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In this chapter, we will combine all the information on differentiation, integration and

vectors to study the calculus of vector functions defined on a set of points in R
2 or R3.
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13.1 Properties of a vector field: divergence and curl

Definition 13.1. A Vector field in R
3 is a function F that assigns a vector to each

point in its domain. A vector field with domain D in R
3 has the form

F(x, y, z) = M(x, y, z) î+N(x, y, z) ĵ + P (x, y, z) k̂ ,

where the scalar functions M,N,P are called the components of F. A continuous

vector field F has continuous components M,N,P . A differentiable vector field has

all the components M,N,P that have all the partial derivatives.

Example 13.1. Sketch the graph of the vector field F(x, y) = y î− x ĵ .

Solution: The vector field has component y along î and −x along ĵ. It is not easy to

draw the vector field: we consider F at various points.

F(3, 4) = 4 î− 3 ĵ, F(−1, 2) = 2 î+ ĵ F(−2,−2) = −2 î+ 2 ĵ .

x

y

F (3, 4)
F (−1, 2)

F (−2,−2)

In general, the vector fields are numerically represented. One of the most important fields of

application of vector fields is fluid dynamics. The vector field can be either irrotational or

rotational.
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x

y

IRROTATIONAL

x

y

ROTATIONAL

Divergence We define the divergence of a differentiable vector fieldV(x, y, z) = u(x, y, z) î+

v(x, y, z) ĵ + w(x, y, z) k̂ as

divV =
∂u

∂x
(x, y, z) +

∂v

∂y
(x, y, z) +

∂w

∂z
(x, y, z) .

Example 13.2. Find the divergence of each of the following vector fields:

a. F(x, y) = x2y î+ xy3 ĵ;

b. G(x, y, z) = x î+ y3z2 ĵ + xz3 k̂.

Solution:

a. divF =
∂

∂x
(x2y) +

∂

∂y
(xy3) = 2xy + 3xy2;

b. divG =
∂

∂x
(x) +

∂

∂y
(y3z2) +

∂

∂z
(xz3) = 1 + 3y2z2 + 3xz2 .

Applied example: Let’s consider a vector field V(x, y, z) representing the velocity field of

a fluid with density ρ. It can be shown that, by calling D = ρV the flux density of the fluid
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(measure of the ”mass flow” of the fluid), the following relation holds:

divD =
∂ρ

∂t
Continuity equation .

If divD = 0 the flow is incompressible.

Note: A useful operator for the definition of the divergence is the del operator:

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ =

〈

∂

∂x
,
∂

∂y
,
∂

∂z

〉

.

So we can define, given a scalar function f and a vector function F = u î+ v ĵ + w k̂:

- the gradient:

∇f =
∂f

∂x
î+

∂f

∂y
ĵ +

∂f

∂z
k̂

- the divergence:

∇ · F =

(

∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

)

· (u î+ v ĵ + w k̂) =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= divF .

Curl We now define the curl operator. The curl of a differentiable vector field V(x, y, z) =

u(x, y, z) î+ v(x, y, z) ĵ + w(x, y, z) k̂ is defined by

curlv =

(

∂w

∂y
− ∂v

∂z

)

î+

(

∂u

∂z
− ∂w

∂x

)

ĵ +

(

∂v

∂x
− ∂u

∂y

)

k̂ .

Note that

curlV = ∇×V =

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
u v w

∣

∣

∣

∣

∣

∣

∣

∣

.

A vector field such that curl V = 0 is said to be irrotational. The field curl V is also called

vorticity of the flow.

Example 13.3. Find the curl of each of the following vector fields:

a. F = x2yz î+ xy2z ĵ + xyz2 k̂;

b. G =
(

x cos(y)
)

î+ xy2 ĵ.

Solution:
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a.

curlF =

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
x2yz xy2z xyz2

∣

∣

∣

∣

∣

∣

∣

∣

=

[

∂

∂y

(

xyz2
)

− ∂

∂z

(

xy2z
)

]

î−
[

∂

∂y

(

xyz2
)

− ∂

∂z

(

x2yz
)

]

ĵ+

+

[

∂

∂y

(

xy2z
)

− ∂

∂z

(

x2yz
)

]

k̂ =
(

xz2 − xy2
)

î−
(

yz2 − x2y
)

ĵ +
(

y2z − x2z
)

k̂ .

b.

curlG =

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
x cos(y) xy2 0

∣

∣

∣

∣

∣

∣

∣

∣

=

[

0− ∂

∂z

(

xy2
)

]

î−
[

0− ∂

∂z
(x cos(y))

]

ĵ+

+

[

∂

∂y

(

xy2
)

− ∂

∂z
(x cos(y))

]

k̂ =
(

y2 + x sin(y)
)

k̂ .

The curl of a 2D motion is a vector perpendicular to the plane of the motion.

Laplacian operator Let f(x, y, z) define a function with continuous first and second par-

tial derivatives. Then, the laplacian of f is

∇2f = ∇ · ∇f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= fxx + fyy + fzz .

The equation ∇2f = 0 is called Laplace’s equation, and a function that satisfies such an

equation is a region D is said to be harmonic in D.

Example 13.4. Show that f(x, y) = ex cos(y) is harmonic.

Solution:
fx = ex cos(y) , fxx = ex cos(y) ,

fy = −ex sin(y) , fyy = −ex cos(y) .

∇2f = ex cos(y)− ex cos(y) = 0 → f is harmonic .
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13.2 Line integrals

A line integral is an integral whose integrand is evaluated at points along a curve in R
2 or in

R
3.

Definition 13.2 (Line integral). If f(x, y, z) is defined on the smooth curve C with

parametric equations x = x(t), y = y(t), z = z(t), then the line integral of f over C is

given by
∫

C

f(x, y, z) ds = lim
||∆s||→0

n
∑

k=1

f(x∗
k, y

∗
k, z

∗
k)∆sk ,

provided that the limits exist. If C is a closed curve, we sometimes indicate the line

integral of f around C by

∮

C

f ds.

x

y

z

(xk
i , y

k
i , z

k
i )

How to solve a line integral If the curve C can be represented as a function of the

parameter t, with components x(t), y(t), z(t) then

ds =

√

(x′(t)) 2 + (y′(t))2 + (z′(t))2 ,

so we can write the line integral in terms of t:
∫

C

f(x, y, z) ds =

∫ b

a

f (x(t), y(t), z(t))

√

(x′(t)) 2 + (y′(t))2 + (z′(t))2 dt .

For two-dimensional functions, we have
∫

C

f(x, y) ds =

∫ b

a

f (x(t), y(t))

√

(x′(t))2 + (y′(t))2 dt .
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Example 13.5. Evaluate the line integral

∫

C

x2z ds, where C is the helix x = cos(t), y =

2t, z = sin(t) for t ∈ [0, π].

Solution:

x′(t) = − sin(t), y′(t) = 2, z′(t) = cos(t)

⇒
∫

C

x2z ds =

∫ π

0

cos2(t) sin(t)
√

sin2(t) + 4 + cos2(t) dt =

∫ π

0

cos2(t) sin(t)
√
5 dt =

. . . u = cos(t) → du = − sin(t)dt → −du = sin(t)dt . . .

. . . t = 0 → u = cos(0) = 1 . . .

. . . t = π → u = cos(π) = −1 . . .

=

∫ −1

1

u2
√
5(−du) =

√
5

∫ 1

−1

u2 du =
√
5

[

u3

3

]1

−1

=
2

3

√
5 .

Integrals as the union of piecewise smooth curves The line integrals can be extended

to curves that are piecewise smooth, in the sense that are the union of a finite number of

smooth curves with only endpoints in common
∫

C

f(x, y, z) ds =

∫

C1

f(x, y, z) ds+ · · ·+
∫

Cn

f(x, y, z) ds ,

where C1, . . . , Cn are all subarcs of C.

Example 13.6. Evaluate

∫

C

xy ds, where C consists of the line segment C1 from (−3, 3)

to (0, 0), followed by the portion of the curve C2: 16y = x4 between (0, 0) and (2, 1).

x

y

C1

(−3, 3)

C2

(2, 1)
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Solution:

- The curve 1 can be parametrized as x = t, y = −t over the interval [−3, 0].

x′(t) = 1

y′(t) = −1
→ ds =

√

12 + (−1)2 dt =
√
2 dt .

∫

C1

xy ds =

∫ 0

−3

−t2
√
2 dt =

√
2

[

−t3

3

]0

−3

= −9
√
2 .

- The curve 2 can be parametrized as

x = t, y =
1

16
t4 → x′ = 1, y′ =

t3

4
t ∈ [0, 2] .

∫

C2

xy ds =

∫ 2

0

t
1

16
t4
√

1 +
t6

16
dt =

∫ 2

0

1

16
t5

√
16 + t6

4
dt =

. . . 16 + t6 = u → 6t5dt = du → t5dt =
du

6
. . .

. . . t = 0 → u = 16 . . .

. . . t = 2 → u = 80 . . .

=

∫ 80

16

1

16 · 4
√
u
du

6
=

1

16 · 4

[

u3/2

3/2

]80

16

=
1

242
(

803/2 − 163/2
)

.

∫

C

=

∫

C1

+

∫

C2

.

Theorem 13.1 (Properties of line integrals). Let f be a given scalar function defined on

a piecewise, smooth, orientable curve C. Then, for any constant k

- Constant multiple rule:
∫

C

kf ds = k

∫

C

f ds ;
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- Sum rule:
∫

C

(f2 + f2) ds =

∫

C

f1 ds+

∫

C

f2 ds ;

- Opposite direction rule:
∫

−C

f ds = −
∫

C

f ds ;

- Subdivision rule:
∫

C

f ds =

∫

C1

f ds+

∫

C2

f ds+ · · ·+
∫

Cn

f ds ,

where C is the union of smooth orientable subarcs C = C1∪C2∪ · · ·∪Cn with only

endpoints in common.

Line integrals with respect to x, y and z In the definition of the line integral, if we

replace ∆s with ∆x, we obtain the definition of the line integral

∫

C

f(x, y, z) dz. This line

integral can be evaluated as follows,

∫

C

f(x, y, z) dx =

∫ b

a

f
(

x(t), y(t), z(t)
)

x′(t) dt .

This definition also holds for dy and dz. By combining all the coordinate variables, we obtain

a line integral in the form

∫

C

[f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz] .

Example 13.7. Evaluate the line integral

∫

C

[y dx− z dy + x dz] where C is the curve

with parametric equations x = t2, y = e−t, z = et with 0 ≤ t ≤ 1 .
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Solution: Since x′(t) = 2t, y′(t) = −e−t, z′(t) = et, we have

∫

C

[y dx− z dy + x dz] =

∫ 1

0

[

e−t 2t dt− et(−e−tdt) + t2(et dt)
]

=

∫ 1

0

[

2t e−t + 1 + t2 et
]

dt =

=
[

−2e−t(t+ 1) + t+ et
(

t2 − 2t+ 2
)]1

0
= · · · = e− 4e−1 + 1 .

Line integrals of vector fields Let F(x, y, z) = u(x, y, z) î+v(x, y, z) ĵ+w(x, y, z) k̂ be a

vector field, and let C be a piecewise smooth orientable curve with parametric representation

R(t) = x(t) î+ y(t) ĵ + z(t) k̂ for a ≤ t ≤ b .

Using dR = dx î+ dy ĵ + dz k̂, we define the line integral of F along C by

∫

C

F · dR =

∫

C

(u dx+ v dy + w dz) =

∫

C

F(R(t)) ·R′(t) dt =

=

∫ b

a

[

u
(

x(t), y(t), z(t)
)dx

dt
+ v

(

x(t), y(t), z(t)
)dy

dt
+ w

(

x(t), y(t), z(t)
)dz

dt

]

dt .

Example 13.8. Evaluate

∫

C

F ·R, where F = (y2 − z2) î + (2yz) ĵ − x2 k̂ and C is the

curve defined parametrically by x = t2, y = 2t, z = t, with 0 ≤ t ≤ 1.

Solution: We rewrite F using the parameter t:

F(t) =
[

(2t)2 − (t)2
]

î+ [2 · (2t) · t] ĵ −
[

(

t2
)2
]

k̂ = 3t2 î+ 4t2 ĵ − t4 k̂ .

Moreover, because R(t) = t2 î+ 2t ĵ + t k̂, we have

dR = (2tdt) î+ (2dt) ĵ + (dt) k̂ ,

so

F · dR =
〈

3t2, 4t2,−4t4
〉

· 〈2t dt, 2 dt, dt〉 =
(

6t3 + 8t2 − t4
)

dt .

Thus,
∫

C

F · dR =

∫ 1

0

(

6t3 + 8t2 − t4
)

dt =

[

3

2
t4 +

8

3
t3 − 1

5
t5
]1

0

=
119

30
.
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Example 13.9 (Evaluating line integrals along different paths). Let F = xy2 î + x2y ĵ

and evaluate the line integral

∫

C

F · dR between the points (0, 0) and (2, 4) along the

following paths:

a. The line segment connecting the two points;

b. The parabolic arc y = x2 connecting the points.

x

y

2

a
b

(2, 4)

Solution:

a. x = t, y = 2t, with 0 ≤ t ≤ 2 .

R(t) = t î+ 2t ĵ dR = (dt) î+ (2 dt) ĵ .

F(t) = (t) · (2t)2 î+ (t)2 · (2t) ĵ = 4t3 î+ 2t3 ĵ .

⇒ F(t) · dR = 4t3 dt+ 4t3 dt = 8t3 dt .

Thus,
∫

C

F · dR =

∫ 2

0

8t3 dt =
[

2t4
]2

0
= 32 .

b. y = x2 → x = t ⇒ y = t2, with t ∈ [0, 2].

Thus,

R(t) = t î+ t2 ĵ → dR = (dt) î+ (2t dt) ĵ .



176 Chapter 13. Vector Analysis

F = xy2 î+ x2y ĵ = t5 î+ t4 ĵ .

F · dR = t5 dt+ 2t5 dt = 3t5 dt .
∫

C

F · dR =

∫ 2

0

3t5 dt =

[

1

2
t6
]2

0

= 32 .

The integral value in this case does not depend on the path. This is not generally true,

but when it is true, the line integral is said to be ”path independent”.

Applications: Mass and Work Consider a thin wire of the shape of a curve C, and let

ρ(x, y, z) be the density at each point P (x, y, z) of the wire. Then, the mass of the wire is

equal to

m =

∫

C

ρ(x, y, z) ds .

The center of mass of the wire is the point

x̄ =
1

m

∫

C

x ρ(x, y, z) ds , ȳ =
1

m

∫

C

y ρ(x, y, z) ds , z̄ =
1

m

∫

C

z ρ(x, y, z) ds .

Example 13.10. A wire has the shape x =
√
2 sin(t), y = cos(t), z = cos(t), for

0 ≤ t ≤ π . The wire has density ρ(x, y, z) = xyz. Find the mass.

Solution:

x′(t) =
√
2 cos(t) , y′(t) = − sin(t) , z′(t) = − sin(t) .
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m =

∫

C

ρ(x, y, z) dt =

∫

C

xyz
√

(x′)2 + (y′)2 + (z′)2 dt =

=

∫

C

√
2 sin(t) cos2(t)

√

2 cos2(t) + 2 sin2(t) dt

=

∫ π

0

√
2 sin(t) cos2(t)

√
2 dt = 2

∫ π

0

sin(t) cos2(t) dt =

. . . cos(t) = u → − sin(t) dt = du → sin(t) dt = −du . . .

. . . t = 0 → u = 1 t = π → u = −1 . . .

= 2

∫ −1

1

u2(−du) = 2

∫ 1

−1

u2 du = 2

[

u3

3

]1

−1

=
4

3
.

- The work: Let F be a continuous force field over a domainD. Then the workW performed

as an object moves along a smooth curve C in D is given by the integral

W =

∫

C

F ·T ds ,

where T is the unit tangent at each point on C. Remembering that T =
dR

ds
, we have

W =

∫

C

F · dR .

Example 13.11 (Problem 11, HW 13.1-13.4). Let F be the radial force F = x î + y ĵ .

Find the work done by this force along the parabola x = t, y = t2, with 0 ≤ t ≤ 1.

Solution: The position vector R is given by R = 〈t, t2〉. Then, R′ = 〈1, 2t〉.

F = 〈x, y〉 =
〈

t, t2
〉

→ F ·R′ = t+ 2t3 .

⇒ W =

∫ 1

0

(

t+ 2t3
)

dt =

[

t2

2
+

t4

2

]1

0

= 1 .

Example 13.12 (Problem 12, HW 13.1-13.4). Find the work done by the force field

F(x, y, z) = 3x î + 3y ĵ + 5k̂ on a particle that moves along the helix r(t) = 7 cos(t) î +

7 sin(t) ĵ + 2t k̂, for 0 ≤ t ≤ 2π.
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Solution:

r′(t) = 〈−7 sin(t), 7 cos(t), 2〉 F(t) = 〈21 cos(t), 21 sin(t), 5〉

r′ · F = −147 cos(t) sin(t) + 147 cos(t) sin(t) + 10 .

W =

∫ 2π

0

r′ · F dt =

∫ 2π

0

10 dt = [10 t]2π0 = 20 π .
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13.3 The fundamental theorem and path independence

Fundamental theorem for line integrals Let C be a piecewise smooth curve that is

parametrized by the vector function R(t) for a ≤ t ≤ b, and let F(t) be a vector field that is

continuous on C. If F is a scalar function such that F = ∇f , then
∫

C

F · dR = f(Q)− f(P ) ,

where Q = R(b) and P = R(a) are the endpoints of C.

Example 13.13. Evaluate the line integral

∫

C

F ·dR, where F = ∇ (ex sin(y)− xy − 2y)

and C is the path described byR(t) =
[

t3 sin
(π

2
t
)]

î−
[π

2
cos

(π

2
t+

π

2

)]

ĵ, for 0 ≤ t ≤ 1.

Solution: The hypotheses of the fundamental theorem are satisfied since f(x, y) =

ex sin(y)− xy − 2y has continuous partial derivatives. Endpoints:

• t = 0 → R(0) = 〈0, 0〉 f(0, 0) = 0 ,

• t = 1 → R(1) =
〈

1,
π

2

〉

f
(

1,
π

2

)

= e− 3π

2
.

Thus, using the fundamental theorem,

∫

C

F · dR = f(Q)− f(P ) = f
(

1,
π

2

)

− f(0, 0) =

(

e− 3π

2

)

− 0 = e− 3π

2
.

Conservative vector fields A vector field F is said to be conservative in a region D if

F = ∇f for some scalar function f in D. The function f is called a scalar potential of F

in D. That is,

F = ∇f , for (x, y) ∈ D ,

where F is a conservative vector field, and f is the scalar potential.

Example 13.14. Verify that the vector field F = 2xy î+x2 ĵ is conservative, with scalar

potential f = x2y.
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Solution: ∇f = 2xy î+ x2 ĵ = F ⇒ conservative.

Usually, the function f is not given, so we need a theorem to understand if a vector field is

conservative:

Theorem 13.2 (Cross-partial test for a conservative vector field in the plane). Consider

the vector field F(x, y) = u(x, y) î+ v(x, y) ĵ, where u and v have continuous first partials

in the open, simply connected region D in the plane. Then F(x, y) is a conservative in D

if and only if
∂u

∂y
=

∂v

∂x
, troughout D .

Example 13.15. Show that the vector field F = (ex sin(y)− y) î+ (ex cos(y)− x− 2) ĵ

is conservative and then find a scalar potential function f of F.

Solution:
∂u

∂y
= ex cos(y)− 1 ,

∂v

∂x
= ex cos(y)− 1 .

∂u

∂y
=

∂v

∂x
⇒ F is conservative. Now, since the field is conservative;

f(x, y) =

∫

u(x, y) dx =

∫

(ex sin(y)− y) dx = ex sin(y)− xy + C(y) .

The function f is now defined with a constant C(y). This function must also satisfy

fy(x, y) = v = ex cos(y)− x− 2

fy = ex cos(y)− x+
dC(y)

dy







⇒ dC(y)

dy
= −2 ,

C(y) =

∫

(−2) dy = −2y + C1 .

Thus:

f(x, y) = ex sin(y)− xy − 2y + C1 ,

where all numbers are allowed in C1.
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Theorem 13.3 (The curl criterion for a conservative vector field in R
3). Suppose the

vector field F and the curl (F) are continuous in the simply connected region D of R3.

Then F is conservative in D if and only if curl (F) = 0.

Example 13.16. Show that the vector field F = 〈20x3z + 2y2, 4xy, 5x4 + 3z2〉 is conser-
vative in R

3 and find a scalar potential function for F.

Solution:

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
20x3z + 2y2 4xy 5x4 + 3z2

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂ (5x4 + 3z2)

∂y
− ∂ (4xy)

∂z

)

î+

−
(

∂ (5x4 + 3z2)

∂x
− ∂ (20x3z + 2y2)

∂z

)

ĵ +

(

∂(4xy)

∂x
− ∂ (20x3z + 2y2)

∂y

)

k̂ =

= 0 î−
(

20x3 − 20x3
)

ĵ + (4y − 4y) k̂ = 〈0, 0, 0〉 .

Thus, F is conservative.

Independence on path The line integral

∫

C

F · dR is independent of path in a region

D if for any two points P and Q in D the line integral along every piecewise smooth curve

in D from P to Q has the same value.

Theorem 13.4 (Equivalent conditions for path independence). If F is a continuous vector

field on the open connected set D, then the following three conditions are either all true

or all false:

1. F is conservative on D; that is, F = ∇f for some functions defined on D;

2.

∮

C

F · dR = 0 for every piecewise closed curve C in D;

3.

∫

C

F · dR is independent of path within D.
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Example 13.17. Evaluate the line integral

∫

C

F · dR, where

F =
[(

2x− x2y
)

e−xy + tan−1(y)
]

î+

[

x

y2 + 1
− x3e−xy

]

ĵ ,

for each of the following curves:

a. C1 : the ellipse 9x2 + 4y2 = 36;

b. C2 : the curve with parametric equations

x = t2 cos(π t) , y = e−t sin(π t) , for 0 ≤ t ≤ 1 .

Solution: First, we verify if F is conservative:

∂v

∂x
=

1

y2 + 1
− 3x2e−xy + x3ye−xy

∂u

∂y
=

1

y2 + 1
− x2e−xy + (−x)(2x− x2y)e−xy =

1

y2 + 1
− 3x2e−xy + x3ye−xy .

∂u

∂y
=

∂v

∂x
→ F is conservative .

a. Since F is conservative and C is closed, then

∮

C

F · dR = 0;

b. The curve C2 starts from t = 0 → P (0, 0) and ends at t = 1 → Q(−1, 0). Since F

is conservative, then

∫

C

F · dR is path independent. Thus, to simplify the integral,

we can use another parametric curve connecting P and Q. We use the segment

PQ : x = −t , y = 0 , t ∈ [0, 1].

∫

C

F · dR =

∫ 1

0

F(R(t)) ·R′(t) dt =

=

∫ 1

0

[(

2(−t)− t2 · 0
)

− e0 + tan−1(0)
]

(−1) +

[ −t

0 + 1
− (−t)3

]

(0) dt =

=

∫ 1

0

2t dt = 1 .
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Example 13.18. (#19 HW 13.1-13.4) Consider the vector field

F = y sin(z) ı̂+ (x sin(z) + 2y) ̂+ (xy cos(z)) k̂.

Show that F is conservative and find the potential function f .

Then compute
∫

C

F · dr,

where C goes from (1, 1, 0) to (2, 1, π
2
).

Solution. To verify that F is conservative, compute

∇× F =

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

∂x ∂y ∂z
y sin z x sin z + 2y xy cos z

∣

∣

∣

∣

∣

∣

∣

.

This gives

∇× F = ı̂(x cos z − x cos z)− ̂(y cos z − y cos z) + k̂(sin z − sin z) = 0,

so F is conservative.

To find the potential f , integrate:

fx = y sin z ⇒ f =

∫

y sin z dx = xy sin z.

fy = x sin z + 2y ⇒ f =

∫

(x sin z + 2y) dy = xy sin z + y2.

fz = xy cos z ⇒ f =

∫

xy cos z dz = xy sin z.

Hence,

f(x, y, z) = xy sin z + y2.

Finally, the line integral is path independent:

∫

C

F · dr = f(2, 1, π
2
)− f(1, 1, 0) = [(2)(1) sin(π

2
) + 12]− [(1)(1) sin(0) + 12] = 2.
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13.4 Green’s theorem

Green’s theorem relates a line integral around a closed curve to a double integral over the

region contained by the curve. A Jordan curve is a closed curve that does not intersect

itself. A simply connected region D in the plane has the property that it is connected

and the interior of every Jordan curve C in D also lies in D.

Jordan curves Non–Jordan curves

C
D

Simply connected region

C

D

Not-simply connected region

Theorem 13.5 (Green’s theorem). Let D be a simply connected region that is bounded

by the positively oriented piecewise smooth Jordan curve C. Then if the vector field

F(x, y) = M(x, y) î+N(x, y) ĵ is continuously differentiable on D, we have

∮

C

(M dx+N dy) =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dA .

Example 13.19. Show that Green’s theorem is true for the line integral

∫

C

(−y dx+ x dy) ,

where C is the closed path in the figure.
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x

y

C1

C2

(−1, 0) (1, 0)

D
y =

√
1− x2

Solution: We first evaluate the line integral:

C1: x = t , y = 0 , with −1 ≤ t ≤ 1 → dx = dt , dy = 0 ;

C2: x = u , y =
√
1− u2 , with −1 ≤ u ≤ 1 → dx = du , dy = . . .

Better use the polar coordinates for C2:

x = cos(u) , y = sin(u) , with 0 ≤ u ≤ π

dx = − sin(u) du , dy = cos(u) du .
∮

C

(−y dx+ x dy) =

∫

C1

(−y dx+ x dy) +

∫

C2

(−y dx+ x dy) =

=

∫ 1

−1

0 · dt+ t · 0 +

∫ π

0

− sin(u)(− sin(u) du) + cos2(u) du =

=

∫ π

0

(

sin2(u) + cos2(u)
)

du =

∫ π

0

du = π .

Now, we evaluate

∫∫

D

(

∂(x)

∂x
− ∂(−y)

∂y

)

dA =

∫∫

D

2 dA = 2 · Area of D = 2
π (1)2

2
= π .

Example 13.20. A closed path is defined in the figure:
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x

y

C1 : y = x2

C2 : y = 1

C3 : x = 0

(0, 0)

(1, 1)(0, 1)

Find the work done on an object moving along C in the force field

F =
(

x+ xy2
)

î+ 2
(

x2y − y2 sin(y)
)

ĵ .

Solution: Remembering that W =

∮

C

F · dR, we can apply the Green’s theorem:

W =

∮

C

F · dR =

∫∫

D

[

∂

∂x

(

2x2y − 2y2 sin(y)
)

− ∂

∂y

(

x+ xy2
)

]

dA =

=

∫∫

D

(4xy − 2xy) dA
Type I
= 2

∫ 1

0

∫ 1

x2

xy dy dx = 2

∫ 1

0

x

[

x2

2

]1

x2

dx =

= 2

∫ 1

0

x

(

1

2
− x4

2

)

dx =

∫ 1

0

(

x− x5
)

dx =

[

x2

2
− x6

6

]1

0

=
1

2
− 1

6
=

1

3
.

Theorem 13.6 (Area as a line integral). Let D be a simply connected region in the

plane with piecewise smooth, positively oriented closed boundary C. Then, the area A

of region D is given by each of the following integrals

A =

∮

C

x dy = −
∮

C

y dx =
1

2

∮

C

[x dy − y dx] .

Example 13.21. Show that the ellipse
x2

a2
+

y2

b2
= 1 has A = π a b.

Solution: Parametrization: x = a cos(θ) , y = b sin(θ) , for θ ∈ [0, 2π]. Then we have



13.4. Green’s theorem 187

dx = −a sin(θ) dθ , dy = b cos(θ) dθ.

A =
1

2

∮

C

(−y dx+ x dy) =
1

2

∫ 2π

0

[−b sin(θ)(−a) sin(θ) + a cos(θ) b cos(θ)] dθ = π a b .

Green’s theorem for multiply connected regions To state Green’s theorem, we re-

quired simply connected regions. We can now extend it to multiply-connected regions.

C2

C1

R

C2

C1

R2

R1

Theorem 13.7 (Green’s theorem for doubly connected regions). Let R be a doubly

connected region (one hole) in the plane, with outer boundary C, oriented counter-

clockwise, and boundary C2, the hole oriented clockwise. If the boundary curves and

F(x, y) = M(x, y) î+N(x, y) ĵ satisfy the hypotheses of Green’s theorem, then

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dA =

∮

C1

(M dx+N dy) +

∮

C

(M dx+N dy) .

Example 13.22. Show that

∮

C

−y dx+ x dy

x2 + y2
= 2π, where C is any piecewise smooth

Jordan curve enclosing the origin (0, 0) .

Solution: LetM(x, y) =
−y

x2 + y2
andN(x, y) =

x

x2 + y2
→ ∂N(x, y)

∂x
=

∂M(x, y)

∂y
=

y2 − x2

(x2 + y2)2
. We consider a generic curve C and an inner circle oriented clockwise.
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x

y

C1
C

R

Since
∂N

∂x
=

∂M

∂y
on R, we have

∮

C

−y dx+ x dy

x2 + y2
+

∮

C1

−y dx+ x dy

x2 + y2
=

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dA = 0 .

Therefore
∮

C

−y dx+ x dy

x2 + y2
= −

∮

C1

−y dx+ x dy

x2 + y2
= +

∮

−C1

−y dx+ x dy

x2 + y2
.

We are interested in the line −C1 since it is counterclockwise and we can apply the polar

coordinates:
∮

−C1

−y dx+ x dy

x2 + y2
=

∫ 2π

0

−r sin(θ)(−r sin(θ) dθ) + r cos(θ)(r cos(θ) dθ)

r2
=

∫ 2π

0

r2

r2
dθ = 2 π .

Alternate forms for Green’s theorem Let D be a simply connected region with a

positively oriented boundary C. Then if the vector field F = M î + N ĵ is continuously

differentiable on D, we have

• Tangential component of F:

∮

C

F · dR =

∮

(M dx+N dy) =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dA =

∫∫

D

(

curl F · k̂
)

dA ;
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• Normal component of F:

∮

C

F ·N ds =

∫∫

D

(

∂M

∂x
+

∂N

∂y

)

dA =

∫∫

D

div F dA .

Normal derivatives The normal derivative of f , denoted by
∂f

∂n
, is the directional deriva-

tive of f in the direction pointing to the exterior of the domain of f . In other words,

∂f

∂n
= ∇f ·N ,

where N is the unit normal vector.

Example 13.23 (Green’s formula for the integral of the Laplacian). Suppose f is a scalar

function with continuous first and second partial derivatives in the simply connected

region D. If the piecewise smooth, positively oriented closed curve C bounds D, show

that
∫∫

D

∇2f dx dy =

∮

C

∂f

∂n
ds ,

where ∇2f = fxx + fyy and
∂f

∂n
= ∇f ·N.

Solution: Let u = −∂f

∂y
and v =

∂f

∂x
.

∫∫

D

∇2f dx dy =

∫∫

D

(

∂v

∂x
− ∂u

∂y

)

dx dy
Green
=

∮

C

(u dx+ v dy) =

∮

C

(

u
dx

ds
+ v

dy

ds

)

ds =

=

∮

C

(

−fy
dx

ds
+ fx

dy

ds

)

ds =

∮

C

∇f ·
(

dy

ds
î− dx

ds
ĵ

)

ds =

=

∮

C

∇f ·N ds =

∮

C

∂f

∂n
ds .

Because N =

〈

dy

ds
,−dx

ds

〉

by definition.
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across S is given by the surface integral

Flux =

∫∫

S

F ·N dS .

N

F

In general, if we consider the surface S described as z = f(x, y), then we can define

G(x, y, z) = z − f(x, y). The upward normal (unit) to S is

N =
∇G

||∇G|| ⇒ F ·N dS = F ·
( ∇G

||∇G||

)

√

f 2
x + f 2

y + 1 dA .

Thus, since ||∇G|| =
√

f 2
x + f 2

y + 1 we have

- Upward normal:

∫∫

S

F ·N =

∫∫

R

R(x, y, f(x, y)) · 〈−fx,−fy, 1〉 dA ;

- Downward normal:
∫∫

S

F ·N =

∫∫

R

R(x, y, f(x, y)) · 〈fx, fy,−1〉 dA .

Example 13.26. Compute the flux integral

∫∫

S

F ·N dS ,

where F = xy î + z ĵ + (x + y) k̂, and S is the triangular surface cut off from the plane

x+ y + z = 1. Assume N is the upward unit normal.
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1− 2x+ x2 = 1− x2 − 2y2

2x2 − 2x+ 2y2 = 0
(

x2 − x+
1

4

)

+ y2 =
1

4
(

x− 1

2

)2

+ y2 =

(

1

2

)2

→ x2 − x+ y2 = 0

So we have a circle, with center c

(

1

2
, 0

)

and radius
1

2
.

x

y

1/2

θ ∈
[

−π

2
,
π

2

]

. Plug into x2 − x+ y2 = 0:

r2 − r cos(θ) = 0

r(r − cos(θ)) = 0
→ r = 0 and r = cos(θ) ⇒ r ∈ [0, cos(θ)]

∮

C

F · dR =

∫ π/2

−π/2

∫ cos(θ)

0

−(1 + r sin(θ))r dr dθ = −
∫ π/2

−π/2

[

r2

2
+

r3 sin(θ)

3

]cos(θ)

0

dθ =

= −
∫ π/2

−π/2

[

cos2(θ)

2
+

cos3(θ) sin(θ)

3

]

dθ =

∫ π/2

−π/2

[

1 + cos(2θ)

4
+

cos3(θ) sin(θ)

3

]

dθ =

= −
[

1

4
θ +

sin(2θ)

8
+

cos4(θ)

12

]π/2

−π/2

= −π

4
.

Example 13.29 (Maxwell’s current density equation). In physics, we have that if I is
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the current crossing a surface S bounded by a closed curve C, then:

∮

C

H · dR = I and

∫∫

S

J ·N dS = I ,

where H is the magnetic intensity and J is the electric current density. Use this informa-

tion to derive Maxwell’s current density equation curl H = J.

Solution: By Stoke’s theorem, we have

∮

C

H · dR =

∫∫

S

(curl H ·N) dS .

Since
∮

C

H · dR =

∫∫

S

J ·N dS ⇒
∫∫

S

curl H ·N dS =

∫∫

S

J ·N dS

∫∫

S

(curl H− J) ·N dS = 0 → curl H− J = 0 → curl H = J .

Example 13.30. Given F(x, y, z) = 〈z + cos(x), x+ y2, y + ez〉, find
∮

C

F · dR, where C

is the intersection of the sphere x2 + y2 + z2 = 4, and the cone z =
√

x2 + y2.

Solution: For the Stoke’s theorem,

∮

C

F · dR =

∫∫

C

curl F ·N dS.

- First, we compute the curve C:

{

x2 + y2 + z2 = 4

z =
√

x2 + y2
→

x2 + y2 + (
√

x2 + y2)2 = 4

2x2 + 2y2 = 4

x2 + y2 = 2 Circle of radius
√
2

- Then, we evaluate curl F:

curl F =

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
z + cos(x) x+ y2 y + ez

∣

∣

∣

∣

∣

∣

∣

∣

= î(1− 0)− ĵ(0− 1) + k̂(1− 0) = 〈1, 1, 1〉 .
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- We note that a normal to the circle of radius
√
2 is N = 〈0, 0, 1〉.

Thus, the integral can be evaluated as

∮

C

F · dR =

∫∫

S
(Circle)

〈1, 1, 1〉 · 〈0, 0, 1〉 dS =

∫ 2π

0

∫ 2π

0

(1− r) dr dθ =

∫ 2π

0

[

r2

2

]

√
2

0

dθ = 2π .
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13.7 Divergence theorem and applications

Theorem 13.9 (Divergence theorem). Let S be a smooth, orientable surface that encloses

a solid region R in R
3. If F is a continuous vector field whose components have continuous

partial derivatives, in an open set containing R, then

∫∫

S

F ·N dS =

∫∫∫

R

div F dV ,

where N is the unit outward normal field for the surface S.

Example 13.31. Evaluate

∫∫

S

F · N dS, where F = x2 î + xy ĵ + x3y3 k̂ and S is the

surface of the tetrahedron bounded by the plane x+ y+ z = 1 and the coordinate planes.

x

y

z

Solution: First, we evaluate div F:

div F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 2x+ x+ 0 = 3x .

Thus
∫∫

S

F ·N dS =

∫∫∫

R

3x dV ,

where R is the tetrahedron volume.

In z-direction:
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• Upper bound: Plane x+ y + z = 1 → z = 1− x− y;

• Lower bound: xy-plane → z = 0.

∫∫∫

V

3x dV =

∫∫

A

∫ 1−x−y

0

3x dz dA ,

where A is the projection of the tetrahedron on the xy-plane (triangle).

x

y

y = 1− x

1

{

z = 1− x− y

z = 0
→

1− x− y = 0

y = 1− x

Type I

x ∈ [0, 1] ,

y ∈ [0, 1− x] .
∫∫

A

∫ 1−x−y

0

3x dz dA =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

3x dz dy dx =

∫ 1

0

3x

∫ 1−x

0

[

z
]1−x−y

0
dy dx =

=

∫ 1

0

3x

∫ 1−x

0

(1− x− y) dy dx =

∫ 1

0

3x

[

y − xy − y2

2

]1−x

0

dx =

=

∫ 1

0

3x

(

1− x− x+ x2 − (1− x)2

2

)

dx =

=

∫ 1

0

3x

(

1− 2x+ x2 − 1− 2x+ x2

2

)

dx = 3

∫ 1

0

(

1

2
x− x2 +

1

2
x3

)

dx =

=
3

2

[

x2

2
− 2x3

3
+

x4

4

]1

0

=
3

2

(

1

2
− 2

3
+

1

4

)

=
3

2

6− 8 + 3

12
=

1

8
.

Example 13.32. Let F = 2x î−3y ĵ+5z k̂, and let S be the hemisphere z =
√

9− x2 − y2
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Solution. Divergence theorem:

∫∫

S

F ·N dS =

∫∫∫

V

∇ · F dV.

Compute the divergence:

∇ · F =
∂

∂x
(x3/3) +

∂

∂y
(z) +

∂

∂z
(y2z) = x2 + 0 + y2 = x2 + y2.

Region V : z ∈ [0, 1− x2 − y2], with bounds in the xy plane given by the intersection:

{

z = 1− x2 − y2

z = 0
⇒ x2 + y2 = 1 (circle of radius = 1)

Use cylindrical coordinates x = r cos θ, y = r sin θ, z = z, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π: In

cylindrical, x2 + y2 = r2 and dV = r dz dr dθ. Hence

∫∫∫

V

(x2 + y2) dV =

∫ 2π

0

∫ 1

0

∫ 1−r2

0

r2 r dz dr dθ =

∫ 2π

0

∫ 1

0

r3(1− r2) dr dθ.

Compute:

∫ 2π

0

dθ = 2π,

∫ 1

0

r3(1− r2) dr =

∫ 1

0

(r3 − r5) dr =
1

4
− 1

6
=

1

12
.

Therefore
∫∫

S

F ·N dS =

∫∫∫

V

(x2 + y2) dV = 2π · 1

12
=

π

6
.


