Constant Coefficient 2D First Order Systems:

Eigenvalues & Eigenvectors
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If we introduce matrices we can write the system in a simple form

T a b dX

Look for a simple solution X = eMv with v # 0 then we have

)\X:%:AX, A = Av

which implies
(M —A)v =0. (3)

The homogeneous system has a nonzero solution if and only if
det(A] — A) = \? — trace(A)\ + det(A) = 0.

The quadratic polynomial is called the characteristic polynomial, the roots are called the eigenvalues
and the associated (nonzero) vectors v are called the eigenvectors. Set A = det(A), 7 = trace(A)
and

D =712 —4A.

Tthere are three cases depending on the cases D > 0, D =0 and D < 0.

1. D > 0 implies there are two real distinct eigenvalues Ay < \; with associated eigenvectors v,
and ve. The general solution of (1) is

X () = a1eM'Vy + aye'Vs. (4)

2. D = 0 implies there is real distinct eigenvalue (a double root) A\ and there are two possiblities:

(a) There may be two linearly independent eigenvectors V; and V5. If so the general solution
of (1) is
X (t) = a1V} + 4™V, (5)

(b) There may only be one linearly independent eigenvector Vi. This is the most complicated
case. In this case the general solution of (1) is then

X (t) = a1e™'V} + axe™' (tV, + P) (6)

where w is any solution of (A — A\g)P = Vj.

3. D < 0 implies there are complex eigenvalues \g = a+i3. In this case we solve (A — X\g)v =0
where v will contain complex numbers, i.e., v = W +1Z where W and Z are the real and
imaginary parts of v. Then the general solution can be written as

X (t) = a1e™ [ cos(Bt)W — sin(Bt) Z] + aze™ [ cos(Bt) Z + sin(St)W]. (7)



Constant Coefficient First Order Systems: the General Case

The case of a general n x n matrix is somewhat more complicated. We will not attempt a complete
discussion. Consider

T1 ayp - Aip
dX

%:AX where X =|:], A=|": Cl (8)

T, Upi - G
Once again secking simple solutions X = eMV with V' # 0 leads to

(M —-—A)V =0
The homogeneous system has a nonzero solution if and only if

p(A) = det(A] — A) = A" + a, A" 4 ard + ag = 0.

Since we assume that n > 2 there are many more possibilities than in the case n = 2. We only
consider a few cases.

1. Distinct Real Eigenvalues If A has n distinct real eigenvalues Ai, Ao, - - - , \,, with associated
eigenvectors Vi, Vs, - -+ | V,, then the general solution is given by

X(t) = 01@)\175‘/1 + 026>\2t‘/2 I Cne)\nt‘/n-

2. A Repeated Eigenvalue Suppose that one of the eigenvalues, say A; is an mth order root
of p(\) then there are many possibilities.
(a) If there are m linearly independent eigenvectors Vi, Vja, - -, Vj,, for A, then the general
solution contains an expression of the form

X;(t) = cpneV'Vin + cpeV Vg + -+ + ¢jue™ Vi

(b) If for example, if A; has multiplicity two and there is only one eigenvector V; then
X; = a1eM'Vj + axe¥' (tV; + P) where (A — ;)P = V. But if \; has multiplicity three
and there is only one eigenvector V; then

t2
X; = 1MV + ¥ (tV; + P) + aze™’ (51/} +tP + Q)

where (A — )\;)P =V, and (A —\;)Q = P.
3. A Pair of Complex Eigenvalues Suppose \; = o + i3 is an eigenvalue of multiplicity one
(note that also a—1/ is an eigenvalue if A has real coefficients) with eigenvector V; = W +iZ.
The we write

X1(t) = [Wcos(Bt) — Zsin(Bt)] e, Xj1(t) = [Z cos(Bt) + W sin(3t)] e
where W = Re (V;) and Z = Im (Vj). Then the general solution contains terms
X;(t) = cnXju(t) + ¢;p X (1)

Notice this is not the most general case since \; could have multiplicity m > 1.



