1 Finite Difference Method for Heat Equation on R

ug(x,t) = kug,(z,t), —oo <z <oo, t>0 (1.1)
u(z,0) = f(z), —oo <z <00,
lu(z,t)] < M < oo for some M

We know that the solution is given by

1

u(z,t) = N

/ e~ @=V/R) £y (12)

On the other hand this integral is not easy to evaluate explicitly and not so easy to approx-
imate. So in these notes we present a numerical method for approximating the solution.

First we consider some numerical approximations to the derivative. If f € C? then by
Taylor’s theorem for some & with x < £ < (z + h) we g=have

Fla+h) = (@) + F@)h+ 5 1O

which implies
fla+h)— flx) 1

Py = BRI S,

Here ¢(h) = O(h) means ¢(h)/h is bounded near h = 0.

or

flx+h) = fx)

For h > 0 the expression

flz) = flz—h)
h

is called a forward-difference approximation.

Similarly is called a backward-difference approximation.

We will need even higher order approximations for f’(x) and f”(x). To this end we write
more precise Taylor formula approximations:

"(g "o (1v) n
flx+h)=f(x)+ f(x)h+ / ;)h2+ f 6()h3+ S8 Qf)h4 (1.3)
which implies .,
and similarly
B , f”(:)ﬁ)) f///($) f(z'v) (52) A
flx—h) = f(z) — f(x)h+ 5 =5 h? + o h (1.4)

1

which implies

Thus for f'(x) we can write

flx+h) = fx)

2]“(1‘)2 - +f<x)_£(x_h)—1—f”;x>h—f”§x>h+(‘)(h2)
iy = TR T oy (15)

This formula is the center-difference formula which gives a second order approximation.

We now seek a second order approximation formula for f”(x). Namely we will show that

fle+h)—2f(z) + f(z —h)

(@) = 't o). (16)
To obtain this formula we solve (1.3) and (1.4) for %(m)hQ which gives
(@), s _ : (@), 5 [(&)
Thz—f(fl?Jrh)—f(iU)—f(ﬂ?)h—Ths—Th4
and " " (iv)
P02~ pos) @)+ g+ 8 - L E

Adding these expression and dividing by h? gives our desired result (1.6).

fle+h) =2f(@)+ fle=h) [°&),, (&)
E 24 24

[(x) = h2.

We now return to the heat equation. Our main assumption here is that the solution satisfies
u(z,t) — 0 as |z| — oo for all £ > 0. We notice that this is certainly true if the initial data
has compact support, i.e., if the initial temperature is zero for large x.

Thus for a strict solution we can apply (1.6) to write

_u(z + h,t) = 2u(xz,t) +u(z — h,t)

+O(h?) = J(z,t) + O(h?).

This implies

u(z + h,t) — 2u(x,t) + u(x — h,t)
12

At this point let us recall a numerical integration procedure called the mid-point (or trape-

zoid) rule which gives

ug(w,t) ~ : (1.7)

[sttt =S ateo) atto + 30 + 020,

This formula follows from the Taylor formula once again. For ¢ty < t < t; =ty + At

g// (tO)
2

g(t) = g(to) + ¢ (to)(t — to) + (t—to)2+---

we can also write

g"(t1)

g9(t) = g(t1) + g'(t)(t — t1) +
Plugging each of these into the integral we obtain

/t 1 g(t) dt = |:g(t0)t + g/(t[)) (t —2t0)2 N gugo) (t —3t0)3 . :|

= g(to)(AL) + ¢ (to) (A;)Q + g"(QtO) (A;)g e

and for the second form we have

/t 1 g(t) dt = |:g(t1)t + g/(tl) (t —2t1)2 N g//(ztl) (t —3t1>3 L :|

= g(t1)(At) — ¢'(t1) (A;)z + gﬂ(;l) (A;)g +

Take the average of these last two formulas to obtain

/t gty dt = @[g(to) +g(t)] + [9" (to) + ¢"(t1)] <A1?3 +oe
Thus we conclude " A
/t g(t)dt = %[9@0) + g(t)] + O((A1)?).

So integrating (1.7) from ¢ to (t + At) we have

At
u(z,t + At) =~ u(x,t) + % (J(z,t) + J(x, t + At)) . (1.8)
We can write (1.8) as
At At
u(z,t + At) — TJ(:c,t + At) = u(z, t) + TJ(:c,t) (1.9)
Now we discretize the interval —L < x < L by
Lj =jh, j=—-NL,--- ,NK, h= 1/N
and introduce the discrete time steps t, = k(At), k = 0,1,2,---. Let us introduce the
notation u;j to be an approximate value of u(x;,t;). There are two special cases, j = —NL

and j = NL, in which we need to make some further assumptions in our formula for J(z,t).

3

In these cases we make use the assumption that u(x,t) is going to zero and |x| — oo and
replace the terms u(x_np_1,t) and u(xyry1,t) by zero. So with this approximation we have

w(r_npi1ste) — 2u(r_nr, k) Fu(r-nr-1,tk) w(z_Npi1,te) — 2u(x_Np, tg)

J(w_yr,th) = P ~ h2
and
uw(wypy,te) = 2u(eng, tr) Fulenpon,te) | —2u(ronp, te) +u(enpog, t)
J(xnp, te) = 02 ~ % :

For all j satisfying —NL < 7 < NL we have

u(zjyr, te) — 2u(xy, t) +u(r; 1, ty)

J(Z'], tk) = h2

Then we can write the formula (1.8) in a matrix notation with

- 9T
U_NT -2 1 0 0
1 -2 1
U_1k
U= | uyx | » M=10 1 =2 0
Ui,k
1
| UNL,k | _0 | 1 _2_

With this (1.9) can be written as

At At
(IQNL—H - TM) U, = <I2NL+1 + TM) Ui

Let us finally define

At
‘Ai - (IQNL+1 :l: TM) y .A - (.A,)il.AJr

then we obtain the time marching scheme called the Crank-Nichols Method
U,=AU;_{, k=1,2,---, (1.10)

where

Uo = [flx_nr), -+, [flzoa), f(xo), f(z1), -, flane

In the homework we saw that

1 @’

is a solution to the heat equation with £ = 1 for the initial condition

2

u(z,0) = f(x)=e"".

The following figures correspond to our Finite Difference Method with L = 10 and N = 10.
The maximum error for this example at the grid points is on the order of .001.

Numerical Solution Surface

0.8

0.4r]

0 |
-10 -5 0 5 10
X

Exact and Numerical Solutions: ¢t =0,1/2,1,3/2,2

Matlab Program to Solve IVP Heat Equation

L=10;

N=10;

h=1/N;

dt=.01;

T=5;

t=0:dt:T;
lt=length(t);
x=(—N*L:N*L) h;

f=exp(—x."2);
M=—2+eye (2xNxL+1) +diag (ones (2xNxL,1),1)+diag(ones (2«N*L,1),—1);
Am=eye (2«N+L+1)—dt/ (2+h"2) *M;

Ap=eye (2+xNxL+1) +dt/ (2«h"2) *M;
Lam = Am\Ap;

U(:,1)=£;

for j=2:1t

U(:,3) = LamxU(:,J—1);
end

ind=[50 100 150 2017];

for j=1:4
ff= 1/ (1+4*t (ind(3))) " (1/2) exp(—x. 2/ (1+4*t (ind (7J))));
error (j)=max (abs (U (:,ind(j))—£f£"'));

end

error

xplot= x([6%N: (14xN+1)]);
tplot=t ([1:5:105]);

figure
set (0, 'DefaultAxesFontSize', 18)
surf (xplot,tplot,U([6%N: (14%«N+1)],[1:5:105])")
axis([—4,4,0,1,0,11)
xlabel ('x")
ylabel ('t")
zlabel ('u', 'rotation', 0)
print —deps2c sol_heat_box_l.eps

figure

set (0, 'DefaultAxesFontSize', 18)

plot(x,U(:, [1, 50, 100, 150, 201]1), "Linewidth',2)
xlabel ("x")

ylabel ('u', "rotation',0)

print —deps2c curves_heat_box_1.eps

