
1 Finite Difference Method for Heat Equation on R

ut(x, t) = kuxx(x, t), −∞ < x <∞, t > 0 (1.1)

u(x, 0) = f(x), −∞ < x <∞,
|u(x, t)| < M <∞ for some M

We know that the solution is given by

u(x, t) =
1√

4kπt

∫ ∞
−∞

e−(x−y)2/(4kt) f(y) dy. (1.2)

On the other hand this integral is not easy to evaluate explicitly and not so easy to approx-
imate. So in these notes we present a numerical method for approximating the solution.

First we consider some numerical approximations to the derivative. If f ∈ C2 then by
Taylor’s theorem for some ξ with x < ξ < (x+ h) we g=have

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(ξ)h2

which implies

f ′(x) =
f(x+ h)− f(x)

h
− 1

2
f ′′(ξ)h,

or

f ′(x) =
f(x+ h)− f(x)

h
+ O(h).

Here `(h) = O(h) means `(h)/h is bounded near h = 0.

For h > 0 the expression
f(x+ h)− f(x)

h
is called a forward-difference approximation.

Similarly
f(x)− f(x− h)

h
is called a backward-difference approximation.

We will need even higher order approximations for f ′(x) and f ′′(x). To this end we write
more precise Taylor formula approximations:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(x)

6
h3 +

f (iv)(ξ1)

24
h4 (1.3)

which implies

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(x)

2
h+ O(h2)

and similarly

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2
h2 − f ′′′(x)

6
h3 +

f (iv)(ξ2)

24
h4 (1.4)
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which implies

f ′(x) =
f(x)− f(x− h)

h
+
f ′′(x)

2
h+ O(h2).

Thus for f ′(x) we can write

2f ′(x) =
f(x+ h)− f(x)

h
+
f(x)− f(x− h)

h
+
f ′′(x)

2
h− f ′′(x)

2
h+ O(h2)

or

f ′(x) =
f(x+ h)− f(x− h)

2h
+ O(h2). (1.5)

This formula is the center-difference formula which gives a second order approximation.

We now seek a second order approximation formula for f ′′(x). Namely we will show that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+ O(h2). (1.6)

To obtain this formula we solve (1.3) and (1.4) for
f ′′(x)

2
h2 which gives

f ′′(x)

2
h2 = f(x+ h)− f(x)− f ′(x)h− f ′′′(x)

6
h3 − f (iv)(ξ1)

24
h4

and
f ′′(x)

2
h2 = f(x+ h)− f(x) + f ′(x)h+

f ′′′(x)

6
h3 − f (iv)(ξ2)

24
h4.

Adding these expression and dividing by h2 gives our desired result (1.6).

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− f (iv)(ξ1)

24
h2 − f (iv)(ξ2)

24
h2.

We now return to the heat equation. Our main assumption here is that the solution satisfies
u(x, t)→ 0 as |x| → ∞ for all t > 0. We notice that this is certainly true if the initial data
has compact support, i.e., if the initial temperature is zero for large x.

Thus for a strict solution we can apply (1.6) to write

uxx =
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
+ O(h2) ≡ J(x, t) + O(h2).

This implies

ut(x, t) ≈
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
. (1.7)

At this point let us recall a numerical integration procedure called the mid-point (or trape-
zoid) rule which gives∫ t0+∆t

t0

g(t) dt =
∆t

2
(g(t0) + g(t0 + ∆t)) + O((∆t)2).
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This formula follows from the Taylor formula once again. For t0 < t < t1 = t0 + ∆t

g(t) = g(t0) + g′(t0)(t− t0) +
g′′(t0)

2
(t− t0)2 + · · ·

we can also write

g(t) = g(t1) + g′(t1)(t− t1) +
g′′(t1)

2
(t− t1)2 + · · ·

Plugging each of these into the integral we obtain∫ t1

t0

g(t) dt =

[
g(t0)t+ g′(t0)

(t− t0)2

2
+
g′′(t0)

2

(t− t0)3

3
+ · · ·

] ∣∣∣∣t1
t0

= g(t0)(∆t) + g′(t0)
(∆t)2

2
+
g′′(t0)

2

(∆t)3

3
+ · · ·

and for the second form we have∫ t1

t0

g(t) dt =

[
g(t1)t+ g′(t1)

(t− t1)2

2
+
g′′(t1)

2

(t− t1)3

3
+ · · ·

] ∣∣∣∣t1
t0

= g(t1)(∆t)− g′(t1)
(∆t)2

2
+
g′′(t1)

2

(∆t)3

3
+ · · ·

Take the average of these last two formulas to obtain∫ t1

t0

g(t) dt =
(∆t)

2
[g(t0) + g(t1)] + [g′′(t0) + g′′(t1)]

(∆t)3

12
+ · · ·

Thus we conclude ∫ t1

t0

g(t) dt =
(∆t)

2
[g(t0) + g(t1)] + O((∆t)3).

So integrating (1.7) from t to (t+ ∆t) we have

u(x, t+ ∆t) ≈ u(x, t) +
(∆t)

2
(J(x, t) + J(x, t+ ∆t)) . (1.8)

We can write (1.8) as

u(x, t+ ∆t)− ∆t

2
J(x, t+ ∆t) = u(x, t) +

∆t

2
J(x, t) (1.9)

.

Now we discretize the interval −L ≤ x ≤ L by

xj = jh, j = −NL, · · · , NK, h = 1/N

and introduce the discrete time steps tk = k(∆t), k = 0, 1, 2, · · · . Let us introduce the
notation uj,k to be an approximate value of u(xj, tk). There are two special cases, j = −NL
and j = NL, in which we need to make some further assumptions in our formula for J(x, t).
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In these cases we make use the assumption that u(x, t) is going to zero and |x| → ∞ and
replace the terms u(x−NL−1, t) and u(xNL+1, t) by zero. So with this approximation we have

J(x−NL, tk) =
u(x−NL+1, tk)− 2u(x−NL, tk) + u(x−NL−1, tk)

h2
≈ u(x−NL+1, tk)− 2u(x−NL, tk)

h2

and

J(xNL, tk) =
u(xNL+1, tk)− 2u(xNL, tk) + u(xNL−1, tk)

h2
≈ −2u(x−NL, tk) + u(xNL−1, tk)

h2
.

For all j satisfying −NL < j < NL we have

J(xj, tk) =
u(xj+1, tk)− 2u(xj, tk) + u(xj−1, tk)

h2
.

Then we can write the formula (1.8) in a matrix notation with

Uk =



u−NL
...

u−1,k

u0,k

u1,k
...

uNL,k



>

, M =



−2 1 0 · · · · · · 0

1 −2 1
. . .

...

0 1 −2
. . . 0

...
. . . . . . . . . 1

0 · · · · · · 0 1 −2


With this (1.9) can be written as(

I2NL+1 −
∆t

2
M

)
Uk =

(
I2NL+1 +

∆t

2
M

)
Uk−1.

Let us finally define

A± =

(
I2NL+1 ±

∆t

2
M

)
, A = (A−)−1A+

then we obtain the time marching scheme called the Crank-Nichols Method

Uk = AUk−1, k = 1, 2, · · · , (1.10)

where
U0 =

[
f(x−NL), · · · , f(x−1), f(x0), f(x1), · · · , f(xNL

]>
.

In the homework we saw that

u(x, t) =
1

(1 + 4t)1/2
exp

(
− x2

(1 + 4t)

)
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is a solution to the heat equation with k = 1 for the initial condition

u(x, 0) = f(x) = e−x2

.

The following figures correspond to our Finite Difference Method with L = 10 and N = 10.
The maximum error for this example at the grid points is on the order of .001.
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Matlab Program to Solve IVP Heat Equation

L=10;
N=10;
h=1/N;
dt=.01;
T=5;
t=0:dt:T;
lt=length(t);
x=(−N*L:N*L)*h;

f=exp(−x.ˆ2);

M=−2*eye(2*N*L+1)+diag(ones(2*N*L,1),1)+diag(ones(2*N*L,1),−1);

Am=eye(2*N*L+1)−dt/(2*hˆ2)*M;
Ap=eye(2*N*L+1)+dt/(2*hˆ2)*M;
Lam = Am\Ap;
U(:,1)=f;

for j=2:lt
U(:,j) = Lam*U(:,j−1);

end
ind=[50 100 150 201];

for j=1:4
ff= 1/(1+4*t(ind(j)))ˆ(1/2)*exp(−x.ˆ2/(1+4*t(ind(j))));
error(j)=max(abs(U(:,ind(j))−ff'));

end

error

xplot= x([6*N:(14*N+1)]);
tplot=t([1:5:105]);

figure
set(0,'DefaultAxesFontSize', 18)
surf(xplot,tplot,U([6*N:(14*N+1)],[1:5:105])')
axis([−4,4,0,1,0,1])
xlabel('x')
ylabel('t')
zlabel('u','rotation',0)
print −deps2c sol heat box 1.eps

figure
set(0,'DefaultAxesFontSize', 18)
plot(x,U(:,[1, 50, 100, 150, 201]),'LineWidth',2)
xlabel('x')
ylabel('u','rotation',0)
print −deps2c curves heat box 1.eps
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