
5 Wave Equation on Finite Interval

5.1 Wave Equation Dirichlet Boundary Conditions

utt(x, t) = c2uxx(x, t), 0 < x < `, t > 0 (5.1)

u(0, t) = 0, u(`, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

First we present the solution to this problem and then provide a detailed derivation.

u(x, t) =
∞∑
n=1

(an cos (µn ct) + bn sin (µn ct)) sin (µnx)

an =
2

`

∫ `

0

f(x) sin (µn x) dx.

bn =
2

nπc

∫ `

0

g(x) sin (µn x) dx.

Look for simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

Substituting into (5.1) and dividing both sides by ϕ(x)ψ(t) gives

ψ̈(t)

c2ψ(t)
=
ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of t, it follows that
the expression must be a constant:

ψ̈(t)

c2ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ.

(Here ψ̈ means the derivative of ψ with respect to t and ϕ′ means means the derivative of ϕ
with respect to x.) We seek to find all possible constants λ and the corresponding nonzero
functions ϕ and T . We obtain

ϕ′′ − λϕ = 0, ψ̈ − c2λψ = 0.

Furthermore, the boundary conditions give

ϕ(0)ψ(t) = 0, ϕ(`)ψ(t) = 0 for all t.
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Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0, ϕ(0) = 0, ϕ(`) = 0. (5.2)

We have solved this problem many times and we have λ = −µ2 so that

ϕ(x) = a cos(µx) + b sin(µx).

Applying the boundary conditions we have

0 = ϕ(0) = a⇒ a = 0 0 = ϕ(`) = b sin(µ`).

From this we conclude sin(µ`) = 0 which implies

µn =
nπ

`

and therefore

λn = −µ2
n = −

(nπ
`

)2

, ϕn(x) = sin(µnx), n = 1, 2, · · · .. (5.3)

The solution of ψ̈ − c2λnψ = 0 is then

ψ(t) = a cos (µn ct) + b sin (µn ct) (5.4)

where a and b are arbitrary constants.

Next we look for u as an infinite sum

u(x, t) =
∞∑
n=1

(an cos (µn ct) + bn sin (µn ct)) sin (µnx) (5.5)

The only problem remaining is to somehow pick the constants an and bn so that the initial
conditions u(x, 0) = f(x) and ut(x, 0) = g(x) are satisfied.

Setting t = 0 in (5.5), we seek to obtain {an} satisfying

f(x) = u(x, 0) =
∞∑
n=1

an sin (µn x) .

This gives a Sine expansion for the function f(x) on the interval (0, `).

an =
2

`

∫ `

0

f(x) sin (µn x) dx. (5.6)

Next we differentiate (formally) (5.5) with respect to t to obtain

ut(x, t) =
∞∑
n=1

(cµn) (−an sin (µn ct) + bn cos (µn ct)) sin (µn x) .
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Setting t = 0 in this expression, we seek to obtain {bn} satisfying

g(x) = ut(x, 0) =
∞∑
n=1

bn (cµn) sin (µn x) .

This is almost a Sine expansion of the function g(x) on the interval (0, `). Namely we obtain

bn =

(
1

cµn

)
2

`

∫ `

0

g(x) sin (µn x) dx.

Our after simplifying

bn =
2

nπc

∫ `

0

g(x) sin (µn x) dx. (5.7)

5.2 Compare Heat and Wave Solutions

At this point we note an important difference between the heat and wave equation solutions.
For the heat equation the solutions were of the form

∞∑
n=1

cne
λntϕn(x)

and, at least for t > 0, there is no question about the convergence of this series due to
exponential decay of the terms eλnt as n → ∞. But for the wave equation the series does
not include such terms. Indeed, the individual terms look like

(an cos (µnct) + bn sin (µnct)) sin (µn x)

and these do not decay rapidly. Therefore to justify that we do have a solution to (5.1) we
must take another approach. First notice that

sin (µnx) cos (µnct) (5.8)

=
1

2
[sin (µn(x+ ct)) + sin (µn(x− ct))]

and

sin (µnx) sin (µnct) (5.9)

=
1

2
[cos (µn(x− ct))− cos (µn(x+ ct))]

=
nπ

2`

∫ x+ct

x−ct
sin (µnξ) dξ. (5.10)

Using (5.8), (5.9), (5.6) and (5.7) we can rewrite (5.5) as

u(x, t) =
∞∑
n=1

fn
[sin (µn(x+ ct)) + sin (µn(x− ct))]

2
+

1

2c

∞∑
n=1

∫ x+ct

x−ct
gn sin (µnξ) dξ. (5.11)
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This expression can be reduced further as follows: Let F 0(x) and G0(x) denote the odd
2`-periodic extensions of f and g, i.e., first let

F0(x) =

{
f(x) 0 < x < `

−f(−x) −` < x < 0
, G0(x) =

{
g(x) 0 < x < `

−g(−x) −` < x < 0
.

Then we extend F0 and G0 to be periodic functions on R, which we denote by F 0(x) and
G0(x), respectively. Then the Fourier Sine series of F 0(x) is

F 0(x) =
∞∑
n=1

fn sin (µn x)

where

fn =
1

`

∫ `

−`
F 0(x) sin (µn x) dx =

2

`

∫ `

0

f(x) sin (µn x) dx = an.

Similarly, the Fourier Sine series of G0(x) is

G0(x) =
∞∑
n=1

gn sin (µn x)

where

gn =
1

`

∫ `

−`
G0(x) sin (µn x) dx =

2

`

∫ `

0

g(x) sin (µn x) dx =
nπc

`
bn.

In other words the series (5.11) can be written as

u(x, t) =
1

2

[
F 0(x+ ct) + F 0(x− ct)

]
+

1

2c

∫ x+ct

x−ct
G0(ξ) ξ. (5.12)

Now we notice that, for example, if f(x) is C2 and g(x) is C1 on [0, `], then (5.12) gives the
solution to (5.1).

Let us use (5.1), assuming f and g are sufficiently smooth, to check the conditions. First we
note that (5.12) formally satisfies the wave equation from our work on the D’Alembert form
of the solution. Next we note that

u(x, 0) =
1

2

[
F 0(x) + F 0(x)

]
= F 0(x) = f(x), 0 < x < `.

ut(x, 0) =
1

2

[
G0(x) +G0(x)

]
= G0(x) = g(x), 0 < x < `.

Example 5.1.

utt(x, t) = c2uxx(x, t), 0 < x < `, t > 0 (5.13)

u(0, t) = 0, u(`, t) = 0

u(x, 0) = f(x) =

{
x, 0 ≤ x ≤ `/2

`− x, `/2 ≤ x ≤ `

ut(x, 0) = g(x) = 0
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For this example (5.5) becomes

u(x, t) =
∞∑
n=1

an cos (µn ct) sin (µn x) .

In this case we have

an =
2

`

[∫ `/2

0

x sin (µn x) dx+

∫ `

`/2

(`− x) sin (µn x) dx

]

=


0 n = 2, 4, · · ·

4

`

∫ `/2

0

x sin (µn x) dx =
4`

n2π2
sin
(nπ

2

)
n = 1, 3, · · ·

Here we have used the following fact. Using the change of variables s = `− x we can write∫ `

`/2

(`− x) sin (µn x) dx = −
∫ 0

`/2

s sin (µn(`− s)) ds

=

∫ `/2

0

s sin (nπ − µn s) ds

= (−1)n+1

∫ `/2

0

s sin (µn s) ds

= (−1)n+1

∫ `/2

0

x sin (µn x) dx.

So

2

`

[∫ `/2

0

x sin (µn x) dx+

∫ `

`/2

(`− x) sin (µn x) dx

]

=
2

`

[∫ `/2

0

x sin (µn x) dx+ (−1)n+1

∫ `/2

0

x sin (µn x) dx

]

=


0 n = 2, 4, · · ·

4

`

∫ `/2

0

x sin (µn x) dx n = 1, 3, · · ·

Finally, keeping in mind that n is odd, we employ integration by parts to evaluate the
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integral.∫ `/2

0

x sin (µn x) dx =

∫ `/2

0

x

(
− `

nπ
cos (µn x)

)′
dx

= x

(
− `

nπ
cos (µn x)

) ∣∣∣∣`/2
0

−
∫ `/2

0

(
− `

nπ
cos (µn x)

)
dx

=
`

nπ

∫ `/2

0

cos (µn x) dx

=

(
`

nπ

)2

sin (µn x)

∣∣∣∣`/2
0

=

(
`

nπ

)2

sin
(nπ

2

)
.

So setting n = 2k − 1 for k = 1, 2, · · · , we arrive at

We arrive at the solution

u(x, t) =
4`

π2

∞∑
k=1

(−1)(k+1)

(2k − 1)2
cos

(
(2k − 1)πct

`

)
sin

(
(2k − 1)πx

`

)
. (5.14)

5.3 Wave Equation Neumann Boundary Conditions

utt(x, t) = c2uxx(x, t), 0 < x < `, t > 0 (5.15)

ux(0, t) = 0, ux(`, t) = 0

u(x, 0) = f(x)

ut(x, 0) = g(x)

First we present the solution to this problem and then provide a detailed derivation.

u(x, t) =
a0 + b0t

2
+
∞∑
n=1

(an cos (cµn t) + bn sin (cµn t)) cos (µn x)

an =
2

`

∫ `

0

f(x) cos (µnx) dx, a0 =
2

`

∫ `

0

f(x) dx

bn =
2

nπc

∫ `

0

g(x) cos (µn x) dx, b0 =
2

`

∫ `

0

g(x) dx.
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Look for simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

Substituting into (5.15) and dividing both sides by ϕ(x)ψ(t) gives

ψ̈(t)

c2ψ(t)
=
ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of t, it follows that
the expression must be a constant:

ψ̈(t)

c2ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ.

(Here ψ̇ means the derivative of ψ with respect to t and ϕ′ means means the derivative of ϕ
with respect to x.) We seek to find all possible constants λ and the corresponding nonzero
functions ϕ and T . We obtain

ϕ′′ − λϕ = 0, ψ̈ − c2λψ = 0.

Furthermore, the boundary conditions give

ϕ(0)ψ(t) = 0, ϕ(`)ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0, ϕ(0) = 0, ϕ(`) = 0. (5.16)

First we note that λ0 = 0 with ϕ0(x) = 1 is an eigenpair and the corresponding t equation
is ψ̈(t) = 0 so we have any constant times ψ0(t) = a + bt. In keeping with the form of our
formulas for Fourier series we write

ϕ0(x)ψ0(t) =
a0 + b0t

2
.

We have solved this problem a few times. What we found was that λ = 0 is an eigevalue
with eigenfunction ϕ = 1 and for λ = −µ2 we have

ϕ(x) = a cos(µx) + b sin(µx).

Applying the boundary conditions we have

0 = ϕ′(0) = b⇒ a = 0 0 = ϕ′(`) = a sin(µ`).

From this we conclude sin(µ`) = 0 which implies

µn =
nπ

`
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and therefore

λn = −µ2
n = −

(nπ
`

)2

, ϕn(x) = cos(µnx), n = 1, 2, · · · .. (5.17)

The solution of ψ̈ − c2λnψ = 0 is then

ψ(t) = a cos (µn t) + b sin (µn t) (5.18)

where a and b are arbitrary constants.

Next we look for u as an infinite sum

u(x, t) =
a0 + b0t

2
+
∞∑
n=1

(an cos (µn t) + bn sin (µn t)) cos (µn x) (5.19)

The problem remaining is to somehow find the constants an and bn so that the initial con-
ditions u(x, 0) = f(x) and ut(x, 0) = g(x) are satisfied.

Setting t = 0 in (5.19), we seek to obtain {an} satisfying

f(x) = u(x, 0) =
a0

2
+
∞∑
n=1

an cos (µn x) .

This nothing more than a Cosine expansion of the function f(x) on the interval (0, `).

an =
2

`

∫ `

0

f(x) cos (µnx) dx, a0 =
2

`

∫ `

0

f(x) dx. (5.20)

Next we differentiate (formally) (5.19) with respect to t to obtain

ut(x, t) =
∞∑
n=1

(µnc) (−an sin (µn ct) + bn cos (µn ct)) cos (µn x) .

Setting t = 0 in this expression, we seek to obtain {bn} satisfying

g(x) = ut(x, 0) =
b0
2

+
∞∑
n=1

bn (µnc) cos (µn x) .

Except for an extra factor this is a Fourier Cosine expansion of the function g(x) on the
interval (0, `). Namely we obtain

bn = (µnc)
−1 2

`

∫ `

0

g(x) cos (µn x) dx, b0 =
2

`

∫ `

0

g(x) dx.

After simplifying we have

bn =
2

nπc

∫ `

0

g(x) cos (µn x) dx, b0 =
2

`

∫ `

0

g(x) dx. (5.21)
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Example 5.2. Consider the following example

utt(x, t) = c2uxx(x, t), 0 < x < `, t > 0 (5.22)

ux(0, t) = 0, ux(`, t) = 0

u(x, 0) = f(x) = (`x2/2)− (x3/3)

ut(x, 0) = g(x) = 0

In this case we see that the constants bn = 0 for all n since g(x) = 0. We need only compute
the coefficients an. To this end we need to calculate

an =
2

`

∫ `

0

f(x) cos (µn x) dx.

=
2

`

∫ `

0

[
(`x2/2)− (x3/3)

]
cos (µn x) dx.

This example arises in an application to torsional oscillations of a circular steel shaft where
u(x, t) represents the angle of twist of the shaft at point x at time t. The reason for telling
you this is to explain why I take a more difficult looking f than usual. To do this problem
I could proceed using integration by parts but I have decided to provide a formula due to
Kronecker.

(Kronecker) If pm is a polynomial of degree m and g is continuous on [a, b]. Then∫ b

a

pm(x)g(x) dx =
m∑
j=0

p(j)(x)Gj+1(x)

∣∣∣∣b
a

,

where G1 is an antiderivative of g, i.e., G′1(x) = g(x) and, in general, Gj+1 is an
antiderivative for Gj, i.e., G′j+1 = Gj.

Note it is easy to see, by repeated integration, that if g(x) = cos (µn x), then

Gj(x) = (−1)(j+1)

(
`

nπ

)jcos (µn x) , k even

sin (µn x) , k odd

For our example pm(x) = f(x) = (`x2/2)− (x3/3) so we have

f(x) = (`x2/2)− (x3/3)

f ′(x) = `x− x2

f ′′(x) = `− 2x

f ′′′(x) = −2.
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Applying Kronecker’s formula we have

an =
2

`

∫ `

0

f(x) cos (µn x) dx.

=
2

`

[
f(x)

(
1

µn

)
sin (µn x)− f ′(x)

(
1

µn

)2

cos (µn x)

+f ′′(x)

(
1

µn

)3

sin (µn x)− f ′′′(x)

(
`

nπ

)4

cos (µn x)

] ∣∣∣∣`
0

=
2

`

[
−f ′′′(x)

(
1

µn

)4

cos (µn x)

] ∣∣∣∣`
0

=
4

`

(
1

µn

)4

[(−1)n − 1]

=
4`3

n4π4

{
0, n = 2, 4, · · · ,
−2 n = 1, 3, · · · .

Next we have

a0 =
2

`

∫ `

0

f(x) dx =
2

`

(
`x3

6
− x4

12

) ∣∣∣∣`
0

=
`3

6
.

At this point we can set n = (2k − 1) for k = 1, 2, · · · and write

a2k−1 =
−8`3

(2k − 1)4π4
.

Finally we have

u(x, t) =
`3

12
− 8`3

π4

∞∑
k=1

1

(2k − 1)4
cos

(
(2k − 1)πct

`

)
cos

(
(2k − 1)πx

`

)
.

If, for example, ` = π this becomes

u(x, t) =
π3

12
− 8

π

∞∑
k=1

1

(2k − 1)4
cos ((2k − 1)ct) cos ((2k − 1)x) .
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6 Assignment

1. Solve the BVP for the wave equation utt(x, t) = uxx(x, t) with

(a) BC: u(0, t) = 0, u(π, t) = 0, IC: f(x) = sin(x) cos(x), g(x) = sin(x).

(b) BC: u(0, t) = 0, u(π, t) = 0, IC: f(x) = 0, g(x) = 4 sin3(x).

(c) BC: u(0, t) = 0, u(π, t) = 0, IC: f(x) = x(π − x), g(x) = 0.

(d) BC: ux(0, t) = 0, ux(π, t) = 0, IC: f(x) = 0, g(x) = 1.

2. Solve the initial boundary value problem

utt(x, t) = uxx(x, t), 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = sin(πx), ut(x, 0) = 0

3. Solve the initial boundary value problem

utt(x, t) = uxx(x, t), 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = 0, ut(x, 0) = sin(πx)

4. Solve the initial boundary value problem

utt(x, t) = uxx(x, t), 0 < x < 1, t > 0

ux(0, t) = 0, ux(1, t) = 0

u(x, 0) = cos(πx), ut(x, 0) = cos(2πx)

5. Solve the initial boundary value problem

utt(x, t) = uxx(x, t), 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = x, ut(x, 0) = 0

6. Solve the initial value problem

utt(x, t) = uxx(x, t), 0 < x < 1, t > 0

ux(0, t) = 0, ux(1, t) = 0

u(x, 0) = x2, ut(x, 0) = 0

7. Solve the initial value problem

utt(x, t) = uxx(x, t), 0 < x < π, t > 0

u(0, t) = 0, ux(π, t) = 0

u(x, 0) = x, ut(x, 0) = 0

8. Solve the initial value problem

utt(x, t) = uxx(x, t), 0 < x < π, t > 0

u(0, t) = 0, ux(π, t) = 0

u(x, 0) = 0, ut(x, 0) = x
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