
Dirichlet & Heat Problems in Polar Coordinates

Section 13.1

1 Steady State Temperature in a circular Plate

Consider the problem

uxx(x, y) + uyy(x, y) = 0, x2 + y2 < R2 (1.1)

u(x, y) = f(x, y), x2 + y2 = R2,

u(x, y) bounded on x2 + y2 ≤ R2. (1.2)

R

u = f

It turns out that we cannot solve this problem using separation of variables as it is written.
But, as you will see, if we change coordinates to polar coordinates then separation of variables
works fine.

To this end recall that polar coordinates are given by

x = r cos(θ), y = r sin(θ)

or
r2 = x2 + y2, θ = tan−1(y/x).

So we need to translate
uxx(x, y) + uyy(x, y) = 0

into the variables r and θ. First we use r2 = x2 + y2 and implicit differentiation to compute

2rrx = 2x ⇒ rx =
x

r
, 2rry = 2y ⇒ ry =

y

r

so we have
rx =

x

r
= cos(θ) and ry =

y

r
= sin(θ). (1.3)

Similarly, differentiating y = r sin(θ) with respect to x and using (1.3) we have

0 = rx sin(θ) + r cos(θ)θx (1.4)

= cos(θ) sin(θ) + r cos(θ)θx (1.5)
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which implies

θx = −sin(θ)

r
. (1.6)

Differentiating x = r cos(θ) with respect to y and using (1.3) we have

0 = ry cos(θ)− r sin(θ)θy (1.7)

= cos(θ) sin(θ)− r sin(θ)θy (1.8)

and we obtain

θy =
cos(θ)

r
. (1.9)

Next, using the chain rule and (1.3) we compute

ux = urrx + uθθx = ur cos(θ)− uθ
sin(θ)

r
(1.10)

and

uy = urry + uθθyur sin(θ) + uθ
cos(θ)

r
. (1.11)

Using the formulas (1.10) and (1.11) we now compute the second derivatives:

uxx = (urrrx + urθθx) cos(θ)− (uθrrx + uθθθx)
sin(θ)

r

+ ur(cos(θ))x − uθ
(

sin(θ)

r

)
x

=

(
urr cos(θ) + urθ

(
−sin(θ)

r

))
cos(θ)

−
(
uθr cos(θ) + uθθ

(
−sin(θ)

r

))
sin(θ)

r

+ ur(− sin(θ))θx − uθ
(

(r cos(θ)θx − sin(θ)rx)

r2

)
= urr cos2(θ)− 2urθ

(
sin(θ) cos(θ)

r

)
+ uθθ

(
sin2(θ)

r2

)
+ ur

sin2(θ)

r
− uθ

(
− cos(θ) sin(θ)− sin(θ) cos(θ)

r2

)
.

Finally we arrive at

uxx = urr cos2(θ)− 2urθ

(
sin(θ) cos(θ)

r

)
+ uθθ

(
sin2(θ)

r2

)
(1.12)

+ ur
sin2(θ)

r
+ uθ

(
(2 sin(θ) cos(θ))

r2

)
Exactly the same type of calculation which begins with

uy = urry + uθθy = ur sin(θ) + uθ

(
cos(θ)

r

)
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leads to

uyy = urr sin2(θ) + 2urθ

(
sin(θ) cos(θ)

r

)
+ uθθ

(
cos2(θ)

r2

)
(1.13)

+ ur
cos2(θ)

r
− uθ

(
(2 sin(θ) cos(θ))

r2

)

Now adding (1.12) and (1.13) leads to

uxx + uyy = urr +
1

r
ur +

1

r2
uθθ. (1.14)

With this we can rewrite the problem (1.1) as

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < R, 0 ≤ θ ≤ 2π (1.15)

u(R, θ) = f(θ), 0 ≤ θ ≤ 2π

u(r, θ) bounded. (1.16)

Remark 1.1. We could just as easily have considered the following problem.

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < R, −π ≤ θ ≤ π (1.17)

u(R, θ) = g(θ), −π ≤ θ ≤ π

u(r, θ) bounded. (1.18)

In other words we could write the problem on any 2π interval. The only difference is that
the function f(x) and g(x) would be different since we are assuming that the given function
is 2π periodic. So if we intend to use the interval −π < θ < π instead of 0 < θ < 2π and
we intend to use the same periodic function then we need to make some adjustments. For
example, if

f(θ) =

{
f1(θ) , 0 < θ < π

f2(θ) , π < θ < 2π
⇒ g(θ) =

{
f2(θ − 2π) ,−π < θ < 0

f1(θ) , 0 < θ < π
.

As a specific example consider

f(θ) =

{
θ , 0 < θ < π

2π − θ , π < θ < 2π
⇒ g(θ) =

{
−θ ,−π < θ < 0

θ , π < θ < 2π
.

The advantage of the interval [−π, π] is that in the integrations you are integrating over a
symmetric interval about zero, so you can use even and odd to your advantage.

Separation of variables proceeds as follows. We seek simple solutions to (1.15) in the form

u = ϕ(θ)ψ(r).
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Substituting this into the equation in (1.15) we have

(ϕ(θ)ψ(r))rr +
1

r
(ϕ(θ)ψ(r))r +

1

r2
(ϕ(θ)ψ(r))θθ = 0

ϕ(θ)ψ′′(r) +
1

r
ϕ(θ)ψ′(r) +

1

r2
ϕ′′(θ)ψ(r) = 0.

Next we divide by ϕ(θ)ψ(r) and multiply by r2 to obtain

r2(ψ′′ + (1/r)ψ′)

ψ
= −ϕ

′′

ϕ

which as usual in separation of variables must equal a constant λ.

Recall the solutions for so-called Euler-Cauchy equations:

r2ψ′′ + arψ′ + bψ = 0

Consider the change of variables s = ln(r) or r = es. By the chain rule

dψ

dr
=
dψ

ds

ds

dr
=

1

r

dψ

ds

and
d2ψ

dr2
=

d

ds

(
dψ

dr

1

r

)
=

1

r2

dψ2

ds2
− 1

r2

dR

ds

So the equation becomes

r2

(
1

r2

dψ2

ds2
− 1

r2

dψ

ds

)
+ ar

1

r

dψ

ds
+ bψ = 0

which simplifies to
dψ2

ds2
+ (a− 1)

dψ

ds
+ bψ = 0.

This is a constant coefficient equation and we recall from ODEs that there are three possi-
bilities for the solutions depending on the roots of the characteristic equation. In the present
case we have a = 1 and b = λ.

Thus we obtain the pair of BVPs for ODEs:

ϕ′′(θ) + λϕ(θ) = 0, ϕ(−π) = ϕ(π), ϕ′(−π) = ϕ′(π)

For λ = 0 we have ϕ(θ) = 1. For nonzero λ we have λ = µ2 and the general solution
is ϕ(θ) = A cos(µθ) +B sin(µθ).

The first boundary condition implies B sin(µπ) = B sin(−µπ) or sin(µπ) = 0. This
implies µ = n an integer. The second boundary condition implies −µA sin(µπ) =
−µA sin(−µπ) which again gives µ = n so that λ = n2 and both A and B are
arbitrary. Thus we have λ = n2 and

ϕ(θ) = Am cos(nθ) +Bm sin(nθ)
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With λ = n2 with n = 0, 1, 2, · · · as above

r2ψ′′(r) + rψ′(r)− n2ψ(r) = 0

for which we seek solutions in the form ψ(r) = rc. When n = 0 we get

r2ψ′′(r) + rψ′(r) = 0

which is an Euler-Cauchy problem with general solution ψ(r) = a+ b ln(r).

But in order for the solution to be bounded we need b = 0 so ψ is an arbitrary
constant, say ψ = 1.

For m 6= 0 we have again an Euler-Cauchy problem with general solution

ψ = arn + br−n.

Once again, for ψ bounded we need b = 0, so we take

ψ = rn.

Combining these results we seek our general solution in the form

u(r, θ) = a0 +
∞∑
n=1

rn [an cos(nθ) + bn sin(nθ)] (1.19)

In the case of (1.15) where the boundary function is given on [0, 2π]

f(θ) = u(R, θ) = a0 +
∞∑
n=1

Rm [an cos(nθ) + bn sin(nθ)] .

This is a general Fourier series and we have

a0 =
1

2π

∫ 2π

0

f(θ) dθ

an =
1

πRm

∫ 2π

0

f(θ) cos(nθ) dθ

bn =
1

πRm

∫ 2π

0

f(θ) sin(nθ) dθ

In the case of (1.17) where the boundary function is given on [−π, π] (see Remark 1.1)

g(θ) = u(R, θ) = a0 +
∞∑
n=1

Rm [an cos(nθ) + bn sin(nθ)] .

This is a general Fourier series and we have

a0 =
1

2π

∫ π

−π
g(θ) dθ
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an =
1

πRm

∫ π

−π
g(θ) cos(nθ) dθ

bn =
1

πRm

∫ π

−π
g(θ) sin(nθ) dθ

Example 1.1.

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < 1, −π ≤ θ ≤ π

u(1, θ) = cos2(θ),

u(r, θ) bounded.

Using the trig identity

cos2(θ) =
1

2
+

1

2
cos(2θ)

and our usual orthogonality conditions the solution is given by

u(r, θ) =
1

2
+

1

2
r2 cos(2θ)

Example 1.2.

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < 1, −π ≤ θ ≤ π

u(1, θ) = sin(3θ),

u(r, θ) bounded.

u(r, θ) = a0 +
∞∑
n=1

rn [an cos(nθ) + bn sin(nθ)]

Now we need

sin(3θ) = u(1, θ) = a0 +
∞∑
n=1

[an cos(nθ) + bn sin(nθ)] .

But we can argue (using our knowledge of orthogonality) that the solution is given by

u(r, θ) = r3 sin(3θ).

Notice that this solution can be transformed back into rectangular coordinates but it would
be a mess.

Example 1.3 (Integral Formula for Dirichlet Problem in a Disk). We recall that the Dirichlet
problem for for circular disk can be written in polar coordinates with 0 ≤ r ≤ R, −π ≤ θ ≤ π
as

∆u = urr +
1

r
ur +

1

r2
uθθ = 0

u(R, θ) = f(θ).
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As we have seen, we can obtain the solution u in the form

u(r, θ) = a0 +
∞∑
n=1

(r)n (an cos(nθ) + bn sin(nθ)) .

We need

f(θ) = u(R, θ) = a0 +
∞∑
n=1

(an cos(nθ) + bn sin(nθ)) ,

and

a0 =
1

2π

∫ 2π

0

f(θ) dθ

an =
1

πRn

∫ 2π

0

f(θ) cos(nθ) dθ,

bn =
1

πRn

∫ 2π

0

f(θ) sin(nθ) dθ.

Lemma 1.1. The series solution can thus be written as

u(r, θ) =
1

2π

∫ 2π

0

(R2 − r2) f(α)

R2 + r2 − 2rR cos(θ − α)
dα.

Proof. To prove this result we need only insert the formulas for an and bn into the infinite
sum representation for the solution, interchange the sum and integral and sum a resulting
geometric series:

u(r, θ) =
1

2π

∫ 2π

0

f(α) dα +
1

π

∞∑
n=1

( r
R

)n ∫ 2π

0

f(α) [cos(nα) cos(nθ) + sin(nα) sin(nθ)] dα

=
1

2π

∫ 2π

0

f(α) dα +
1

π

∞∑
n=1

( r
R

)n ∫ 2π

0

f(α) cos[n(θ − α)] dα

=
1

2π

∫ 2π

0

f(α)

[
1 + 2

∞∑
n=1

( r
R

)n
cos[n(θ − α)]

]
dα

=
1

2π

∫ 2π

0

f(α)

[
1 +

∞∑
n=1

( r
R

)n {
ein(θ−α) + e−in(θ−α)

}]
dα

=
1

2π

∫ 2π

0

f(α)

{
1 +

rei(θ−α)

R− rei(θ−α)
+

re−i(θ−α)

R− re−i(θ−α)

}
dα

=
1

2π

∫ 2π

0

(R2 − r2)

(R2 + r2 − 2rR cos(θ − α))
f(α) dα.
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2 Heat Equation in a Disk

Next we consider the corresponding heat equation in a two dimensional wedge of a circular
plate. So we write the heat equation with the Laplace operator in polar coordinates.

Example 2.1.

ut = k

(
urr +

1

r
ur +

1

r2
uθθ

)
, 0 < r < 1, 0 ≤ θ ≤ π/2 (2.1)

u(1, θ, t) = 0, 0 ≤ θ ≤ π/2

u(r, 0, t) = 0, uθ(r, π/2, t) = 0, 0 < r < 1,

u(r, θ, t) bounded,

u(r, θ, 0) = f(r, θ) = (r − r3) sin(θ).

Separation of variables proceeds as follows. We seek simple solutions to (2.1) in the form

u = T (t)Θ(θ)R(r).

Substituting this into the equation in (2.1) we have

T ′(t)

kT (t)
=

T (t)

(
Θ(θ)R′′(r) +

1

r
Θ(θ)R′(r) +

1

r2
Θ′′(θ)R(r)

)
Θ(θ)R(r)

= −λ2.

This leads to the following equations

T ′(t) + kλ2T (t) = 0

r2R′′ + rR′ + (λ2r2 − µ2)R = 0

Θ′′ + µ2Θ = 0

with boundary conditions
|R(0)| <∞, R(1) = 0

Θ(0) = 0, Θ′(π/2) = 0.

First we consider the equation for Θ:

Θ′′ + µ2Θ = 0, Θ(0) = 0, Θ′(π/2) = 0

which gives

µm = (2m− 1), Tm(t) = Θm(θ) =
2√
π

sin((2m− 1)θ).

The eigenfunction Θm(θ) satisfy the orthogonality relations∫ π/2

0

Θm(θ)Θk(θ) dθ = δm,k.
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Then for each m we have

r2R′′ + rR′ + (λ2r2 − (2m− 1)2)R = 0, |R(0)| <∞, R(1) = 0. (2.2)

For each m the differential equation in (2.2) is a Bessel equation which has a regular singular
point at r = 0. The solutions are called Bessel functions of the first kind of order µ. The
problem (2.2) (i.e., the equation and boundary conditions) is a singular Sturm-Liouville
problem and the associated eigenvalues and eigenfunctions

λm,n, Rm,n, m, n = 0, 1, 2, · · · .

The eigenfunctions are orthogonal with the integral∫ 1

0

Rm,n(r)Rm,p(r) r dr = δn,p.

We will use standard notation for the normalized eigenfunctions

Rm,n(r) = κm,nBesselJ((2m− 1), λm,nr)

where

κm,n =

(∫
BesselJ2((2m− 1), λm,nr) r dr

)−1

.

The eigenvalues λ are the zeros of the Bessel function obtained from the boundary condition
R(1) = 0 by

BesselJ((2m− 1), λm,n) = 0. (2.3)

It is well known that for each m this equation has infinitely many solutions λm,n which tend
to infinity with n.

The solution is given by

u(r, θ, t) =
2√
π

∞∑
m=1

(
∞∑
n=1

κm,nCm,ne
−kλ2

m,ntBesselJ((2m− 1), λm,nr) sin((2m− 1)θ)

)
.

For this example the special form of the initial condition f(r, θ) = (r − r3) sin(θ) together
with the orthogonality relations in θ show that the solution reduces to

u(r, θ, t) =
2√
π

(
∞∑
n=1

κ1,nC1,ne
−kλ2

1,ntBesselJ(1, λ1,nr)

)
sin(θ).

Also, in this case we can express κ1,n by

κ1,n =

√
2

BesselJ(0, λ1,n)
.
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Thus we only need the eigenvalues λ1,n for n = 1, 2, · · · . We cannot solve for this values
exacly but we can solve numerically and, for example, we find

λ1,1 = 3.831705970, λ1,2 = 7.015586670, λ1,2 = 10.17346814

and a plot of y = BesselJ(1, ξ) for ξ from 0 to 20 is given below

We obtain the corresponding Fourier coefficients C1,n from

C1,n =
κ1,n2√
π

∫ π/2

0

∫ 1

0

(r − r3)BesselJ(1, λ1,nr) dr dθ

from which, using Maple, we obtain

C1,n =
−16
√

2

λ3
1,n

√
π

and

u(r, θ, t) =
−64

π

∞∑
n=1

(
e−kλ

2
1,ntBesselJ(1, λ1,nr) sin(θ)

λ3
1,nBesselJ(0, λ1,n)

)
.

u(r, θ, 0) u(r, θ, 3)
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