We consider an example of initial boundary value problem for the wave equation on the
seni-line with Dirichlet boundary condition at x = 0:

U (2,1) = U (2, 1), 0 <z <00, t>0 (1)
u(0,t) =0, t>0,
u(z,0) = f(z), 0<x< o0,
w(z,t) =0, 0<z < o0,
Let f(x) be given by
(1 — cos(mx)) 9 <p<d
, x
flz) = 2
0, otherwise

Assuming that f(z) = 0 for x < 0, we can write the odd extension f(z) of f(z) is

fla) = flz) - f(~2).

The solution u(z,t) of

U (2, 1) = Ugye (2, 1), —00 <z <00, t>0 (2)
U(z,0) = f(z), —oo <z < o0,
u(z,t) =0, —oc0 <z < 00,.
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When we restrict this solution to z > 0 we obtain (recall f(z) =0 for x < 0)
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In order to compute the solution at a positive value of ¢ we use the formula (3) where

(1 — cos(m(x —1t)))

, 2<(z—t)<4

0, otherwise

24t<z <4+t

0, otherwise

Notice that this term corresponds to a wave traveling to the right. The term f(x +t) is a
wave traveling to the left while the term —f (¢t — x) is a wave traveling to the right. As the
two terms meet they cancel each other in such a way that the value of f(x +t) — f(t — x)
is always zero at « = 0 i.e., f(0+¢) — f(t —0) = 0. Thus the solution always satisfies the
boundary condition at x = 0.

f(l_cos(ﬂ(ﬂf‘f‘t)))’ 2<(m—|—t)<4
fl+1) = :
\ 0, otherwise
'_(1—008(7T(t_$)>)’ 2<(t—x)<4
—ft—x) = X
0, otherwise

Let us consider the special case of ¢ = 3. In this case the above formulas become
(1 — cos(m(z — 3)))
fle—3) = 2

0, otherwise
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See the picture above when t = 3.

According to our picture at ¢t = 3 we should see the wave traveling left and the one traveling
right completely cancel. To see this we note that

(1 — cos(m(x + 3)))

, 2<(x+3)<4
flz+3) = 2
0, otherwise
1— _
(1 —cos(m(3 96)))7 )< (3—x) <4
—f(3—2) = : -
0, otherwise

Recalling that f(z) = 0 for 2 < 0 these can be written as
(1 —cos(m(x +3)))

, O<zx<l1
flx+3) = 2
0, otherwise
1-— 3—
—eosnB=a)
—f(3—2)= 2
0, otherwise

So on the interval 0 < z < 1 we have

1 ((1 —cos(m(z4+3))) (1 —cos(m(3— :z;))))

fl+3)—f3—a) == ] :

2

= % (cos(m(3 — x)) — cos(m(z + 3)))

= — (cos(mx — 3m) — cos(mx + 3))

(—cos(mz) 4 cos(mx)) =0

N~ DN~

It is by no means obvious whether the problem has conserved energy. Recall our definition
of energy.

e(t) = 1/Doo[u?(x,t) +ui(z,t)] dx

and at ¢t = 0 this becomes

e(0) = %/OOO F(2)? da
S
_ % « @2%/24(1 _ sin(2rz)) da
:%X(g>2><%x2:(%2).



Now to check that e(3) = e(0) we need to compute the energy at time ¢ = 3. This is much
more complicated even for this simple example. Recall from (3) that

oy = LEE DS D = ft =)

So we need to compute

1%@J):jﬁ$+ﬂ%gﬂ%;¢%+f@—xx

and
flla+t) = fle—1) = f'(t —2)
5 .

w(z, t) =

First we note that -
{§sin(7r:r), 2<r<4

otherwise

At t = 3 we have

Floas) - {—Sm m(z+3)), 0<z<l1
x

otherwise
o~ Sln z)), 0<z<l

otherwise

We also have

—sm 3), b<ax<T
"(x —t)

otherwise

So on the interval 0 < z < 1 we have

[\

u?(r,3) = [sin(7(x + 3)) + sin(7(3 — z))]?
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[sin(7wz 4 37)) + sin(37 — 7mz)))
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[— sin(rz)) — sin(—7x))]?

[\

[— sin(7z)) + sin(7x))]* = 0.
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and

W2z, 3) = i X (g)z [sin(m(z + 3)) — sin(w(3 — 2)))”
:ix(gfbm@x+wm—wm@w—mmf
::§><(g)zp_gn@mo>+snm—wxwf
= 1% (5) [-sinra)) — sin(ra))]

_ <g)251n2(ﬂ'x).

On the interval 5 < z < 7 we have

(z,3) = i < <g>28in2(7r(q: _3)) = i . % < (2)" 11— cos(2ra)
2(z,3) = i y (g)ZSmQ(w(g; _3)) = i « % « (g)Q 11— cos(2ra)].
So we can compute
(@)= | b3+ i3] ds
=5 ([t + it mao s [ies) + it o))
_ % (/01 (92 %[1 ~ cos(2ma)] dx + i < (gf /57[1 ~ cos(2m2)] dx)
(B3 (D))

This is exactly the same as the value computed for ¢(0).



