We consider an example of initial boundary value problem for the wave equation on the seni-line with Dirichlet boundary condition at x = 0:

utt(x,t) = uxx(x,t),  0 < x < ,  t > 0 (1)
u(0,t) = 0,  t > 0,
u(x, 0) = f(x),  0 < x < ,
ut(x,t) = 0,  0 < x < .

Let f(x) be given by

       (
       { (1 - cos(πx ))
f(x) =   --------------,  2 < x < 4
       (       2
         0,               otherwise

Assuming that f(x) = 0 for x < 0, we can write the odd extension f^ (x) of f(x) is

^
f(x) = f (x) - f (- x ).

The solution ^u (x,t) of

^u tt(x,t) = ^u xx(x,t),   -∞ < x < ,  t > 0 (2)
^u (x, 0) = f^ (x),   -∞ < x < ,
^u t(x,t) = 0,   -∞ < x < ,.
of
          ^          ^
^u(x, t) =  f(x-+-t) +-f-(x---t).
                  2


When we restrict this solution to x > 0 we obtain (recall f(x) = 0 for x < 0)

         f (x + t) + f(x - t) - f(t - x )
u(x,t) = ------------------------------.
                       2
(3)

solution of extended problem

Solution of the extended problem on whole line




solution of  problem on half line

Solution of the  problem on half line