Heat & Wave Equation in a Rectangle

Section 12.8

1 Heat Equation in a Rectangle

In this section we are concerned with application of the method of separation of variables ap-
plied to the heat equation in two spatial dimensions. In particular we will consider problems

in a rectangle.

Thus we consider
(2, y,t) = k (go (2,9, 1) + uyy(x,y,t)), >0, (z,y)€[0,a] x0,0], (1.1)
uw(0,y,t) =0, wu(a,y,t) =0, u(z,0,t) =0, wu(z,b,t)=0
u(z,y,0) = f(x,y)

A

wiz, b t) =10

u(0,y,t) =0 u(a,y. t) =10

u(zr,0,t) =10

u(z,y) = X(2)Y (y)T(t).
Substituting into (2.1) and dividing both sides by kX ()Y (y)T'(t) gives
)  Y'y)  X"(x)

KT(t)  Y(y)  X(z)

Since the left side is independent of x, y and the right side is independent of ¢, it follows

that the expression must be a constant:
T _ Yy  X'@)
KT Y(y)  X(=)

We seek to find all possible constants A and the corresponding nonzero functions 7', X and
Y. We obtain

T'(t) — kXT'(t) = 0,
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and

But since the left hand side depends only on x and the right hand side only on ¥y, we conclude
that there is a constant a

X" —aX =0.
On the other hand we could also write
Y'y) _\ _ X"(2)
Y(y) X(x)
so there exists a constant (3 so that
Y' - BY =0

Thus we have

X'"—aX =0, Y'=0pY =0, T(t)—kX[(t)=0 and A=a+[.

Furthermore, the boundary conditions give
X0)Y(y) =0, X(a)Y(y)=0, forally.
Since Y (y) is not identically zero we obtain the desired eigenvalue problem

X"(z) —aX(x) =0, X(0)=0, X(a)=0. (1.2)

We have solved this problem many times and we have o = —p? so that
X(z) = ¢y cos(px) + cosin(px).
Applying the boundary conditions we have

0=X0)=c1=c=0 0= X(a)=cysin(ua).

From this we conclude sin(pa) = 0 which implies

nm

and therefore

Now from the boundary condition

X(@)Y(0)=0, X(2)Y(b)=0 forall z.
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This gives the problem
Y"(y) = BY (y) =0, Y(0)=0, Y(b)=0. (1.4)

This is the same as the problem (2.2) so we obtain eigenvalues and eigenfunctions

B = —V2 = — (%)2, Yiu(y) = \/%sin(umy), n=12---. (1.5)

So we obtain eigenvalues of the main problem given by

= (2 () s

and corresponding eigenfunctions

2 :
Onm(T,y) = Nz sin(p,x) sin(v,y).

We also find the solution to 77(t) — kA, T (t) = 0 is given by

T(t) = Mnmt,

So we look for u as an infinite sum

2
u(z,y,t) = Vab Z Crm€ ! sin <n77:v> sin (?) . (1.7)

n,m=1

The only problem remaining is to somehow pick the constants ¢, ., so that the initial condi-
tion u(z,y,0) = f(x,y) is satisfied, i.e.,

f(z,y) = u(z,y,0) = Z CrmPrm (T, Y).- (1.8)

n,m=1

Crom = (%) /Ob /Oa f(z,y)sin (%?) sin (?) dz dy

form=1,2,---,m=1,2,---.

with

Example 1.1 (Dirichlet BCs). To simplify the problem a bit we set @ = 1 and b = 1.
Namely we consider

u(x, Y, t) =k (Uga(,y, ) + uyy(z,y,t)), t>0, (z,y)€]0,1] x]0,1] (1.9)
u(0,y,t) =0, u(l,y,t) =0, wu(z,0,t)=0, wu(z,1,t)=0
u(z,y,0) = (1 —2)y(l —y)



In this case we obtain eigenvalues
Aom = —m2(n* +m?), a, = —7°n?, Bp=-—-1"m? nm=12---.
The corresponding eigenfunctions are given by
X, (z) = V2sin(nmz),  Yu(y) = V2sin(may).
Our solution is given by

u(z,y,t) =2 Z Cnme€ ot sin(nmx) sin(mmy).

n=1

The coefficients ¢, ,,, are obtained from

z(1—2)y(l—y) =2 Z Cp.m Sin(n7z) sin(mmy).

n,m=1
We have
b —1)" = 1)((-1)™ -1
Crm = 2/0 /o (1 — 2)y(1 — y) sin(nrx) sin(mny) de dy = 3((=1) n?’Tr)LgErG ) )
u(z,y,t) =2 Z Com€™mt sin (nrr) sin (mry) . (1.10)
n,m=1
That is
16 & (1) - (D) - et
u(z,y,t) = pre Z " sin (nmx) sin (mmy) . (1.11)

n,m=1

Example 1.2 (Mixed Dirichlet and Neumann BCs). To simplify the problem a bit again
set a =1 and b = 1. Namely we consider

u(x,y,t) =k (uge (2, y, t) + uyy(z,y,t)), t>0, (z,y)€[0,1] x [0,1] (1.12)
uw(0,y,t) =0, u(l,y,t) =0, uy(x,0,t) =0, wuy(z,1,t)=0
In this case we obtain eigenvalues
)\nO = _7T2n27 }/O(y) - 17
and
Anm = —m2(n* +m?), a,=—7m*n? Bn=-1"m? nm=12---,

with corresponding eigenfunctions are given by

X, (z) = V2sin(nmz),  Yn(y) = V2cos(mmy).




Our solution is given by

u(z,y,t) = Z Cn o€ 0/ 2sin(nme) + Z Cnm €/ 2 sin(nr) V2 cos(mry).
n=1 n,m=1

Setting ¢ = 0 we obtain

(1 —2x)y = Z CnoV2sin(nmz) 4 Z Cnm V2 8in(n7z) V2 cos(mmy).
n=1 n,m=1

This double Fourier series is evaluated again using orthogonality relations. We have

sy — “BED DD 1)

n3m?2md

11
Crom = 2/ / z(1 — x)ysin(nmrx) cos(mmy)
o Jo

Finally we obtain the coefficients ¢, ¢ from

Cno = \/5/0 /0 z(1 — x)ysin(nrz) de dy = —VACY" - 1).

n3m3

o0

1—-(=1)"
u(x,y,t) = QZ —( 3() 3 ) )ek’\"’ot sin(nmx)
n3m

n=1

16 % ((-1)" = D((-1)" = Dkt

- — sin(nmx) cos(mmy).

5 3,2

— n3m

2 Wave Equation in Higher Dimensions

In this section we are concerned with application of the method of separation of variables
applied to the wave equation in a two dimensional rectangle. Thus we consider

(2,5, 1) = & (uge (2, y, 1) + Uyy(z,y,t)), >0, (x,y) €[0,a] x[0,0], (2.1)
uw(0,y,t) =0, wu(a,y,t) =0, wu(z,0,t) =0, wu(z,bt)=0
u(x,y,O) = f(l’,y), ut(x,y,O) = g(a:,y)

A

ulz, bt} =0

u(0,y,t) =0 u(a,y. t) =10

u(zr,0,t) =10



u(z,y) = X (@)Y (y)T(1).
Substituting into (2.1) and dividing both sides by X (z)Y (y) gives
T”(Zf) B Y”(y) . X”(]J)

AT) Yy o X(z)

Since the left side is independent of z, y and the right side is independent of ¢, it follows
that the expression must be a constant:
() V') | X'(x)

2T - Y() | X))

We seek to find all possible constants A and the corresponding nonzero functions 7', X and
Y. We obtain
X'@) Y
X(z) Y(y)

Thus we conclude that there is a constant a

T"(t) — AT (t) = 0.

X"—aX =0.

On the other hand we could also write

Yy | X'(w)
Y(y) X(x)
so there exists a constant (3 so that
Y" - 3Y =0.

Furthermore, the boundary conditions give
X0)Y(y) =0, X(a)Y(y)=0 forally.
Since Y (y) is not identically zero we obtain the desired eigenvalue problem

X"(z) —aX(z) =0, X(0)=0, X(a)=0. (2.2)

We have solved this problem many times and we have a = —pu? so that
X(x) = ¢ cos(pux) + ¢y sin(pux).
Applying the boundary conditions we have

0=X0)=c1=c=0 0= X(a)=cysin(ua).

From this we conclude sin(pa) = 0 which implies

nm

,u__
a



and therefore

2 2
Oén:_lugl:_<n_ﬂ-) ) Xn(x):\/;Sln(H'nx)a n:1727... o

Now from the boundary condition

X(@)Y(0)=0, X(2)Y(b)=0 forall z.
This gives the problem

Y(y) - BY (y) =0, Y(0) =0, Y(b)=0.

This is the same as the problem (2.2) so we obtain eigenvalues and eigenfunctions

2 2
B = —V2, = — <T> , Yo(y) = \/;sin(ymy), n=1,2---
So we obtain eigenvalues of the main problem given by

== () (5)

and corresponding eigenfunctions

2 .
Prm(T,Y) = \/ﬁ sin(in ) sin(vmy).

We also find the solution to T"(t) — 2\, T(t) = 0 is given by

Tom(t) = [anm cOS(Cwn mt) + by Sin(cwy mt)]

onm = ()" + (50"

So we look for u as an infinite sum

where we have defined

o

2

u(z,y,t) = —— Z [@n.m COS(Cwp mt) + bpm Sin(cwy, 1 t)] sin (@) sin <m;;y> )

Vab a

n,m=1

(2.4)

(2.6)

(2.7)

We have left to find the constants a,,, and by, so that the initial condition u(x,y,0) =

f(z,y) and w(z,y,0) = g(z,y) are satisfied, i.e.,

f(z,y) = u(z,y,0) = \/% i:lan,m sin <?) sin <@) :

(2.8)



Thus we conclude that

2 bora <n7rx) <m7ry)
nm = | —F— r,y)sm | ——)sin | —— dx d
; ( /—ab>/0 /0 f(z,y) a b Y
forn=1,2,---,m=1,2,---

In a similar way we have

9(z,y) = w(z,y,0) = Z W, m nmsm( )s‘ (@) (2.9)

nml

bym = <\/%+) /Ob /Oag(:p,y) sin (?) sin <@> dz dy

forn=1,2,---, m=1,2,---.

with

Example 2.1. In this example we set ¢ = 1, a = 7 and b = 7. Namely we consider
utt(xa?%t) = (um(:ﬁ,y,t) + uyy<x7yvt))> t > 0> (x,y) € [ ] [ ] (210)
w(0,y,t) =0, wu(m,y,t) =0, u(z,0,t)=0, u(z,wt)=
u(x,y, O) = 33'(7'(' - l‘)y(ﬂ' - y)a ut<x7y> 0) = 0.

In this case we obtain eigenvalues

Anm = —(n2 +m2), an =-n% Bn=-m? nm=12---

The corresponding eigenfunctions are given by

X, (z) = \/g sin(nz),  Yi(y) = \/g sin(my).

Our solution is given by

2 oo
u(z,y,t) = — Z A m COS (W mt) + by sin(wy, mt)] sin(na) sin(my)
n=1

:1

where we have defined

Wnm = VN2 4+ m2.

The coefficients a,, ., are obtained from

z(m—a)y(r —y) = % Z U, Sin(nz) sin(my).
We have
Uy = %/0” /Oﬂx(ﬂ — x)y(m — y) sin(nzx) sin(my) de dy = s((=1)" ;317353(;1)771 - 1)‘
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Since w(z,y,0) = g(x,y) = 0 we have
br.m = 0.

16 o (=D)"=1)((-1)™—=1) 4,
Z(( )"~ DD 1) g,

u(z,y,t) = 3 . sin (nx) sin (my) . (2.11)

n,m=1
Example 2.2. In this example we set ¢ = 1, a = 7 and b = 7. Namely we consider
U = (e (2, y, 1) +uyy(z,y,t)), t>0, (z,y)€[0,7]x]0,n] (2.12)
ug(0,y,t) =0, wuy(my,t) =0, u(z,0,t) =0, u(z,m,t)=0
u(z,y,0) =x(r — )y, wulz,y,0)=0.

We get eigenvalue problem in x given by
X"—aX =0, X'(0)=0, X'(m)=0.
Therefore we have eigenvalues and eigenvectors

1 2
ap =0, Xo(z)= ﬁ, an = —n?, X,(z) = \/;cos(nx), n=1213,---
The eigenvalue problem in y is given by
—pY =0, Y(0)=0, Y(r)=0.

The corresponding eigenvalues are

2
B = —m?, Yn(y) = \/jsin(my), m=1,2,3,---.
T

In this case we obtain eigenvalues

Anm = —(*+m?), a,=-n% Bn=-m?’ nm=12---

The corresponding eigenfunctions are given by

2
Gnam(@,y) = = cos(nz) sin(my).
T

For this example we also have eigenvalues

Our solution is given by

1

o0
m m b m i mt i
u(z,y,t) NG mz::l a0,m €OS(wWo mt) + b m sin(wo,mt)] sin(my)

[e.e]

2
+ - Z [@nm €OS(wWnmt) + bo.m sin(wp mt)] cos(nz) sin(my)

n,m=1



Setting ¢ = 0 we obtain

x(m—x)y = \/— Z Q0 cos(nx) + — Z A, m cos(nz) sin(my).

nml

We have

2n(=)™(=1)" +1)

2 ™ s
Unm = — / / z(1 — x)y cos(nz) sin(my) dx dy =
T Jo Jo

Finally we obtain the coefficients a, ¢ from
2 [T [T 2(—1)"Hg3
= £/ / x(m — x)ysin(my) de dy = M
T Jo Jo 6m
Finally we arrive at the solution
1 m+1

u(z,y,t) Z G cos(wo,mt) sin(my)

m=1

s A((=1)" :2 72)((—1)”0 cos(wnmt) cos(na) sin(my)

n,m=1

with wy, m = vVn? + m2.
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