
4 1-D Boundary Value Problems Heat Equation

The main purpose of this chapter is to study boundary value problems for the heat equation
on a finite rod a ≤ x ≤ b.

ut(x, t) = kuxx(x, t), a < x < b, t > 0

u(x, 0) = ϕ(x)

The main new ingredient is that physical constraints called boundary conditions must be
imposed at the ends of the rod. The two main conditions are

u(a, t) = 0, u(b, t) = 0 Dirichlet Conditions

ux(a, t) = 0, ux(b, t) = 0 Neumann Conditions

We can also have any combination of these conditions, i.e., we could have a Dirichlet condition
at x = a and Neumann condition at x = b.

The is one additional important boundary condition

ux(a, t)− k0u(a, t) = 0, ux(b, t) + k1u(b, t) = 0 Robin Conditions

Finally we will a more general problem involving two extra terms that correspond to heat
conduction and convection.

ut(x, t) = k
(
uxx(x, t)− 2au(x, t)x + bu(x, t)

)
, 0 < x < `, t > 0

u(x, 0) = ϕ(x).

The basic methodology presented here is the idea of eigenvalues and eigenvector expansions
as presented in a linear algebra or differential equations class when studying linear systems
of ODEs. The basic idea can be described by an example. Let X be an n-vector valued
function and A an n × n matrix. Also let X0 denote a constant initial condition n-vector.
Then to solve the initial value problem

d

dt
X = AX, X(0) = X0

we find the eigenvalues {λj}nj=1 and eigenvectors {Φj}nj=1 of A (i.e. AΦj = λjΦj) where we
also assume

〈Φj,Φk〉 = Φ>Φk = δjk ≡

{
1 j = k

0 j 6= k
.

Then, assuming there are n linearly independent eigenvectors, the solution can be written

X(t) =
n∑
j=1

eλjt〈X0,Φj〉Φj.

The generalization of this idea to the one dimensional heat equation involves the generalized
theory of Fourier series. This method due to Fourier was develop to solve the heat equation
and it is one of the most successful ideas in mathematics. We will begin our study with
classical Fourier series and then turn to the heat equation and Fourier’s idea of separation
of variables.
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4.1 Fourier Series

A series of the functions

φ0 =
1

2
, φ(1)

n = cos(nx), φ(2)
n = sin(nx), for n ≥ 1

written in a series
1

2
a0 +

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
is known as a Fourier series. (We choose φ0 = 1

2
so all of the functions have the same norm.)

A fairly general class of functions can be expanded in Fourier series. Let f(x) be a function
defined on −π < x < π. Assume that f(x) can be expanded in a Fourier series

f(x) ∼ 1

2
a0 +

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
. (4.1)

Here the “∼” means “has the Fourier series”. We have not said if the series converges yet.
For now let’s assume that the series converges uniformly so we can replace the ∼ with an =.

We integrate Equation 4.1 from −π to π to determine a0.∫ π

−π
f(x) dx =

1

2
a0

∫ π

−π
dx+

∫ π

−π

∞∑
n=1

an cos(nx) + bn sin(nx) dx

= πa0 +
∞∑
n=1

(
an

∫ π

−π
cos(nx) dx+ bn

∫ π

−π
sin(nx) dx

)
= πa0

So that

a0 =
1

π

∫ π

−π
f(x) dx.

Multiplying by cos(mx) and integrating will enable us to solve for am.∫ π

−π
f(x) cos(mx) dx =

1

2
a0

∫ π

−π
cos(mx) dx

+
∞∑
n=1

(
an

∫ π

−π
cos(nx) cos(mx) dx+ bn

∫ π

−π
sin(nx) cos(mx) dx

)
All but one of the terms on the right side vanishes due to the orthogonality of the functions.∫ π

−π
f(x) cos(mx) dx = am

∫ π

−π
cos(mx) cos(mx) dx

= am

∫ π

−π

1

2
(1 + cos(2mx)) dx

= πam
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So that

am =
1

π

∫ π

−π
f(x) cos(mx) dx m = 0, 1, 2, . . .

Similarly, we can multiply by sin(mx) and integrate to solve for bm. The result is

bm =
1

π

∫ π

−π
f(x) sin(mx) dx m = 1, 2, 3, . . . .

an and bn are called Fourier coefficients.

Although we will not show it, Fourier series converge for a fairly general class of functions.
Let f(x−) denote the left limit of f(x) and f(x+) denote the right limit.

Example 4.1. For the function defined

f(x) =

{
0 for x < 0,

x+ 1 for x ≥ 0,

the left and right limits at x = 0 are

f(0−) = 0, f(0+) = 1.

Theorem 4.1. Let f(x) be a 2π-periodic function for which
∫ π
−π |f(x)| dx exists. Define the

Fourier coefficients

an =
1

π

∫ π

−π
f(x) cos(nx) dx, bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

If x is an interior point of an interval on which f(x) has limited total fluctuation, then the
Fourier series of f(x)

a0

2
+
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
,

converges to 1
2
(f(x−) + f(x+)). If f is continuous at x, then the series converges to f(x).

Example 4.2. Consider the function defined by

f(x) =

{
−x for − π ≤ x < 0

π − 2x for 0 ≤ x < π.

The Fourier series converges to the function defined by

f̂(x) =


0 for x = −π
−x for − π < x < 0

π/2 for x = 0

π − 2x for 0 < x < π.

The function f̂(x) is plotted in the following figure.
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Figure 1: Graph of f̂(x).

A lot can be learned about the Fourier coefficients from the geometry of the function. For
example, if f(x) is an even function, (f(−x) = f(x)), then there will not be any sine terms
in the Fourier series for f(x). The Fourier sine coefficient is

bn =
1

π

∫ π

−π
f(x) sin(nx) dx.

Since f(x) is an even function and sin(nx) is odd, f(x) sin(nx) is odd. bn is the integral of
an odd function from −π to π and is thus zero. Also we can simplify the cosine coefficients,

an =
1

π

∫ π

−π
f(x) cos(nx) dx

=
2

π

∫ π

0

f(x) cos(nx) dx.

Example 4.3. Consider the function defined on [0, π) by

f(x) =

{
x for 0 ≤ x < π/2

π − x for π/2 ≤ x < π.

The Fourier cosine coefficients for this function are

an =
2

π

∫ π/2

0

x cos(nx) dx+
2

π

∫ π

π/2

(π − x) cos(nx) dx

=


π

4
for n = 0,

8

πn2
cos
(nπ

2

)
sin2

(nπ
4

)
for n ≥ 1.

In Figure 3 the even periodic extension of f(x) is plotted in a dashed line and the sum of
the first five nonzero terms in the Fourier cosine series are plotted in a solid line.
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Figure 3: Fourier Cosine Series.

If, on the other hand, f(x) is an odd function, (f(−x) = −f(x)), then there will not be
any cosine terms in the Fourier series. Since f(x) cos(nx) is an odd function, the cosine
coefficients will be zero. Since f(x) sin(nx) is an even function,we can rewrite the sine
coefficients

bn =
2

π

∫ π

0

f(x) sin(nx) dx.

Example 4.4. Consider the function defined on [0, π) by

f(x) =

{
x for 0 ≤ x < π/2

π − x for π/2 ≤ x < π.

The Fourier sine coefficients for this function are

bn =
2

π

∫ π/2

0

x sin(nx) dx+
2

π

∫ π

π/2

(π − x) sin(nx) dx

=
16

πn2
cos
(nπ

4

)
sin3

(nπ
4

)
In Figure 4 the odd periodic extension of f(x) is plotted in a dashed line and the sum of the
first five nonzero terms in the Fourier sine series are plotted in a solid line.
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Figure 4: Fourier Sine Series.
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4.2 Fourier series for arbitrary interval

The above formulas can easily be extended to periodic functions with an arbitrary period
2` defined on [−`, `] and, using even and odd extensions, we can even write Fourier series
expansions for functions defined on an interval [0, `]. We present these formulas below.

1. For f(x) = f(x+ 2`) and f is piecewise smooth on −` ≤ x ≤ `. Then for all x ∈ R

f(x+) + f(x−)

2
= a0 +

∞∑
n=1

{
an cos

(nπx
`

)
+ bn sin

(nπx
`

)}
,

where

a0 =
1

2`

∫ `

−`
f(x) dx,

an =
1

`

∫ `

−`
f(x) cos

(nπx
`

)
dx

bn =
1

`

∫ `

−`
f(x) sin

(nπx
`

)
dx.

If f is continuous (at x) then

f(x+) + f(x−)

2
= f(x).

2. Fourier Cosine: Given f on [0, `]

a0 =
1

`

∫ `

0

f(x) dx, an =
2

`

∫ `

0

f(x) cos
(nπx

`

)
dx

f(x+) + f(x−)

2
= a0 +

∞∑
n=1

an cos
(nπx

`

)
3. Fourier Sine: Given f on [0, `]

bn =
2

`

∫ `

0

f(x) sin
(nπx

`

)
dx

f(x+) + f(x−)

2
=
∞∑
n=1

bn sin
(nπx

`

)
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4.3 Heat Equation Dirichlet Boundary Conditions

ut(x, t) = kuxx(x, t), 0 < x < `, t > 0 (4.2)

u(0, t) = 0, u(`, t) = 0

u(x, 0) = ϕ(x)

1. Separate Variables Look for simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

Substituting into (4.14) and dividing both sides by ϕ(x)ψ(t) gives

ψ̇(t)

kψ(t)
=
ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of t, it follows
that the expression must be a constant:

ψ̇(t)

kψ(t)
=
ϕ′′(x)

ϕ(x)
= λ.

(Here ψ̇ means the derivative of ψ with respect to t and ϕ′ means means the derivative
of ϕ with respect to x.) We seek to find all possible constants λ and the corresponding
nonzero functions ϕ and ψ.

We obtain
ϕ′′ − λϕ = 0, ψ̇ − kλψ = 0.

The solution of the second equation is

ψ(t) = Cekλt (4.3)

where C is an arbitrary constant. Furthermore, the boundary conditions give

ϕ(0)ψ(t) = 0, ϕ(`)ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0, ϕ(0) = 0, ϕ(`) = 0. (4.4)

2. Find Eigenvalues and Eignevectors The next main step is to find the eigenvalues
and eigenfunctions from (4.16). There are, in general, three cases:

(a) If λ = 0 then ϕ(x) = ax+ b so applying the boundary conditions we get

0 = ϕ(0) = b, 0 = ϕ(`) = a` ⇒ a = b = 0.

Zero is not an eigenvalue.
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(b) If λ = µ2 > 0 then
ϕ(x) = a cosh(µx) + b sinh(µx).

Applying the boundary conditions we have

0 = ϕ(0) = a⇒ a = 0 0 = ϕ(`) = b sinh(µ`) ⇒ b = 0.

Therefore, there are no positive eigenvalues.

Consider the following alternative argument: If ϕ′′(x) = λϕ(x) then multiplying
by ϕ we have ϕ(x)ϕ′′(x) = λϕ(x)2. Integrate this expression from x = 0 to x = `.
We have

λ

∫ `

0

ϕ(x)2 dx =

∫ `

0

ϕ(x)ϕ′′(x) dx = −
∫ `

0

ϕ′(x)2 dx+ ϕ(x)ϕ′(x)

∣∣∣∣`
0

.

Since ϕ(0) = ϕ(`) = 0 we conclude

λ = −

∫ `

0

ϕ′(x)2 dx∫ `

0

ϕ(x)2 dx

and we see that λ must be less than or equal to zero.

(c) So, finally, consider λ = −µ2 so that

ϕ(x) = a cos(µx) + b sin(µx).

Applying the boundary conditions we have

0 = ϕ(0) = a⇒ a = 0 0 = ϕ(`) = b sin(µ`).

From this we conclude sin(µ`) = 0 which implies

µ =
nπ

`

and therefore

λn = −µ2
n = −

(nπ
`

)2

, ϕn(x) = bn sin(µnx), n = 1, 2, · · · .. (4.5)

From (4.15) we also have the associated functions ψn(t) = ekλnt.

3. Write Formal Sum From the above considerations we can conclude that for any
integer N and constants {bn}Nn=0

uN(x, t) =
N∑
n=1

bnψn(t)ϕn(x) =
N∑
n=1

bne
kλnt sin

(nπx
`

)
.

satisfies the differential equation in (4.14) and the boundary conditions.
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4. Use Fourier Series to Find Coefficients The only problem remaining is to somehow
pick the constants bn so that the initial condition u(x, 0) = ϕ(x) is satisfied. To do
this we consider what we learned from Fourier series. In particular we look for u as an
infinite sum

u(x, t) =
∞∑
n=1

bne
kλnt sin

(nπx
`

)
and we try to find {bn} satisfying

ϕ(x) = u(x, 0) =
∞∑
n=1

bn sin
(nπx

`

)
.

But this nothing more than a Sine expansion of the function ϕ on the interval (0, `).

bn =
2

`

∫ `

0

ϕ(x) sin
(nπx

`

)
dx. (4.6)

Example 4.5. As an explicit example for the initial condition consider ` = 1, k = 1/10 and

ϕ(x) = x(1− x). Let us recall that µn =
(nπ
`

)
which in this case reduces to nπ.

bn = 2

∫ 1

0

x(1− x) sin (nπx) dx

= 2

∫ 1

0

x(1− x)

(
−cos (nπx)

nπ

)′
dx

=
2

nπ

[
−x(1− x)

cos(nπx)

nπ

∣∣∣∣1
0

+

∫ 1

0

(1− 2x)
cos(nπx)

µn
dx

]

=
2

nπ

∫ 1

0

(1− 2x)

(
sin (nπx)

nπ

)′
dx

=
2

nπ

[
(1− 2x)

sin(nπx)

nπ

∣∣∣∣1
0

−
∫ 1

0

(−2)
sin (nπx)

nπ
dx

]

=
4

(nπ)2

∫ 1

0

sin(nπx) dx =
4

(nπ)2

[
−cos(nπx)

nπ

∣∣∣∣1
0

]
=

4 [1− (−1)n]

(nπ)3

We arrive at the solution

u(x, t) =
4

π3

∞∑
n=1

[1− (−1)n]

n3
e−n

2π2t/10 sin (nπx) . (4.7)

where

x(1− x) =
4

π3

∞∑
n=1

[1− (−1)n]

n3
sin (nπx) .
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As an example with N = 3 we have

x(1− x) ≈ 8

π3

(
sin(πx) +

sin(3πx)

27

)
.

In the following figure we plot the left and right hand side of the above.
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Finally we plot the approximate solution at times t = 0, t =, t = 2, t = 3

u(x, t) =
4

π3

3∑
n=1

[1− (−1)n]

n3
e−n

2π2t/10 sin (nπx) .
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4.4 Heat Equation Neumann Boundary Conditions

ut(x, t) = uxx(x, t), 0 < x < `, t > 0 (4.8)

ux(0, t) = 0, ux(`, t) = 0

u(x, 0) = ϕ(x)
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1. Separate Variables Look for simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

Substituting into (4.8) and dividing both sides by ϕ(x)ψ(t) gives

ψ̇(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of t, it follows
that the expression must be a constant:

ψ̇(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ.

(Here ψ̇ means the derivative of ψ with respect to t and ϕ′ means means the derivative
of ϕ with respect to x.) We seek to find all possible constants λ and the corresponding
nonzero functions ϕ and ψ.

We obtain
ϕ′′ − λϕ = 0, ψ̇ − λψ = 0.

The solution of the second equation is

ψ(t) = Ceλt (4.9)

where C is an arbitrary constant. Furthermore, the boundary conditions give

ϕ′(0)ψ(t) = 0, ϕ′(`)ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0, ϕ′(0) = 0, ϕ′(`) = 0. (4.10)

2. Find Eigenvalues and Eignevectors The next main step is to find the eigenvalues
and eigenfunctions from (4.10). There are, in general, three cases:

(a) If λ = 0 then ϕ(x) = ax+ b so applying the boundary conditions we get

0 = ϕ′(0) = a, 0 = ϕ′(`) = a ⇒ a = 0.

Notice that b is still an arbitrary constant. We conclude that λ0 = 0 is an
eigenvalue with eigenfunction ϕ0(x) = 1.

(b) If λ = µ2 > 0 then
ϕ(x) = a cosh(µx) + b sinh(µx)

and
ϕ′(x) = aµ sinh(µx) + bµ cosh(µx).

Applying the boundary conditions we have

0 = ϕ′(0) = bµ⇒ b = 0 0 = ϕ′(`) = aµ sinh(µ`) ⇒ a = 0.
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Therefore, there are no positive eigenvalues.

Consider the following alternative argument: If ϕ′′(x) = λϕ(x) then multiplying
by ϕ we have ϕ(x)ϕ′′(x) = λϕ(x)2. Integrate this expression from x = 0 to x = `.
We have

λ

∫ `

0

ϕ(x)2 dx =

∫ `

0

ϕ(x)ϕ′′(x) dx = −
∫ `

0

ϕ′(x)2 dx+ ϕ(x)ϕ′(x)

∣∣∣∣`
0

.

Since ϕ′(0) = ϕ′(`) = 0 we conclude

λ = −

∫ `

0

ϕ′(x)2 dx∫ `

0

ϕ(x)2 dx

and we see that λ must be less than or equal to zero ( zero only if ϕ′ = 0).

(c) So, finally, consider λ = −µ2 so that

ϕ(x) = a cos(µx) + b sin(µx)

and
ϕ′(x) = −aµ sin(µx) + bµ cos(µx).

Applying the boundary conditions we have

0 = ϕ′(0) = bµ⇒ b = 0 0 = ϕ′(`) = −aµ sin(µ`).

From this we conclude sin(µ`) = 0 which implies µ =
nπ

`
and therefore

λn = −µ2
n = −

(nπ
`

)2

, ϕn(x) = cos(µnx), n = 1, 2, · · · .. (4.11)

From (4.9) we also have the associated functions ψn(t) = eλnt.

3. Write Formal Infinite Sum From the above considerations we can conclude that
for any integer N and constants {an}Nn=0

un(x, t) =
a0

2
+

N∑
n=1

anψn(t)ϕn(x) = a0 +
N∑
n=1

ane
λnt cos

(nπx
`

)
.

satisfies the differential equation in (4.8) and the boundary conditions.

4. Use Fourier Series to Find Coefficients The only problem remaining is to somehow
pick the constants an so that the initial condition u(x, 0) = ϕ(x) is satisfied. To do
this we consider what we learned from Fourier series. In particular we look for u as an
infinite sum

u(x, t) = a0 +
∞∑
n=1

ane
λnt cos

(nπx
`

)
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and we try to find {an} satisfying

ϕ(x) = u(x, 0) = a0 +
∞∑
n=1

an cos
(nπx

`

)
.

But this nothing more than a Cosine expansion of the function ϕ on the interval (0, `).

Our work on Fourier series showed us that

a0 =
2

`

∫ `

0

ϕ(x) dx, an =
2

`

∫ `

0

ϕ(x) cos
(nπx

`

)
dx. (4.12)

As an explicit example for the initial condition consider ` = 1 and ϕ(x) = x(1− x). In this
case (4.12) becomes

a0 = 2

∫ 1

0

ϕ(x) dx, an = 2

∫ 1

0

ϕ(x) cos (nπx) dx.

We have

a0 = 2

∫ 1

0

ϕ(x) dx = 2

∫ 1

0

x(1− x) dx

= 2

[
x2

2
− x3

3

] ∣∣∣∣1
0

=
1

3
.

and

an = 2

∫ 1

0

ϕ(x) cos (nπx) dx = 2

∫ 1

0

x(1− x) cos (nπx) dx

= 2

∫ 1

0

x(1− x)

(
sin (nπx)

nπ

)′
dx

= 2

[
x(1− x)

sin (nπx)

nπ

∣∣∣∣1
0

−
∫ 1

0

(1− 2x)
sin (nπx)

nπ
dx

]

=
2

nπ

∫ 1

0

(1− 2x)

(
cos (nπx)

nπ

)′
dx

=
2

nπ

[
(1− 2x)

cos (nπx)

nπ

∣∣∣∣1
0

−
∫ 1

0

(−2)
cos (nπx)

nπ
dx

]

=
2

nπ

[
−cos (nπ)

nπ
− 1

nπ

]

=
−2

(nπ)2
((−1)n + 1) =


−4

(nπ)2
, n even

0, n odd

.
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In order to eliminate the odd terms in the expansion we introduce a new index, k by n = 2k
where k = 1, 2, · · · . So finally we arrive at the solution

u(x, t) =
1

6
− 1

π2

∞∑
k=1

1

k2
e−4k2π2t cos(2kπx). (4.13)

As an example with N = 4 we have

x(1− x) ≈ 1

6
− 1

π2

(
4∑

n=1

cos(2kπx)

k2

)
.

Notice that as t→∞ the infinite sum converges to zero uniformly in x. Indeed,∣∣∣∣∣
∞∑
k=1

1

k2
e−4k2π2t cos(2kπx)

∣∣∣∣∣ ≤ e−4π2t

∞∑
k=1

1

k2
=
π2

6
e−4π2t.

So the solution converges to a nonzero steady state temperature which is exactly the average
value of the initial temperature distribution.

lim
t→∞

u(x, t) =
1

6
=

∫ 1

0

ϕ(x) dx.

In the following figure we plot the left and right hand side of the above.
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Finally we plot the approximate solution at times t = 0, t = 1/10, t = 2/10, t = 3/10.
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4.5 Heat Equation Dirichlet-Neumann Boundary Conditions

ut(x, t) = uxx(x, t), 0 < x < `, t > 0 (4.14)

u(0, t) = 0, ux(`, t) = 0

u(x, 0) = ϕ(x)

1. Separate Variables Look for simple solutions in the form

u(x, t) = ϕ(x)ψ(t).

Substituting into (4.14) and dividing both sides by ϕ(x)ψ(t) gives

ψ̇(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)

Since the left side is independent of x and the right side is independent of t, it follows
that the expression must be a constant:

ψ̇(t)

ψ(t)
=
ϕ′′(x)

ϕ(x)
= λ.

(Here ψ̇ means the derivative of ψ with respect to t and ϕ′ means means the derivative
of ϕ with respect to x.) We seek to find all possible constants λ and the corresponding
nonzero functions ϕ and ψ.

We obtain
ϕ′′ − λϕ = 0, ψ̇ − λψ = 0.

The solution of the second equation is

ψ(t) = Ceλt (4.15)
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where C is an arbitrary constant. Furthermore, the boundary conditions give

ϕ(0)ψ(t) = 0, ϕ′(`)ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− λϕ(x) = 0, ϕ(0) = 0, ϕ′(`) = 0. (4.16)

2. Find Eigenvalues and Eignevectors The next main step is to find the eigenvalues
and eigenfunctions from (4.16). There are, in general, three cases:

(a) If λ = 0 then ϕ(x) = ax+ b so applying the boundary conditions we get

0 = ϕ(0) = b, 0 = ϕ′(`) = a ⇒ a = b = 0.

Zero is not an eigenvalue.

(b) If λ = µ2 > 0 then
ϕ(x) = a cosh(µx) + b sinh(µx)

and
ϕ′(x) = aµ sinh(µx) + bµ cosh(µx).

Applying the boundary conditions we have

0 = ϕ′(0) = aµ⇒ a = 0 0 = ϕ′(`) = bµ cosh(µ`) ⇒ b = 0.

Therefore, there are no positive eigenvalues.

Consider the following alternative argument: If ϕ′′(x) = λϕ(x) then multiplying
by ϕ we have ϕ(x)ϕ′′(x) = λϕ(x)2. Integrate this expression from x = 0 to x = `.
We have

λ

∫ `

0

ϕ(x)2 dx =

∫ `

0

ϕ(x)ϕ′′(x) dx = −
∫ `

0

ϕ′(x)2 dx+ ϕ(x)ϕ′(x)

∣∣∣∣`
0

.

Since ϕ(0) = ϕ′(`) = 0 we conclude

λ = −
∫ `

0
ϕ′(x)2 dx∫ `

0
ϕ(x)2 dx

and we see that λ must be less than or equal to zero.

(c) So, finally, consider λ = −µ2 so that

ϕ(x) = a cos(µx) + b sin(µx)

and
ϕ′(x) = −aµ sin(µx) + bµ cos(µx).

Applying the boundary conditions we have

0 = ϕ(0) = aµ⇒ a = 0 0 = ϕ′(`) = bµ cos(µ`).

16



From this we conclude cos(µ`) = 0 which implies

µ =
(2n− 1)π

2`

and therefore

λn = −µ2
n = −

(
(2n− 1)π

2`

)2

, ϕn(x) = sin(µnx), n = 1, 2, · · · .. (4.17)

From (4.15) we also have the associated functions ψn(t) = eλnt.

3. Write Formal Infinite Sum From the above considerations we can conclude that
for any integer N and constants {bn}Nn=0

un(x, t) =
N∑
n=1

bnψn(t)ϕn(x) =
N∑
n=1

bne
λnt sin

(
(2n− 1)πx

2`

)
.

satisfies the differential equation in (4.14) and the boundary conditions.

4. Use Fourier Series to Find Coefficients The only problem remaining is to somehow
pick the constants bn so that the initial condition u(x, 0) = ϕ(x) is satisfied. To do
this we consider what we learned from Fourier series. In particular we look for u as an
infinite sum

u(x, t) =
∞∑
n=1

bne
λnt sin

(
(2n− 1)πx

2`

)
and we try to find {bn} satisfying

ϕ(x) = u(x, 0) =
∞∑
n=1

bn sin

(
(2n− 1)πx

2`

)
.

But this nothing more than a Sine type expansion of the function ϕ on the interval
(0, `). Using

ϕn(x) = sin

(
(2n− 1)πx

2`

)
we have

ϕ(x) =
∞∑
k=1

bkϕk(x).

We proceed as usual by multiplying both sides by ϕn(x) and integrating from 0 to `
and using the orthogonality (described below in (4.19), (4.21) ).∫ `

0

ϕn(x)ϕ(x) dx =
∞∑
k=1

bk

∫ `

0

ϕn(x)ϕk(x) dx

which implies

bn =
2

`

∫ `

0

ϕ(x)ϕn(x) dx. (4.18)

17



Orthogonality: ∫ `

0

ϕn(x)ϕk(x) dx =


`

2
, n = k

0, n 6= k

.

To see this recall that ϕ′′j = λjϕj and ϕj(0) = 0, ϕ′j(`) = 0. First consider n 6= k so
λn 6= λk and therefore

λn

∫ `

0

ϕn(x)ϕk(x) dx =

∫ `

0

ϕ′′n(x)ϕk(x) dx (4.19)

= −
∫ `

0

ϕ′n(x)ϕ′k(x) dx+ [ϕ′n(x)ϕk(x)]

∣∣∣∣`
0

=

∫ `

0

ϕn(x)ϕ′′k(x) dx+ [ϕ′n(x)ϕk(x)− ϕn(x)ϕ′k(x)]

∣∣∣∣`
0

= λk

∫ `

0

ϕn(x)ϕk(x) dx. (4.20)

Therefore

(λn − λk)
∫ `

0

ϕn(x)ϕk(x) dx = 0 ⇒
∫ `

0

ϕn(x)ϕk(x) dx = 0.

For n = k we have∫ `

0

ϕ2
n(x) dx =

∫ `

0

sin2

(
(2n− 1)πx

2`

)
dx (4.21)

=
1

2

∫ `

0

(
1− cos

(
(2n− 1)πx

`

))
dx

=
`

2
− 1

2

(
`

(2n− 1)π

)
sin

(
(2n− 1)πx

`

) ∣∣∣∣`
0

=
`

2
. (4.22)

As an explicit example for the initial condition consider ϕ(x) = x. Let us recall that

µn =

(
(2n− 1)π

2`

)
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bn =
2

`

∫ `

0

ϕ(x)ϕn(x) dx =
2

`

∫ `

0

x sin (µnx) dx

=
2

`

∫ `

0

x

(
−cos (µnx)

µn

)′
dx

=
2

`

[
−xcos(µnx)

µn

∣∣∣∣`
0

+

∫ `

0

cos(µnx)

µn
dx

]

=
2

`

[
−`cos(µn`)

µn
+

sin(µnx)

µ2
n

∣∣∣∣`
0

]

=
2

`

[
−`cos((2n− 1)π/2)

µn
+

sin((2n− 1)π/2)

µ2
n

]

=
8`(−1)n+1

(2n− 1)2π2

We arrive at the solution

u(x, t) =
8`

π2

∞∑
n=1

(−1)n+1

(2n− 1)2
eλnt sin (µnx) . (4.23)

4.6 Heat Equation General Boundary Conditions: Sturm–Liouville
Theory

We consider the heat equation on the interval (a, b) with general boundary conditions. These
notes use the material found in the book in Sections 2.7–2.9.

ut(x, t) = uxx(x, t)− q(x)u(x, t), a < x < b, t > 0 (4.24)

α1u(a, t)− α2ux(a, t) = 0, (4.25)

β1u(b, t) + β2ux(b, t) = 0, (4.26)

u(x, 0) = ϕ(x) (4.27)

where we assume that α2
1 + α2

2 6= 0 and β2
1 + β2

2 6= 0.

If we carry out our standard procedure of separation of variables we seek

u(x, t) = ϕ(x)ψ(t).

Substituting into (4.24) and dividing both sides by ϕ(x)ψ(t) gives

ψ̇(t)

ψ(t)
=
ϕ′′(x)− q(x)ϕ(x)

ϕ(x)
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Since the left side is independent of x and the right side is independent of t, it follows that
the expression must be a constant:

ψ̇(t)

ψ(t)
=
ϕ′′(x)− q(x)ϕ(x)

ϕ(x)
= λ.

(Here ψ̇ means the derivative of ψ with respect to t and ϕ′ means means the derivative of ϕ
with respect to x.) We seek to find all possible constants λ and the corresponding nonzero
functions ϕ and ψ.

We obtain
ϕ′′ − q(x)ϕ(x)− λϕ = 0, ψ̇ − λψ = 0.

The solution of the second equation is

ψ(t) = Cekλt (4.28)

where C is an arbitrary constant. Furthermore, the boundary conditions give

(α1ϕ(a)− kϕ(a))ψ(t) = 0 , (β1ϕ(b) + β2ϕ(b))ψ(t) = 0 for all t.

Since ψ(t) is not identically zero we obtain the desired eigenvalue problem

ϕ′′(x)− q(x)ϕ(x)− λϕ(x) = 0,
α1ϕ(a)− α2ϕ(a) = 0,
β1ϕ(b) + β2ϕ(b) = 0

(4.29)

This is an eigenvalue problem which is referred to as a Regular Sturm-Liouville problem.

Theorem 4.2. The problem (4.29) has infinitely many eigenpairs {λn, ϕn(x)} which satisfy
the following properties:

1. The eigenvalues are all simple, i.e. they are eigenvalues of multiplicity one which means
that λj 6= λk for j 6= k.

2. The eigenvalues are all real and all but a finite number are negative. If α1, α2, β1, β2 6= 0
then all the eigenvalues are less than or equal to zero.

3. If we order the eigenvalues in decreasing order by

λn < λn−1 < · · · < λ2 < λ1

then
λn → −∞ as n→∞.

4. The nth eigenfunction ϕn(x) is real and has exactly (n− 1) zeros in the interval (a, b)

5. The eigenfunctions are orthogonal in the following sense∫ b

a

ϕn(x)ϕm(x) dx = 0 for n 6= m.
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6. If ϕ(x) is piecewise smooth (PC(1)(a, b) in my notation in class), then

(ϕ(x+) + ϕ(x−))

2
=
∞∑
n=1

cnϕn(x), a < x < b,

where

cn =

∫ b
a
f(x)ϕn(x) dx∫ b
a
ϕ2
n(x) dx

.

At least for continuous ϕ, Theorem 4.2 allows us to conclude that the solution to (4.24)-(4.27)
is given by

u(x, t) =
∞∑
n=1

cne
λntϕn(x).

4.7 Heat Equation with Conduction and Convection

We consider the heat equation on the interval (0, 1) with two extra terms that correspond
to heat conduction and convection.

ut(x, t) = k
(
uxx(x, t)− 2au(x, t)x + bu(x, t)

)
, 0 < x < `, t > 0 (4.30)

u(0, t) = 0, (4.31)

u(`, t) = 0, (4.32)

u(x, 0) = ϕ(x). (4.33)

There are many different ways to approach this problem and one would be to apply separation
of variable directly. The dissadvantange to this is that one gets a more complicated ode for
ϕ(x) and there is a more difficult analysis of the eigenvalues and eigenvectors.

We will take a different approach which allows us to use our earlier work after a change of
dependent variables. So to this end let us define v(x, t) via

u(x, t) = eax+βtv(x, t), β = k(b− a2). (4.34)

Thus we have
v(x, t) = e−(ax+βt)u(x, t)

and we can compute

vt − kvxx = e−(ax+βt) (−βu+ ut)− k
[
e−(ax+βt) (−au+ ux)

]
x

= e−(ax+βt) {(−βu+ ut)− k [−a(−au+ ux) + (−aux + uxx)]}
= e−(ax+βt)

[
ut − k(uxx − 2aux + a2u) + βu

]
= e−(ax+βt)

[
ut − k(uxx − 2aux + a2u+ (b− a2)u)

]
= e−(ax+βt) [ut − k(uxx − 2aux + bu)] = 0.
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Furthermore
v(0, t) = e−βtu(0, t) = 0, v(`, t) = e−(a`+βt)u(`, t) = 0

and
v(x, 0) = e−axu(x, 0) = e−axϕ(x).

Therefore, v(x, t) is the solution of

vt = kvxx

v(0, t) = 0, v(`, t) = 0

v(x, 0) = e−axϕ(x).

We have eigenvalues and eigenfunctions

λn = −
(nπ
`

)2

, sin
(nπ
`
x
)

and we obtain the solution to this problem as

v(x, t) =
∞∑
n=1

bne
λnt sin

(nπ
`
x
)

with bn =
2

`

∫ `

0

e−axϕ(x) sin
(nπ
`
x
)
dx.

Finally our solution to (4.30)-(4.33) can be written as

u(x, t) = eax+βt
∞∑
n=1

bne
λnt sin

(nπ
`
x
)
.

4.8 Assignment Eigenvalues and Heat Equation

1. Fourier Series Examples: The Fourier series for f(x) = x2 on −π ≤ x ≤ π gives

x2 ∼ π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx), −π ≤ x ≤ π

Find values of x and give a justification for using them along with the above information
to show that

(a)
∞∑
n=1

1

n2
=
π2

6

(b)
∞∑
n=1

(−1)(n+1)

n2
=
π2

12

2. Find the Fourier Cosine series expansion of f(x) = sin(x) on 0 ≤ x ≤ π.

3. Find the Fourier series expansion of f(x) = cos2(x) on −π ≤ x ≤ π. (THINK)

4. Determine all solutions
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(a) y′′ − y = 0, 0 < x < 1, y(0) = 0, y(1) = −4.

(b) y′′ + 4y = 0, 0 < x < π, y(0) = 0, y′(π) = 0.

(c) y′′ + y = 0, 0 < x < 2π, y(0) = 0, y(2π) = 1.

(d) y′′ − 2y′ + y = 0, −1 < x < 1, y(−1) = 0, y(1) = 2.

5. Find all eigenvalues λ and eigenvectors y (i.e., y nonzero)

(a) y′′ + λy = 0, 0 < x < π, y(0) = 0, y(π) = 0.

(b) y′′ + λy = 0, 0 < x < π, y′(0) = 0, y′(π) = 0.

(c) y′′ + λy = 0, 0 < x < π, y(0) = 0, y′(π) = 0.

(d) y′′ + λy = 0, 0 < x < 2π, y(0) = y(2π), y′(0) = y′(2π).

6. Solve the heat problem ut = uxx with

(a) BC: u(0, t) = 0, u(π, t) = 0, IC: u(x, 0) = sin(x)

(b) BC: u(0, t) = 0, u(π, t) = 0, IC: u(x, 0) = x(π − x)

(c) BC: u(0, t) = 0, u(π, t) = 0 IC: u(x, 0) = sin(x)− 7 sin(3x)

(d) BC: ux(0, t) = 0, ux(π, t) = 0 , IC: u(x, 0) = 1− cos(x)

(e) BC: u(0, t) = 0, u(π, t) = 0, IC: u(x, 0) = sin(x) cos(x)

(f) BC: ux(0, t) = 0, ux(π, t) = 0, IC: u(x, 0) = cos2(x) (Hint: half-angle formula)

(g) BC: u(0, t) = 0, u(π, t) = 0, IC: u(x, 0) =

−1, 0 ≤ x < π/2

1, π/2 ≤ x < π

(h) BC: ux(0, t) = 0, ux(π, t) = 0, IC: u(x, 0) =

−1, 0 ≤ x < π/2

1, π/2 ≤ x < π

7. Solve the initial boundary value problem

ut(x, t) = uxx(x, t), 0 < x < π, t > 0

u(0, t) = 0, u(π, t) = 0

u(x, 0) = x

8. Solve the initial boundary value problem

ut(x, t) = uxx(x, t), 0 < x < π, t > 0

ux(0, t) = 0, ux(π, t) = 0

u(x, 0) = x

9. Solve the initial boundary value problem

ut(x, t) = uxx(x, t), 0 < x < π, t > 0

u(0, t) = 0, ux(π, t) = 0

u(x, 0) = x
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10. Solve the initial boundary value problem

ut(x, t) = uxx(x, t)− 2ux(x, t), 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = ex sin(πx)

11. Solve the initial boundary value problem

ut(x, t) = 2(uxx(x, t)− 3u(x, t)), 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0

u(x, 0) = 2 sin(πx)− 3 sin(2πx)
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