
6 Non-homogeneous Heat Problems

Up to this point all the problems we have considered for the heat or wave equation we what
we call homogeneous problems. This means that for an interval 0 < x < ` the problems were
of the form

ut(x, t) = kuxx(x, t),

B0(u) = 0, B1(u) = 0

u(x, 0) = ϕ(x)

utt(x, t) = c2uxx(x, t),

B0(u) = 0, B1(u) = 0

u(x, 0) = f(x), ut(x, 0) = g(x)

In contrast, in this chapter we are concerned with the more general non-homogeneous cases:

ut(x, t) = kuxx(x, t) + F (x, t),

B0(u) = γ0(t), B1(u) = γ1(t)

u(x, 0) = ϕ(x)

utt(x, t) = c2uxx(x, t) + F (x, t),

B0(u) = γ0(t), B1(u) = γ1(t)

u(x, 0) = f(x), ut(x, 0) = g(x)

where γj(t) and F (x, t) are known source terms.

Here we have used the notation Bj(u) to indicate a boundary condition. So for example we
might have

B0(u) = α0ux(0, t) + β0u(0, t), B1(u) = α1ux(1, t) + β1u(1, t).

Specifically then for Dirichlet boundary conditions we have B0(u) = u(0, t), B1(u) = u(1, t)
and for Neumann conditions we have B0(u) = ux(0, t), B1(u) = ux(1, t).

6.1 Non-Homogeneous Equation, Homogeneous Dirichlet BCs

We first show how to solve a non-homogeneous heat problem with homogeneous Dirichlet
boundary conditions

ut(x, t) = kuxx(x, t) + F (x, t), 0 < x < `, t > 0 (6.1)

u(0, t) = 0, u(`, t) = 0

u(x, 0) = ϕ(x)

Let us recall from all our examples involving Fourier series and Sturm-Liouville problems we
have

λn = −µ2
n, µn =

nπ

`
, ϕn(x) = sin(µnx)
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and for the non-homogeneous problem, instead of looking for a solution in the form

u(x, t) =
∞∑
n=1

cne
kλntϕn(x)

as we would if F (x, t) ≡ 0, we look for

u(x, t) =
∞∑
n=1

cn(t)ϕn(x) (6.2)

We can notice from the initial data that

ϕ(x) = u(x, 0) =
∞∑
n=1

cn(0)ϕn(x)

where bn ≡ cn(0) are the Fourier Sine coefficients of ϕ, i.e.,

ϕ(x) =
∞∑
n=1

bnϕn(x). (6.3)

where

bn =
2

`

∫ `

0

ϕ(x)ϕn(x) dx. (6.4)

Next we find {Fn(t)} so that

F (x, t) =
∞∑
n=1

Fn(t)ϕn(x), (6.5)

by setting

Fn(t) =
2

`

∫ `

0

F (x, t)ϕn(x) dx. (6.6)

Putting these things together we can differentiate (6.2) with respect to t to obtain

∂u

∂t
(x, t) =

∞∑
n=1

dcn
dt

(t)ϕn(x),

and twice respect to x to obtain

∂2u

∂x2
(x, t) =

∞∑
n=1

cn(t)
d2ϕn
dx2

(x) =
∞∑
n=1

λncn(t)ϕn(x).

Then plugging these expressions and (6.5) into the PDE (6.1) we arrive at

∞∑
n=1

(
dcn
dt

(t)− kλncn(t)− Fn(t)

)
ϕn(x) = 0.
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Then using the orthogonality of the functions {ϕn} we obtain an infinite sequence of ODES

dcn
dt

(t)− kλncn(t) = Fn(t), n = 1, 2, · · · .

These equations are first order linear ODEs which we can easily solve by multiplying both
sides by the integrating factor

e−kλnt

which give
d

dt

(
e−kλntcn(t)

)
= e−kλntFn(t).

We integrate both sides from t = 0 to t to obtain

e−kλntcn(t)− cn(0) =

∫ t

0

e−kλnτFn(τ) dτ.

Thus we get

cn(t) = ekλntbn + ekλnt

∫ t

0

e−kλnτFn(τ) dτ

where bn = cn(0) and from (6.2) we obtain

u(x, t) =
∞∑
n=1

bne
kλntϕn(x) +

∞∑
n=1

(∫ t

0

ekλn(t−τ)Fn(τ) dτ

)
ϕn(x), (6.7)

Let us consider an example with Dirichlet boundary conditions.

Example 6.1. In our first example we consider the case in which F (x, t) = f(x) does not
depend on t.

ut(x, t) = kuxx(x, t) + f(x), 0 < x < `, t > 0 (6.8)

u(0, t) = 0, u(`, t) = 0

u(x, 0) = ϕ(x)

We know that the solution is given by (6.7)

u(x, t) =
∞∑
n=1

bne
kλntϕn(x) +

∞∑
n=1

(∫ t

0

ekλn(t−τ)Fn(τ) dτ

)
ϕn(x)

where

cn(t) = ekλntcn(0) + ekλnt

∫ t

0

e−kλnτFn(τ) dτ

and cn(0) = bn are the Fourier Sine coefficients of ϕ, i.e.,

ϕ(x) = u(x, 0) =
∞∑
n=1

bnϕn(x)
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so that cn = cn(0) are given by

bn =
2

`

∫ `

0

ϕ(x)ϕn(x) dx. (6.9)

In this case

Fn(t) ≡ fn =
2

`

∫ `

0

f(x)ϕn(x) dx.

Thus we have

cn(t) = ekλntbn + ekλnt

∫ t

0

e−kλnτfn dτ

where fn is independent of τ so we can compute∫ t

0

e−kλnτfn dτ = fn
e−kλnτ

−kλn

∣∣∣∣τ=t
τ=0

= fn

(
1− e−kλnt

kλn

)
.

Thus we have

cn(t) = ekλntbn + ekλntfn

(
1− e−kλnt

kλn

)
or

cn(t) = ekλntbn + fn

(
ekλnt − 1

kλn

)
Therefore the solution can be written

u(x, t) =
∞∑
n=1

bne
kλntϕn(x) +

∞∑
n=1

fn

(
ekλnt − 1

kλn

)
ϕn(x).

Notice that as t→∞ the solution converges to a time independent steady state solution

lim
t→∞

u(x, t) =
∞∑
n=1

(
fn
−kλn

)
ϕn(x) ≡ G(x).

Notice that this “steady state” function G(x) is a solution to the problem with initial condi-
tion u(x, 0) = G(x), i.e., u(x, t) = G(x) satisfies ut−kuxx = f(x) since (note u is independent
of t so ut = 0

ut − kuxx = −k
∞∑
n=1

(
fn
−kλn

)
ϕ′′n(x)

=
∞∑
n=1

(
fn
λn

)
λnϕn(x) =

∞∑
n=1

fnϕn(x) = f.

And clearly u(x, t) satisfies the boundary conditions since every ϕn does.

Remark 6.1. We learn two very important things from this example:
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1. The solution approaches a (generally) non-constant steady state, i.e., the solution con-
sists of two parts which are often referred to as the transient and the steady state.

u(x, t) = utrans(x, t) + uss(x, t) ≈ uss(x, t) as t→∞.

For this problem we have
uss(x, t) = G(x)

which is independent of t.

2. While we did not take advantage of this fact, it is clear from looking at the derivation
of the solution that the principle of Superposition holds which would have allowed us to
analyze two simpler problems rather than one harder one. The solution to the problem

ut(x, t) = kuxx(x, t) + F (x, t),

u(0, t) = 0, u(`, t) = 0

u(x, 0) = ϕ(x)

can be written as a sum u(x, t) = w(x, t) + v(x, t) where w and v are the solutions of
the simpler problems

wt(x, t) = kwxx(x, t) + F (x, t),

w(x, 0) = 0, w(`, t) = 0

w(x, 0) = 0

vt(x, t) = kvxx(x, t),

v(x, 0) = 0, v(`, t) = 0

v(x, 0) = ϕ(x)

3. For a time independent forcing term, i.e., for F (x, t) = f(x), and homogeneous Dirich-
let boundary conditions the solution u(x, t) converges to a steady state function G(x)
as t goes to infinity. To find G(x) we only need to solve the associated steady state
problem for (6.8). Recall that (6.8) is

ut(x, t) = kuxx(x, t) + f(x), 0 < x < `, t > 0

u(0, t) = 0, u(`, t) = 0

u(x, 0) = ϕ(x)

and the steady state problem is obtained by setting ut = 0

ψ′′(x) = −1

k
f(x), 0 < x < `,

ψ(0) = 0, ψ(`) = 0.

Notice this is a non-homogeneous second order constant coefficient boundary value
problem.

5



Example 6.2. Find the steady state solution for the heat problem

ut(x, t) = uxx(x, t)− 6x, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = ϕ(x)

As described in the remark the steady state problem is obtained by setting ut = 0 and
solving the non-homogeneous BVP

ψ′′(x) = 6x, 0 < x < 1,

ψ(0) = 0, ψ(1) = 0

For this problem we apply the techniques from an elementary ODE class. Namely, we know
that the general solution is the sum of the general solution of the homogenous problem ψh
and any particular solution ψp. The general solution of the homogeneous problem ψ′′(x) = 0
is ψh(x) = c1x + c2 and it is clear that ψp(x) = x3 is a particular solution. N.B. Remember
we learned two methods to find a particular solution: Undetermined Coefficients, Variation
of Parameters.

So we have ψ(x) = ψh(x) + ψp(x) = c1x+ c2 + x3. Now we try to find c1 and c2 so that the
boundary conditions are satisfied. We need

0 = ψ(0) = c2, and 0 = ψ(1) = c1 + 13

which implies c1 = −1 and
ψ(x) = x3 − x.

Thus for every initial condition ϕ(x) the solution u(x, t) to this forced heat problem satisfies

lim
t→∞

u(x, t) = ψ(x).

In this next example we show that the steady state solution may be time dependent.

Time Dependent steady State

Example 6.3. Consider the problem

ut(x, t) = kuxx(x, t) + f(x) sin(t), 0 < x < 1,

u(0, t) = 0, u(1, t) = 0

u(x, 0) = 0.

In this example we have set ` = 1 and for the initial condition and forcing terms we have
set ϕ(x) = 0 and F (x, t) = f(x) sin(t). Notice that, by the superposition principle, there
is no lose in generality by taking the initial condition ϕ = 0 since the problem breaks up
into two independent problems, one depending on ϕ and the other depending of the forcing
term F (x, t). Furthermore the part corresponding to a non-zero initial condition will decay
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exponentially to zero as t tends to infinity and so it will not contribute to the steady state
solution.

For F (x, t) = f(x) sin(t) (6.7) becomes

u(x, t) =
∞∑
n=1

(∫ t

0

ekλn(t−τ)Fn(τ) dτ

)
sin (nπx)

where we compute Fn(t) using (6.6) which gives

Fn(τ) = 2 sin(τ)

∫ 1

0

f(x)ϕn(x) dx = sin(τ)fn, fn = 2

∫ 1

0

f(x)ϕn(x) dx.

Thus we have ∫ t

0

ekλn(t−τ)Fn(τ) dτ =

∫ t

0

ekλn(t−τ) sin(τ)fn dτ

= fne
kλnt

∫ t

0

e−kλnτ sin(τ) dτ (6.10)

(see calculation below) (6.11)

= fn

[
ekλnt − cos(t)− kλn sin(t)

]
(1 + (kλn)2)

. (6.12)

In the above we need to use a special form of integration by parts which we carry out here∫ t

0

e−kλnτ sin(τ) dτ =

∫ t

0

e−kλnτ (− cos(τ))′ dτ

= e−kλnτ (− cos(τ))

∣∣∣∣t
0

−
∫ t

0

(−kλn)e−kλnτ (− cos(τ)) dτ

= −e−kλnt cos(t) + 1− kλn
∫ t

0

e−kλnτ (sin(τ))′ dτ

= −e−kλnt cos(t) + 1− kλn

[
e−kλnτ sin(τ)

∣∣∣∣t
0

+ kλn

∫ t

0

e−kλnτ sin(τ) dτ

]

= −e−kλnt cos(t) + 1− kλne−kλnt) sin(t)− (kλn)2

∫ t

0

e−kλnτ sin(τ) dτ.

Thus we have

(1 + (kλn)2)

∫ t

0

e−kλnτ sin(τ) dτ = −e−kλnt cos(t) + 1− kλne−kλnt) sin(t)
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so that ∫ t

0

e−kλnτ sin(τ) dτ =
−e−kλnt cos(t) + 1− kλne−kλnt sin(t)

(1 + (kλn)2)
.

Finally, then

ekλnt

∫ t

0

e−kλnτ sin(τ) dτ =
− cos(t)− kλn sin(t) + ekλnt

(1 + (kλn)2)
.

With this we can write the solution as

u(x, t) =
∞∑
n=1

(
− cos(t)− kλn sin(t) + ekλnt

(1 + (kλn)2)

)
fn sin (nπx) (6.13)

Notice that in this case the steady state (which we denote by v(x, t)) is not independent of
time. Namely we have

v(x, t) =
∞∑
n=1

(
− cos(t)− kλn sin(t)

(1 + (kλn)2)

)
fn sin (nπx)

which is a 2π periodic funtion of t. Notice that(
1√

(1 + (kλn)2)

)2

+

(
−kλn√

(1 + (kλn)2)

)2

= 1,

which implies there is an angle αn so that

sin(αn) =
1√

1 + (kλn)2
, cos(αn) =

−kλn√
1 + (kλn)2

So that

v(x, t) =
∞∑
n=1

(− sin(αn) cos(t)− cos(αn) sin(t)) fn sin (nπx)

=
∞∑
n=1

sin(t− αn) fn sin (nπx)

6.2 Non-Homogeneous Equation, Homogeneous Neumann BCs

As it turns out very little changes if we change the boundary conditions. We show this by
considering the case of Neumann boundary conditions. Let us consider the problem

ut(x, t) = kuxx(x, t) + F (x, t),

ux(0, t) = 0, ux(`, t) = 0

u(x, 0) = ϕ(x)

8



which can be written as a sum u(x, t) = w(x, t) + z(x, t) where w and v are the solutions of
the simpler problems

wt(x, t) = kwxx(x, t) + F (x, t),

wx(x, 0) = 0, wx(`, t) = 0

w(x, 0) = 0

zt(x, t) = kzxx(x, t),

zx(x, 0) = 0, zx(`, t) = 0

z(x, 0) = ϕ(x)

The main difference in this case is that the eigenvalues and eigenfunctions change. Recall
that for Neumann conditions zero is a eigenvalue. We have λ0 = 0, ϕ0(x) = 1, µn = (nπ/`),
λn = −µ2

n, ϕn(x) = cos(µnx).

For the problem for z(x, t) we have We compute

ϕ(x) =
a0

2
+
∞∑
n=1

anϕn(x). (6.14)

where

an =
2

`

∫ `

0

ϕ(x)ϕn(x) dx. (6.15)

Then the solution to the v(x, t) equation is

z(x, t) =
a0

2
+
∞∑
n=1

ane
kλntϕn(x).

Next for the w(x, t) problem we find {Fn(t)} so that

F (x, t) =
F0(t)

2
+
∞∑
n=1

Fn(t)ϕn(x), (6.16)

where

Fn(t) =
2

`

∫ `

0

F (x, t)ϕn(x) dx. (6.17)

We seek a solution to the w problem in the form

w(x, t) =
c0(t)

2
+
∞∑
n=1

cn(t)ϕn(x)

and repeat verbatim the calculation carried out in the Dirichlet case except that now the
initial condition for w is zero so that cn(0) = for all n = 0, 1, 2, · · · .

In particular, using the orthogonality of the functions {ϕn} we obtain an infinite sequence
of ODES

dcn
dt

(t)− kλncn(t) = Fn(t), n = 0, 1, 2, · · · ,
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which gives

cn(t) = ekλnt

∫ t

0

e−kλnτFn(τ) dτ.

For n = 0 we have

c0(t) =

∫ t

0

Fn(τ) dτ.

w(x, t) =

∫ t
0
Fn(τ) dτ

2
+

∞∑
n=1

(∫ t

0

ekλn(t−τ)Fn(τ) dτ

)
ϕn(x) (6.18)

Finally we obtain the desired solution u(x, t) as

u(x, t) = z(x, t) + w(x, t)

6.3 Non-homogeneous Dirichlet Boundary Conditions

In this section we consider forcing through Dirichlet boundary conditions

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (6.19)

u(0, t) = γ0(t), u(`, t) = γ1(t)

u(x, 0) = ϕ(x)

In order to obtain a continuous solution we also need to impose the compatibility conditions

ϕ(0) = γ0(0), ϕ(0) = γ1(0).

Our method to solve this problem is to transform it into a problem like the ones found in
the previous section. In order to do this we introduce the function

h(x, t) = γ0(t) +
x

`
(γ1(t)− γ0(t)).

Then we introduce a new function v(x, t) by

v(x, t) = u(x, t)− h(x, t).

Our goal is to see what problem v(x, t) satisfies. To this end we note that

hxx(x, t) = 0 ht(x, t) =
dγ0

dt
(t) +

x

`

(
dγ1

dt
(t)− dγ0

dt
(t)

)
We see that

vt − kvxx = (u(x, t)− h(x, t))t − k (u(x, t)− h(x, t))xx = −ht(x, t)

and
v(0, t) = u(0, t)− h(0, t) = 0, v(`, t) = u(`, t)− h(`, t) = 0,
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v(x, 0) = u(x, 0)− h(x, 0) = ϕ(x)−
(
γ0(0) +

x

`
(γ1(0)− γ0(0))

)
≡ v0(x). (6.20)

Collecting this information we find that v(x, t) satisfies

vt(x, t) = kvxx(x, t)− ht(x, t), 0 < x < `, t > 0 (6.21)

v(0, t) = 0, v(`, t) = 0

v(x, 0) = v0(x)

So we can apply the results of the last section to obtain a formula for v(x, t).

Once we do this (see below) we can obtain the desired solution from

u(x, t) = v(x, t) + h(x, t).

Following the procedure outlined in (6.1)-(6.7) we proceed as follows. First as in (6.6) we
compute {hn(t)} so that

h(x, t) =
∞∑
n=1

hn(t)ϕn(x), (6.22)

where

hn(t) =
2

`

∫ `

0

h(x, t)ϕn(x) dx. (6.23)

Then for the initial condition we compute

ϕ(x) =
∞∑
n=1

bnϕn(x). (6.24)

where

bn =
2

`

∫ `

0

ϕn(x)v0(x) dx. (6.25)

Combining these results we obtain

v(x, t) =
∞∑
n=1

bne
kλntϕn(x)−

∞∑
n=1

(∫ t

0

ekλn(t−τ)dhn
dτ

(τ) dτ

)
ϕn(x) (6.26)

and finally
u(x, t) = v(x, t) + h(x, t).

Example 6.4. Let us consider a very special case of the previous example. Suppose that
γ0(t) = α and γ1(t) = β (are constants) so that (6.19) becomes

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (6.27)

u(0, t) = α, u(`, t) = β

u(x, 0) = ϕ(x)
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In this case
h(x, t) = α + (β − α)

x

`
≡ U(x)

and we have ht(x, t) = 0 so that the integral terms in (6.26) are all zero. Also we have
v0(x) = ϕ(x)−h(x, 0) = ϕ(x)−U(x) and the equation for v(x, t) = u(x, t)−h(x, t) becomes

vt(x, t) = kvxx(x, t), 0 < x < `, t > 0

v(0, t) = 0, v(`, t) = 0

v(x, 0) = v0(x)

and with we find

v(x, t) =
∞∑
n=1

bne
kλntϕn(x), bn =

2

`

∫ `

0

v0(x)ϕn(x) dx

and findally

u(x, t) = U(x) +
∞∑
n=1

bne
kλntϕn(x).

Notice in this case that as t→∞ all the exponential terms in the sum tend to zero and we
have

lim
t→∞

u(x, t) = U(x).

This represents a nonzero and non constant steady state temperature profile.

Example 6.5. We now consider one final example where the boundary forcing function is
not a constant.

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (6.28)

u(0, t) = 0, u(`, t) = sin(t)

u(x, 0) = ϕ(x)

In this case γ0(t) = 0, γ1(t) = sin(t) and h(x, t) = (x/`) sin(t). We need to compute

hn(t) =
2

`

∫ `

0

h(x, t)ϕn(x) dx = sin(t)
2

`

∫ `

0

xϕn(x) dx ≡ sin(t)cn

and

bn =
2

`

∫ `

0

v0(x)ϕn(x) dx.

Notice in this example, since h(x, 0) = 0 we have v0(x) = ϕ(x)− h(x, 0) = ϕ(x) (see (6.20)).

We can compute cn explicitly and we have
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2

`

∫ `

0

xϕn(x) dx =
2

`

∫ `

0

x sin(µnx) dx

=
2

`

∫ `

0

x

(
−cos(µnx)

µn

)′
dx

=
2

`

[
x

(
−cos(µnx)

µn

) ∣∣∣∣`
0

−
∫ `

0

(
−cos(µnx)

µn

)
dx

]

=
2

`

[
−` cos(µn`)

µn
+

sin(µnx)

µ2
n

∣∣∣∣`
0

]

=
2`(−1)n+1

nπ

Then using (6.26) we have

v(x, t) =
∞∑
n=1

bne
kλntϕn(x)−

∞∑
n=1

(∫ t

0

ekλn(t−τ)h′n(τ) dτ

)
ϕn(x)

=
∞∑
n=1

bne
kλntϕn(x)−

∞∑
n=1

(∫ t

0

ekλn(t−τ) cos(τ) dτ

)
cn ϕn(x)

=
∞∑
n=1

bne
kλntϕn(x)−

∞∑
n=1

(
kλne

kλnt − kλn cos(t) + sin(t)

1 + (kλn)2

)
cn ϕn(x)

=
∞∑
n=1

(
bne

kλnt − kλne
kλnt

1 + (kλn)2
cn

)
ϕn(x) +

∞∑
n=1

(
kλn cos(t)− sin(t)

1 + (kλn)2

)
cn ϕn(x)

= vtrans(x, t) + vss(x, t).

Note that vtrans(x, t)→ 0 as t→∞ and vss(x, t) is a steady state periodic function of t.

Finally then we return to our original solution u(x, t) to obtain u(x, t) = v(x, t) + h(x, t)
which gives

u(x, t) = utrans(x, t) + uss(x, t)

where

utrans(x, t) = vtrans(x, t) =
∞∑
n=1

(
bne

kλnt − kλne
kλnt

1 + (kλn)2
cn

)
ϕn(x)

and

uss(x, t) =
x

`
sin(t) + vss(x, t) =

x

`
sin(t) +

∞∑
n=1

(
kλn cos(t)− sin(t)

1 + (kλn)2

)
cn ϕn(x).

So we find that forcing the boundary with a periodic function produces a solution that
consists of a transient part that goes to zero plus a steady state part that is a periodic
solution with the same period as the forcing term.
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6.4 Non-homogeneous Neumann Boundary Conditions

In this section we consider forcing through Neumann boundary conditions.

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (6.29)

ux(0, t) = γ0(t), ux(`, t) = γ1(t)

u(x, 0) = ϕ(x)

The primary difference between this problem and that considered in the previous section
(i.e., (6.19)) is that we need a different function h(x, t).

In order to find an appropriate function h(x, t) lets us examine the properties we desire. We
want a function that satisfies two conditions:

hx(0, t) = γ0(t), hx(`, t) = γ1(t)

First we find two functions α0(x) and α1(x) satisfying

α′0(0) = 1, α′0(`) = 0, α′1(0) = 0, α′1(`) = 1.

We find, for example,

α0(x) = −(`− x)2

2`
, α1(x) =

x2

2`
.

Then we take
h(x, t) = α0(x)γ0(t) + α1(x)γ1(t)

and set
u(x, t) = v(x, t)− h(x, t),

which implies
v(x, t) = u(x, t)− h(x, t).

With this we can compute (just as above)

vt − kvxx = (u(x, t)− h(x, t))t − k (u(x, t)− h(x, t))xx = −ht(x, t) + khxx(x, t)

where

hxx = −1

`
γ0(t) +

1

`
γ1(t), ht(x, t) = α0(x)

dγ0(t)

dt
+ α1(x)

dγ1(t)

dt
.

So we set
F (x, t) = −ht(x, t) + khxx(x, t).

So to find the function v(x, t) we need only solve

vt(x, t) = kvxx(x, t) + F (x, t), 0 < x < `, t > 0 (6.30)

v(0, t) = 0, v(`, t) = 0

v(x, 0) = v0(x) = ϕ(x)− h(x, 0).

Notice once again that the initial condition v0 is not just the original initial condition. Finally
we obtain

u(x, t) = v(x, t) + h(x, t).
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7 Assignment

1. Solve the non-homogeneous heat problem

ut(x, t) = uxx(x, t) + F (x, t), 0 < x < π, t > 0

(a) F (x, t) = 2 sin(3x), BC: u(0, t) = 0, u(π, t) = 0, IC: u(x, 0) = sin(2x).
Also find the steady state.

(b) F (x, t) = sin(x)− 2 sin(2x), BC: u(0, t) = 0, u(π, t) = 0, IC: u(x, 0) = 0.
Also find the steady state.

(c) F (x, t) = e−t sin(x), BC: u(0, t) = 0, u(π, t) = 0, IC: u(x, 0) = 0.
Also find the steady state.

(d) F (x, t) = − cos(x), BC: ux(0, t) = 0, ux(π, t) = 0, IC: u(x, 0) = 1.
Also find the steady state solution.

2. Find the steady state solution ψ(x) for the problem

ut(x, t) = uxx(x, t) + cos(x), 0 < x < π, t > 0

u(0, t) = 0, u(π, t) = 0

u(x, 0) = x(π − x)

3. Find the steady state solution ψ(x) for the problem

ut(x, t) = uxx(x, t) + 2, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = sin(x)ex

4. Solve the heat equation

ut(x, t) = uxx(x, t), 0 < x < 1, t > 0

with non-homogeneous boundary conditions

(a) BC: u(0, t) = 1, u(1, t) = 1 IC: u(x, 0) = 0

(b) BC: ux(0, t) = 1, ux(1, t) = 1, IC: u(x, 0) = 0

(c) BC: u(0, t) = 0, u(1, t) = 2, IC: u(x, 0) = 0

(d) BC: u(0, t) = 0, u(1, t) = e−t, IC: u(x, 0) = x
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