First Order Equation Techniques

I. (RHS only contains
$$x$$
) $y' = f(x)$ \Rightarrow $y = \int f(x) dx$
II. (Separable) $f(y)y' = g(x)$ \Rightarrow $\int f(y) dy - \int g(x) dx = C$

Implicit and explicit:

- 1. If we can write the answer as $y = \varphi(x)$ then we have an explicit answer.
- 2. If we leave the answer in the form F(x, y) = C we have an implicit solution.

III. (First Order Linear)
$$y' + P(x)y = Q(x)$$
 Integrating Factor $\mu = e^{\int Pdx}$ and
Gen. Sol. $y = 1/\mu(x) \left[\int^x \mu(t)Q(t) dt + C \right]$
IV. (RHS Linear in x and y) $y' = f(ax + by + c)$ $v = ax + by + c \Rightarrow v' = a + f(v)$ is
separable.
V. (RHS only contains y/x) $y' = f(y/x)$ $v = y/x \Rightarrow xv' + v = f(v)$ is separable.
VI. (Bernoulli) $y' + P(x)y = Q(x)y^n, n \neq 0, 1$ $v = y^{1-n} \Rightarrow v' + (1-n)P(x)v = (1-n)Q(x)$
is First Order Linear.
VII. (Exact) $M(x, y) dx + N(x, y) dy = 0$ is exact if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. If exact then there
exists $F(x, y)$ so that $M = \frac{\partial F}{\partial x}, N = \frac{\partial F}{\partial y}$. Use these to find solution $F(x, y) = C$.
VIII. (Reduce to First Order) $F(x, y, y', y'') = 0$ can sometimes be reduced to first order:
(a) y missing: For $F(x, y', y'') = 0$ use $p = y', p' = y'' \Rightarrow F(x, p, p') = 0$
(b) x missing: For $F(y, y', y'') = 0$ use $p = \frac{dy}{dx}, y'' = \frac{dp}{dx} = \frac{dp}{dy} \frac{dy}{dx} = p\frac{dp}{dy} \Rightarrow F\left(y, p, p\frac{dp}{dy}\right) = 0$