10)

u(0, y, t) = 0, u(π, y, t) = 0, u(x, 0, t) = 0, u(x, π, t) = 0

u(x, y, 0) = x(π − x)y(π − y), ut(x, y, 0) = 0.

In this case we obtain eigenvalues

λn,m = −(n2 +m2), αn = −n2, βm = −m2, n,m = 1, 2, · · · .

The corresponding eigenfunctions are given by

Xn(x) =

√
2

π
sin(nx), Ym(y) =

√
2

π
sin(my).

Our solution is given by

u(x, y, t) =
2

π

∞∑
n=1

[an,m cos(ωn,mt) + bn,m sin(ωn,mt)] sin(nx) sin(my)

where we have defined
ωn,m =

√
n2 +m2.

The coefficients an,m are obtained from

x(π − x)y(π − y) =
2

π

∞∑
n,m=1

an,m sin(nx) sin(my).

We have

an,m =
2

π

∫ π

0

∫ π

0

x(π − x)y(π − y) sin(nx) sin(my) dx dy =
8((−1)n − 1)((−1)m − 1)

n3m3π
.
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Since ut(x, y, 0) = g(x, y) = 0 we have

bn,m = 0.

u(x, y, t) =
16

π2

∞∑
n,m=1

((−1)n − 1)((−1)m − 1)

n3m3
ekλn,mt sin (nx) sin (my) . (2.11)

Example 2.2. In this example we set c = 1, a = π and b = π. Namely we consider

utt = (uxx(x, y, t) + uyy(x, y, t)) , t > 0, (x, y) ∈ [0, π]× [0, π] (2.12)

ux(0, y, t) = 0, ux(π, y, t) = 0, u(x, 0, t) = 0, u(x, π, t) = 0

u(x, y, 0) = x(π − x)y, ut(x, y, 0) = 0.

We get eigenvalue problem in x given by

X ′′ − αX = 0, X ′(0) = 0, X ′(π) = 0.

Therefore we have eigenvalues and eigenvectors

α0 = 0, X0(x) =
1√
π
, αn = −n2, Xn(x) =

√
2

π
cos(nx), n = 1, 2, 3, · · · .

The eigenvalue problem in y is given by

Y ′′ − βY = 0, Y (0) = 0, Y (π) = 0.

The corresponding eigenvalues are

βm = −m2, Ym(y) =

√
2

π
sin(my), m = 1, 2, 3, · · · .

In this case we obtain eigenvalues

λn,m = −(n2 +m2), αn = −n2, βm = −m2, n,m = 1, 2, · · · .

The corresponding eigenfunctions are given by

ϕn,m(x, y) =
2

π
cos(nx) sin(my).

For this example we also have eigenvalues

λ0,m = −m2, X0(x) =
1√
π
.

Our solution is given by

u(x, y, t) =
1√
π

∞∑
m=1

[a0,m cos(ω0,mt) + b0,m sin(ω0,mt)] sin(my)

+
2

π

∞∑
n,m=1

[an,m cos(ωn,mt) + b0,m sin(ω0,mt)] cos(nx) sin(my).
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Setting t = 0 we obtain

x(π − x)y =

√
2

π

∞∑
n=1

an,0 cos(nx) +
2

π

∞∑
n,m=1

an,m cos(nx) sin(my).

We have

an,m =
2

π

∫ π

0

∫ π

0

x(1− x)y cos(nx) sin(my) dx dy =
2π(−1)m((−1)n + 1)

n2m
.

Finally we obtain the coefficients an,0 from

a0,m =

√
2

π

∫ π

0

∫ π

0

x(π − x)y sin(my) dx dy =

√
2(−1)m+1π3

6m
.

Finally we arrive at the solution

u(x, y, t) =
∞∑
m=1

π2(−1)m+1

3m
cos(ω0,mt) sin(my)

+
∞∑

n,m=1

4((−1)n + 1)((−1)m)

n2m
cos(ωn,mt) cos(nx) sin(my)

with ωn,m =
√
n2 +m2.
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