
2 The Wave Equation

The initial value problem for the wave equation on the whole number line is

utt(x, t) = c2uxx(x, t), −∞ < x <∞, t > 0 (2.1)

u(x, 0) = f(x), −∞ < x <∞,
ut(x, 0) = g(x), −∞ < x <∞, .

It is a model for the small motions of many oscillating systems, e.g. the one dimensional
displacement of a vibrating guitar string. In higher dimensions it is called the acoustic
equation which models the propagation of sound waves through a medium. The sound
velocity is c.

The wave equation in the one dimensional case can be derived in many different ways. We
first give a simple derivation without to much detailed explanation. Then we present a
more detailed discussion based on masses and springs. In class we will only discuss the first
method and leave the lengthy discussion for you to read.

Derivation I: Newton’s Law for Elastic String

In this derivation we consider a very short piece of a string which can only move in the
vertical direction. We denote the vertical displacement at a point x and at time t by u(x, t).
We assume that the only forces acting on the string are the tensions at the left end and
pulling to the left and the tension at the right end pulling to the right. We denote this force
by T . The tension acts in a direction tangent to the string but we only consider vertical
forces so we need to consider the vertical components of the string at each end. To do this we
need to introduce the angle between the string and the horizontal line. If we call the vertical
forces due to tension F then Newton’s law states that F = ma where m is the mass and a
is the acceleration of the string. We assume that the string has length ∆x and a constant
density ρ so that the mass is m = ρ∆x. The acceleration is utt(x, t) so we have

F = ρ∆xutt(x, t).

Our basic assumption is that the displacement is so small that the angles θ1 and θ2 are small
enough that sin(θ1) ≈ tan(θ1) and sin(θ2) ≈ tan(θ2). Then using the fact from calculus that
the derivative is the slope of the tangent line and

In order to compute F we consider the diagram below and use the basic assumption to obtain

Tension = F = T sin(θ2)− T sin(θ1) ≈ T [tan(θ2)− tan(θ1)]

= T [ux(x+ ∆x, t)− ux(x, t)].

Therefore we have
ρ∆xutt(x, t) ≈ T [ux(x+ ∆x, t)− ux(x, t)]

so that

utt(x, t) ≈
T

ρ

[ux(x+ ∆x, t)− ux(x, t)]

∆x
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Finally we pass to the limit as ∆x tends to zero to obtain

utt(x, t) = c2uxx(x, t), c2 =
T

ρ
.

x

T

T

θ1

θ2

∆x

∆u

T sin (θ1)

T sin (θ2)

x + ∆x

u(x, t)

u(x + ∆x, t)

Mass and Springs

Derivation II: Newton’s Law for Collection of Masses and Springs Imagine an array
of little weights of mass m interconnected with springs of length h. Suppose also that the
springs have a stiffness of k.

Mass and Springs

Here u(x) measures the distance from the equilibrium of the mass at the spatial point x.
The forces exerted on the mass m at the location x+ h are:

FNewton = ma(t) = m
∂2u

∂t2
(x+ h, t)

and

FNewton = Fx+2h + Fx

= k[u(x+ 2h, t)− u(x+ h, t)] + k[u(x, t)− u(x+ h, t)].

Here we have used Hooke’s law for an elastic spring which states that FHooke = −kx where
x is the distance that the spring is stretched from equilibrium, FHooke is the restoring force
exerted by the spring and k is the ”spring constant.” So, if we imagine the spring starting
at position u(x+ 2h, t) which is stretched to the point u(x+ h, t) then we have

Fx+2h = −k[u(x+ h, t)− u(x+ 2h, t)] = k[u(x+ 2h, t)− u(x+ h, t)].

Similarly the Hooke’s force at x is

Fx = −k[u(x+ h, t)− u(x, t)] = k[u(x, t)− u(x+ h, t)].
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Therefore, according to Newton’s second law,

m
∂2u

∂t2
(x+ h, t) = k[u(x+ 2h, t)− 2u(x+ h, t) + u(x)].

If the array of weights consists of N weights spaced evenly over the length ` = Nh of total
mass M = Nm and with the total stiffness of the array K = k/N we can write this equation
as:

∂2u

∂t2
(x+ h, t) =

K`2

M

[u(x+ 2h, t)− 2u(x+ h, t) + u(x)]

h2
.

Here we are assuming that K, M and ` are constants which means that as N goes to infinity
and h goes to zero, the values of m and k vary in such a way that the expression

K`2

M
= c2

remains a constant. The constant c is the propagation speed in the particular media. Here

lim
h→0

[u(x+ 2h, t)− 2u(x+ h, t) + u(x)]

h2
=
∂2u

∂t2
(x, t).

Thus we end up with equation (2.1).

Let us explain why the above limit is correct. Suppose that f is a C4 function near a point
x. Then the Taylor formula from Calculus says that for h sufficiently small there exists a
number ξ1 ∈ [x, x+ h] so that

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 +

1

24
f (iv)(ξ1)h

4.

On the other hand we can also say that for h sufficiently small there exists a number ξ2 ∈
[x− h, x] so that

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 +

1

24
f (iv)(ξ2)h

4.

From these we can write

f ′′(x)
h2

2
= f(x+ h)− f(x)− f ′(x)h− 1

6
f ′′′(x)h3 − 1

24
f (iv)(ξ1)h

4

and

f ′′(x)
h2

2
= f(x− h)− f(x)− f ′(x)h+

1

6
f ′′′(x)h3 − 1

24
f (iv)(ξ1)h

4.

Adding these expressions and dividing by h2 we obtain

f ′′(x) =
[f(x+ h)− 2f(x) + f(x− h)]

h2
−
[

1

24
f (iv)(ξ1) +

1

24
f (iv)(ξ2)

]
h2.
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Note that as h goes to zero ξ1 and ξ2 converge to x so the term[
1

24
f (iv)(ξ1) +

1

24
f (iv)(ξ2)

]
is bounded. Passing to the limit as h goes to zero we see that the last term goes to zero and
we have

f ′′(x) = lim
h→0

[f(x+ h)− 2f(x) + f(x− h)]

h2
.

2.1 The D’Alembert Formula

We consider the initial value problem for the wave equation on the whole number line

utt(x, t) = c2uxx(x, t), −∞ < x <∞, t > 0 (2.2)

u(x, 0) = f(x), −∞ < x <∞,
ut(x, 0) = g(x), −∞ < x <∞, .

Notice that the PDE in (2.2) can be written as[
∂

∂t
+ c

∂

∂x

] [
∂

∂t
− c ∂

∂x

]
u(x, t) = 0.

Actually the order in which we write the two terms is not relevant so that solutions of either[
∂

∂t
+ c

∂

∂x

]
u(x, t) = 0, or

[
∂

∂t
− c ∂

∂x

]
u(x, t) = 0

are also solutions of (2.2). Each of these equations is first order linear and as we learned in
the first chapter of material for the course, the general solution of these equations can be
written respectively as

u(x, t) = F (x+ ct), and u(x, t) = G(x− ct),

where F and G are arbitrary functions.

Since the equation (2.2) is linear it is easy to see that for any sufficiently smooth functions
F and G the function

u(x, t) = F (x+ ct) +G(x− ct) (2.3)

solves the wave equation in (2.2). Namely, we see (by the chain rule)

ut(x, t) = F ′(x+ ct)(c) +G′(x− ct)(−c)

utt(x, t) = F ′′(x+ ct)(c2) +G′′(x− ct)(c2)

ux(x, t) = F ′(x+ ct) +G′(x− ct)

uxx(x, t) = F ′′(x+ ct) +G′′(x− ct)
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so

utt − c2uxx =
(
F ′′(x+ ct)(c2) +G′′(x− ct)(c2)

)
− c2 (F ′′(x+ ct) +G′′(x− ct)) = 0.

To find F and G so that (2.3), in addition, satisfies the initial conditions, we proceed as
follows: Setting t = 0 in (2.3) we have

u(x, 0) = F (x) +G(x) = f(x). (2.4)

Taking the derivative with respect to t of (2.3) and again setting t = 0 we obtain

ut(x, 0) = cF ′(x)− cG′(x) = g(x). (2.5)

Carrying out the integration with respect to x from any x0 to x in (2.6) and we obtain

F (x)−G(x) =
1

c

∫ x

x0

g(s) ds+K

where K is an arbitrary constant.

Thus we obtain a system of two equations in two unknowns for F and G:

F (x) +G(x) = f(x)

F (x)−G(x) =
1

c

∫ x

x0

g(s) ds+K

We can solve this linear system of equations using Cramer’s rule

F (x) =

∣∣∣∣∣∣
f(x) 1

1

c

∫ x

x0

g(s) ds+K −1

∣∣∣∣∣∣∣∣∣∣1 1
1 −1

∣∣∣∣ =
1

2
f(x) +

(
1

2c

∫ x

x0

g(s) ds+
K

2

)

and

G(x) =

∣∣∣∣∣∣
1 f(x)

1
1

c

∫ x

x0

g(s) ds+K

∣∣∣∣∣∣∣∣∣∣1 1
1 −1

∣∣∣∣ =
1

2
f(x)−

(
1

2c

∫ x

x0

g(s) ds+
K

2

)

Combining these results with (2.3) we obtain

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

(
1

2c

∫ x+ct

x0

g(s) ds+
K

2

)

−
(

1

2c

∫ x−ct

x0

g(s) ds+
K

2

)

=
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct

g(s) ds.
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We thus obtain the solution of the initial value problem (2.2) which is known as the D’Alembert
formula.

Theorem 2.1. If f ∈ C2(R) and g ∈ C1(R). Then there is a unique C2 solution of (2.2)
given by the D’Alembert formula.

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct

g(s) ds. (2.6)

Example 2.1. We consider the problem (2.1) with the initial conditions f(x) = sin(x) and
g(x) = 0. In this case the solution (2.6) becomes

u(x, t) =
1

2
(sin(x+ ct) + sin(x− ct)) = sin(x) cos(ct).

We can view the solution as dividing the initial shape sin(x) into two copies of
sin(x)

2
. As

time increases the single wave splits into two waves one of these travels to the left and one
travels to the right at a constant speed c.

Remark 2.1. More generally we have the following interpretation of Eq. (2.6). If we plot
the graph of y = f(x − ct) for any fixed t, we see that it is exactly the same as the graph
of y = f(x) but it is shifted a distance ct units to the right. Notice a given height f(x0) at
x = x0 gets moved ct units to the right in time t. Thus we say that f(x− ct) is a wave which
travels with the velocity c in the positive x direction. The expression f(x + ct), similarly,
represents a wave moving to the left with a constant velocity c. If a disturbance occurs at a
point x0 (i.e. a value f(x0)) then it it felt at the point x1 after a time

t =
(x1 − x0)

c
.

Thus we see that for the wave equation data (disturbances) is propagated (or travels) at a
finite rate of speed.

Example 2.2. We consider the problem (2.1) with c = 1 and the initial conditions f(x) = x2

and g(x) = 2x. In this case the solution (2.6) becomes

u(x, t) =
(x+ t)2 + (x− t)2 + (x+ t)2 − (x− t)2

2
= (x+ t)2.

Example 2.3. We consider the problem (2.1) with the initial conditions

f(x) = [H(x+ 1)−H(x− 1)], g(x) = 0.

In this case the solution (2.6) becomes

u(x, t) =
1

2

(
H(x− ct+ 1)−H(x− ct− 1) +H(x+ ct+ 1)−H(x+ ct− 1)

)
.
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Here H(x) is the Heaviside function

H(x) =

{
1, x ≥ 0

0, otherwise

so that f(x) represents a box with value 1 for −1 ≤ x ≤ 1 and 0 elsewhere.

In our numerical example we have set c = 2.

Solution Surface
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Example 2.4. Finally let us consider the problem (2.1) with the initial conditions

f(x) =


(x+ 1), −1 < x ≤ 0

(1− x), 0 < x < 1

0, otherwise

, g(x) = 0.

In this case the solution (2.6) becomes

u(x, t) =
1

2

(
f(x− ct) + f(x+ ct)

)
.
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In our numerical example we have set c = 2.
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Definition 2.1. For a function u(x, t) we define the energy at time t as the integral

e(t) ≡ 1

2

∫
R

[
u2

t (x, t) + c2u2
x(x, t)

]
dx (2.7)

provided the integral is finite.

Theorem 2.2 (Conservation of Energy Wave Equation). Suppose that f ∈ C2(R) and
g ∈ C1(R) with ∫

R
f ′(x)2 dx <∞, and

∫
R
g(x)2 dx <∞.

Let u(x, t) be the unique solution to the problem (2.1). Then

e(t) <∞ and
de

dt
(t) = 0 ∀t ∈ R

therefore e(t) is constant. In particular,

e(t) = e(0) =
1

2

∫
R

[
g(x)2 + c2f ′(x)2

]
dx.
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If we knew that
lim

x→∞
ux(x, t)ut(x, t) = 0 for every t

then we could have a simple proof of 2.2 as follows:

de(t)

dt
=

1

2

∫
R

(
2ututt + c22uxuxt

)
dx

=

∫
R
ututt dx+ c2

∫
R
uxuxt dx

=

∫
R
ututt dx+ c2

[
uxut

∣∣∣∣x=∞

x=−∞
−
∫

R
uxxut dx

]
=

∫
R
ut

(
utt − c2uxx

)
dx = 0.

After some discussion involving domain of dependence and range of influence we could make
this rigorous for initial data that vanish outside a bounded region. But we will take a
different and somewhat more lengthy approach. We will show that e(t) = e(0) directly using
the D’Alembert formula. To this end we must compute ut and ux from the D’Alembert
formula.

ut =
c

2
(f ′(x+ ct)− f ′(x− ct)) +

1

2
(g(x+ ct) + g(x− ct))

ux =
1

2
(f ′(x+ ct) + f ′(x− ct)) +

1

c2
(g(x+ ct)− g(x− ct)) ,

In the following, in order to simplify notation we will use

f ′+ = f ′(x+ ct), g+ = g(x+ ct), f ′− = f ′(x− ct), g− = g(x− ct).

Then we have

e(t) =
1

2

∫
(u2

t + c2u2
x) dx

=
1

2

∫ (
c

2
(f ′(x+ ct)− f ′(x− ct)) +

1

2
(g(x+ ct) + g(x− ct))

)2

dx

+
c2

2

∫ (
1

2
(f ′(x+ ct) + f ′(x− ct)) +

1

2c
(g(x+ ct)− g(x− ct))

)2

dx

=
1

8

∫ (
c2
(
f ′+ − f ′−

)2
+ 2c

(
f ′+ − f ′−

)
(g+ + g−) + (g+ + g−)2

)
dx

+
1

8

∫ (
c2
(
f ′+ + f ′−

)2
+ 2c

(
f ′+ + f ′−

)
(g+ − g−) + (g+ − g−)2

)
dx

=
c2

8

∫ ((
f ′+ − f ′−

)2
+
(
f ′+ + f ′−

)2)
dx

+
2c

8

∫ ((
f ′+ − f ′−

)
(g+ + g−) +

(
f ′+ + f ′−

)
(g+ − g−)

)
dx

+
1

8

∫ (
(g+ + g−)2 + (g+ + g−)2) dx
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=
c2

4

∫ (
(f ′(x+ ct))

2
+ (f ′(x− ct))2

)
dx

+
c

2

∫
((f ′(x+ ct)g(x+ ct))− (f ′(x− ct)g(x− ct))) dx

+
1

4

∫ (
(g(x+ ct))2 + (g(x− ct))2) dx

=
1

2

∫ (
g(x)2 + c2f ′(x)2

)
dx

=e(0)

where on the last step we have used the following simple results obtained by change of
variables in the integrals. The change of variables s = x+ ct gives∫

(f ′(x+ ct))
2
dx =

∫
f ′(s)2 ds,

∫
(g(x+ ct))2 dx =

∫
g(s)2 ds

and the change of variables s = x− ct gives∫
(f ′(x− ct))2

dx =

∫
f ′(s)2 ds,

∫
(g(x− ct))2 dx =

∫
g(s)2 ds.

If we would accept the general fact that energy is conserved then we can demonstrate an
important result which states that the problem is well posed: (1) a solution exists, (2) the
solution is unique, (3) the solution is a classical solution (it is smooth enough to satisfy the
equation).

Theorem 2.3 (Well Posedness). Suppose that f ∈ C2(R) and g ∈ C1(R) with∫
R
f ′(x)2 dx <∞, and

∫
R
g(x)2 dx <∞.

The the problem (2.1) has a unique solution which is a classical solution.

Proof. We know there is a solution given by the D’Alembert formula and assuming f ∈ C2(R)
and g ∈ C1(R) it is clear that this solution is classical. We only need to show that the solution
is unique. The way to do this is to use conservation of energy.

Let us assume that u and v are solutions of

utt(x, t) = c2uxx(x, t), −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞,
ut(x, 0) = g(x), −∞ < x <∞, .

Then w = u− v is a solution of

wtt(x, t) = c2wxx(x, t), −∞ < x <∞, t > 0

w(x, 0) = 0, −∞ < x <∞,
wt(x, 0) = 0, −∞ < x <∞, .
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Then due to conservation of energy we have

e(t) ≡ 1

2

∫
R

[
w2

t (x, t) + c2w2
x(x, t)

]
dx = e(0) =

1

2

∫
R

[
g(x)2 + c2f ′(x)2

]
dx = 0.

But this implies

wt(x, t) = 0, wx(x, t) = 0 for all x ∈ R, t > 0,

which means the total derivative dw = wt(x, t) dt + wx(x, t) dx = 0 and therefore w(x, t) is
a constant. But at t = 0 we have w(x, 0) = 0 so w(x, t) = 0 for all x and all t. Finally this
means u(x, t) = v(x, t).

2.2 Wave Equation on a Half Line

In this section we consider the initial-boundary value problem for the wave equation on
0 < x <∞. This is our first encounter, in this class, with a new idea. Since we are solving
the problem on the interval 0 < x <∞ it turns out we need to have some information about
the semi-infinite string at the point x = 0. This information is called a boundary condition.
For example, if the string is firmly fixed at height u(x, 0) = 0 we have Dirichlet boundary
condition. That is the case considered first here.

utt(x, t) = c2uxx(x, t), 0 < x <∞, t > 0 (2.8)

u(x, 0) = f(x), 0 < x <∞,
ut(x, 0) = g(x), 0 < x <∞,
u(0, t) = 0.

Let us imagine that f(x) and g(x) are zero for x < 0. Then we can write the odd extensions

of f and g denoted by f̃(x) and g̃(x) by

f̃(x) = f(x)− f(−x) =

{
f(x), x ≥ 0

−f(−x), x < 0
,

g̃(x) = g(x)− g(−x) =

{
g(x), x ≥ 0

−g(−x), x < 0
.

Next we replace the (2.8) by the following initial value problem on the whole line

ũtt(x, t) = c2ũxx(x, t), ξ ∈ R, t > 0 (2.9)

ũ(x, 0) = f̃(x), x ∈ R,
ũt(x, 0) = g̃(x), x ∈ R.

(2.10)
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Notice that the solution to this problem is automatically odd since the initial data are odd.
To see this look at the D’Alembert solution.

ũ(x, t) =
f̃(x+ ct) + f̃(x− ct)

2
+

1

2c

∫ x+ct

x−ct

g̃(s) ds.

implies that

ũ(−x, t) =
f̃(−x+ ct) + f̃(−x− ct)

2
+

1

2c

∫ −x+ct

−x−ct

g̃(s) ds

In the first term use the fact that f̃(−p) = −f̃(p) , for all p ∈ R which gives

f̃(−x+ ct) + f̃(−x− ct)
2

= − f̃(x− ct) + f̃(x+ ct)

2
.

In the second term use the change of variables s = −r (so that ds = −dr) and, for the limits,
we will have −r = s = −x− ct implies r = x+ ct and −r = s = −x+ ct implies r = x− ct
so we get

1

2c

∫ −x+ct

−x−ct

g̃(s) ds = − 1

2c

∫ x−ct

x+ct

g̃(−r) dr =
1

2c

∫ x−ct

x+ct

g̃(r) dr = − 1

2c

∫ x+ct

x−ct

g̃(r) dr.

We have shown that

ũ(−x, t) = − f̃(x− ct) + f̃(x+ ct)

2
− 1

2c

∫ x+ct

x−ct

g̃(r) dr = −ũ(x, t).

Therefore we conclude that ũ(x, t) = −ũ(−x, t) for all x and all t. So for x = 0 we have
ũ(0, t) = −ũ(0, t) which implies ũ(0, t) = 0 for all t.

Now for x > 0 and t > 0 we have (x+ ct) > 0 so that

f̃(x+ ct) = f(x+ ct)− f(−(x+ ct)) = f(x+ ct),

f̃(x− ct) = f(x− ct)− f(ct− x).

and
g̃(s) = g(s)− g(−s).

So for x > 0 and t > 0 we have

u(x, t) = ũ(x, t) =
f(x+ ct) + f(x− ct)− f(ct− x)

2
+

1

2c

∫ x+ct

x−ct

(g(s)− g(−s)) ds.

This formula can be simplified further by looking more carefully at the special cases (x−ct) >
0 and (x− ct) < 0 in the first quadrant of x-t space. Clearly for (x− ct) > 0 we have

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct

g(s) ds.

So we need only consider the case (x− ct) < 0.
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In this case we have f(x− ct) = 0 so

f(x+ ct) + f(x− ct)− f(ct− x)

2
=
f(x+ ct)− f(ct− x)

2
.

We also have

1

2c

∫ x+ct

x−ct

g(s) ds =
1

2c

∫ x+ct

0

g(s) ds− 1

2c

∫ 0

x−ct

g(−s) ds

=
1

2c

∫ x+ct

0

g(s) ds− 1

2c

∫ ct−x

0

g(s) ds

=
1

2c

∫ x+ct

ct−x

g(s) ds.

Finally we can write the solution as

u(x, t) =


f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct

g(s) ds, x > ct

f(x+ ct)− f(ct− x)

2
+

1

2c

∫ x+ct

ct−x

g(s) ds, x < ct

. (2.11)

Remark 2.2. 1. Equation (2.11) says that for x > ct the solution is exactly the same as
D’Alembert’s solution for an infinite wave, while for x− ct, the solution is modified as
a result of the wave reflecting from the boundary (notice also that the sign of the wave
is reflected, i.e. it becomes negative) (see Example 2.5 below).

2. The solution would, of course, change if we changed the boundary condition at zero.
For example we could impose a Neumann condition.

Example 2.5. We consider the problem (2.8) with the initial conditions

f(x) =

{
1 4 < x < 5

0 otherwise

and g(x) = 0. In this case the solution (2.11) becomes

u(x, t) =


1/2

{
1 4 < x+ t < 5

0 otherwise
+ 1/2

{
1 4 < x− t < 5

0 otherwise
t < x

1/2

{
1 4 < x+ t < 5

0 otherwise
− 1/2

{
1 4 < −x+ t < 5

0 otherwise
x < t

13
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2.3 Assignment 2

1. Use D’alemberts formula to solve

utt(x, t) = 9uxx(x, t), −∞ < x <∞ t > 0 (2.12)

u(x, 0) = 1, ut(x, 0) = 0

2. Use D’alemberts formula to solve

utt(x, t) = 4uxx(x, t), −∞ < x <∞ t > 0 (2.13)

u(x, 0) = 0, ut(x, 0) = 1

3. Use D’alemberts formula to solve

utt(x, t) = uxx(x, t), −∞ < x <∞ t > 0 (2.14)

u(x, 0) = sin(x), ut(x, 0) = cos(x)

4. Use D’alemberts formula to solve

utt(x, t) = uxx(x, t), −∞ < x <∞ t > 0 (2.15)

u(x, 0) = e−x2

, ut(x, 0) =
1

1 + x2

5. Use D’alemberts formula to solve

utt(x, t) = 4uxx(x, t), −∞ < x <∞ t > 0 (2.16)

u(x, 0) = 0, ut(x, 0) =

{
1, |x| < 1

0, |x| > 1

−1 1

x − ct = 1x − ct = −1x + ct = 1x + ct = −1

R1

R2 R4

R6

R3

R5

Hint: To do Problem 5 simply pick a point (x, t) in each region and compute the
integral

1

2c

∫ x+ct

x−ct

g(s) ds

For example, if (x, t) is in region R1 then x + ct < −1 which means that the upper
limit of integration is less than −1 so g(s) = 0 on [x− ct, x+ ct]. Therefore

u(x, t) =
1

2c

∫ x+ct

x−ct

g(s) ds = 0, ∀ (x, t) ∈ R1.
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6. Solve the semi-infinite string wave equation problem

utt(x, t) = uxx(x, t), 0 < x <∞ t > 0

u(0, t) = 0 t > 0

u(x, 0) = xe−x2

, ut(x, 0) = 0.

7. Consider the problem

utt(x, t) = 4uxx(x, t), 0 < x <∞ t > 0

u(x, 0) =

{
x, |x| ≤ 2

0, |x| > 2
,

ut(x, 0) =

{
1, |x| ≤ 1

0, |x| > 1

Find the energy e(t) at time t = 3.
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