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In this chapter, we will combine all the information on differentiation, integration and
vectors to study the calculus of vector functions defined on a set of points in R? or R3.
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13.1 Properties of a vector field: divergence and curl

Definition 13.1. A Vector field in R? is a function F that assigns a vector to each
point in its domain. A vector field with domain D in R? has the form

F(z,y,z2) :M(x,y,z)%%—N(x,y,z)j+P(x,y,z)l%,

where the scalar functions M, N, P are called the components of F. A continuous
vector field F has continuous components M, N, P. A differentiable vector field has
all the components M, N, P that have all the partial derivatives.

Example 13.1. Sketch the graph of the vector field F(z,y) = yi —xj .

Solution: The vector field has component y along i and —x along j It is not easy to
draw the vector field: we consider F' at various points.

F(3,4)=41—37, F(-1,2)=2i4+; F(-2,-2)=—-2i1+27.

Y

A

F(—1,2)

/

F(3,4)

In general, the vector fields are numerically represented. One of the most important fields of
application of vector fields is fluid dynamics. The vector field can be either irrotational or
rotational.
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Divergence We define the divergence of a differentiable vector field V (z, v, 2) = u(z,y, z) i+
v(z,y,2) j + w(z,y, 2) k as

. ou ov ow
divV = £<"E,y,2) + a—y(%yaz) + 5($,y7 Z) :

Example 13.2. Find the divergence of each of the following vector fields:

a. F(z,y) = 2%yi + 2y® J;

b. G(z,y,2) =z1+ 1?22 ] + x2° k.
Solution:

a. divF = i(:1:2y) + 2(alcyg’) = 22y + 3y

ox oy
: _ 8 a 3,2 a 3\ — 2.2 2
b. dlvG—ax(x)+ay(yz )+8Z(xz)—1—i—3yz + 3z2%.

Applied example: Let’s consider a vector field V(z,y, z) representing the velocity field of
a fluid with density p. It can be shown that, by calling D = pV the flux density of the fluid
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(measure of the "mass flow” of the fluid), the following relation holds:

0
divD = 2 Continuity equation .

ot
If divD = 0 the flow is incompressible.

Note: A useful operator for the definition of the divergence is the del operator:
d. 0~ 0 - g o0 0
V=—i4+—j+—k=(—,—,— ).
2T y‘7+ <8x’8y’8z>

So we can define, given a scalar function f and a vector function F = ui + v j 4+ w k:

- the gradient:

_of. 9f- of
Vf—ax2+ayj+azk
- the divergence:
O~ 0~ 0 - A N A ou Ov Ow .
V-F_<a—x1 8_y +&k>-(uz+vj+wk)—%+a—y+$—dlvF.

Curl We now define the curl operator. The curl of a differentiable vector field V(z,y, z) =
w(z,y,2) 1+ v(z,y,2) j +w(z,y, z) k is defined by

et (P05 (0 ow\ o o,
v = oy 0z 8. or)’ or Oy '

Note that o
VR B +
o o0 0
1V = V=|— — —|.
cur V x or 9y 0:
u v w

A vector field such that curl V = 0 is said to be irrotational. The field curl V is also called
vorticity of the flow.

Example 13.3. Find the curl of each of the following vector fields:

a. F=a2yzi+ay’z ] +ay22k;

b. G = (zcos(y)) P4 ay? .

Solution:
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i j k
I T e T B I IR
curl F = or oy 7% | = [ay (xyz) 55 (:Uy z)] 7 L?y (myz) 5 (x yz) 7+

?yz xylz ay?

2 oy 0 o D R (N S B T 2, 2.\ ]
+_8y(9€yz) 8Z(xyz)}k—(xz xy)z (yz :J:y)j—i—(yz :L'z)k;.
b.
i 7k
B 0 o 90| N N Pl 5
curl G = % 9y 97 {0 - % (zy )} i [0 3 (xcos(y))} J+
zeos(y) xy® 0O
+ 2 (xyz) _9 (x cos(y)) k= (y2 + xsin(y)) k
| Oy 0z '

The curl of a 2D motion is a vector perpendicular to the plane of the motion.

Laplacian operator Let f(x,y, z) define a function with continuous first and second par-
tial derivatives. Then, the laplacian of f is
*f 0 f

The equation V2?f = 0 is called Laplace’s equation, and a function that satisfies such an
equation is a region D is said to be harmonic in D.

Example 13.4. Show that f(z,y) = e” cos(y) is harmonic.

Solution:
fa: =e COS(y) ) f;tx =e COS(?J) )

fy = —€"sin(y), fyy = —€"cos(y).

V2f = e” cos(y) — e“cos(y) =0 —  f is harmonic.
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13.2 Line integrals

A line integral is an integral whose integrand is evaluated at points along a curve in R? or in
R3.

Definition 13.2 (Line integral). If f(z,y,z2) is defined on the smooth curve C' with
parametric equations x = x(t), y = y(t), z = z(t), then the line integral of f over C' is
given by

/ Py, 2) ds = Tim S F(aui 5 Ase
C k=1

[|As||—0

provided that the limits exist. If C' is a closed curve, we sometimes indicate the line

integral of f around C' by ?{fds.
c

(f, k', 2f)
\‘/a\y’\w
/\ y

T

How to solve a line integral If the curve C can be represented as a function of the
parameter ¢, with components x(t), y(t), z(t) then

ds = /@ )2+ O + (1),

so we can write the line integral in terms of ¢:

/f(l’,yy?«) ds =/ S (), y(t), (1)) \/(!Jf?’(lﬁ))2 + (Y1) + (2(1)"dt.

For two-dimensional functions, we have

/f(w,y) ds:/ S (a(t), y(t)) \/(w’(t))2+(y’(t))2dt-
C
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Example 13.5. Evaluate the line integral /a:Qz ds, where C'is the helix z = cos(t),y =
c
2t, z = sin(t) for ¢t € [0, 7.

Solution:
Z'(t) = —sin(t), y'(t) =2, 2'(t) = cos(t)

= [ 2*2ds = /7r cos?(t) sin(t)\/sinz(t) + 4+ cos?(t) dt = /7r cos?(t) sin(t)V5 dt =
0 0
c
u = cos(t) = du = —sin(t)dt — —du = sin(t)dt
t=0—>u=cos(0) =1
t=m— u=cos(m) =-1
3

_ / VB (—du) = VB / 2 du: V5 [%] -2

Integrals as the union of piecewise smooth curves The line integrals can be extended
to curves that are piecewise smooth, in the sense that are the union of a finite number of
smooth curves with only endpoints in common

f(l’,y,Z)dS: f([L',y,Z)dS—F—F f(l',y,Z)dS,
[ /

where C1, ..., C, are all subarcs of C.

Example 13.6. Evaluate / xy ds, where C' consists of the line segment C from (—3, 3)

C
to (0,0), followed by the portion of the curve Cy: 16y = x* between (0,0) and (2, 1).

(_3a 3)

Ch
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Solution:

- The curve 1 can be parametrized as @ = t, y = —t over the interval [—3,0].

;C:((;) z 1_1 —  ds= /124 (—1)2dt = V2dt.

/xyds:/:—tz\/ﬁdt:ﬂ{—grgz—%@.

C

- The curve 2 can be parametrized as

1, ¢
r=t y=—t — =1, y’:Z tel0,2].

16
2 6 2
1 ¢ 1, VI6 110
ds= | t—th/1+ at= [ Y20 4
/xy s /0 16 16 /0 16 4

Cy

d
164+ =u — 66°dt=du — t5dt:%

80 q du 1 [u321* 1
-  u— = —— | ——| = _—(80%% —16%/?) .
/16 16-4ﬂ6 16-4[3/2] 242( )

J-J+/

C Cy Ca

Theorem 13.1 (Properties of line integrals). Let f be a given scalar function defined on
a piecewise, smooth, orientable curve C'. Then, for any constant k

/kdeZkC/fds;

C

- Constant multiple rule:
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C/(f2+f2)dszc/f1d8+c/f2d5;
_{fds:—c/fds;

C/fdszc[fds+0[fds+---+0[fds,

where C'is the union of smooth orientable subarcs C' = C;UCyU---UC,, with only

- Sum rule:

- Opposite direction rule:

- Subdivision rule:

endpoints in common.

Line integrals with respect to =,y and z In the definition of the line integral, if we

replace As with Az, we obtain the definition of the line integral / f(z,y,z)dz. This line
c
integral can be evaluated as follows,
b
[ fapzydn = [ s, #0)0) dr
C a

This definition also holds for dy and dz. By combining all the coordinate variables, we obtain
a line integral in the form

/ [f(z,y,2)dx + g(z,y, z) dy + h(z,y, z) dz] .
C

Example 13.7. Evaluate the line integral / lydx — zdy + x dz] where C' is the curve
c

with parametric equations x =2, y = e, z =e with 0 <t < 1.
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Solution: Since /(t) = 2t, y/(t) = —e™*, 2/(t) = €', we have

1 1
/[ydx—zdy+xdz]:/ [e7"2tdt — €' (—e "dt) + t*(e" dt)] :/ [2te + 1+ 2] dt =
J 0 0

= [ 2t (t+ 1) +tre (P —2+2)], = =e—de !t +1.

Line integrals of vector fields Let F(z,y, 2) = u(z,y, 2) i+v(z,y, 2) j +w(z, y, 2) k be a
vector field, and let C' be a piecewise smooth orientable curve with parametric representation

R(t) =x(t)i+yt)j+2(t)k  for a<t<b.

Using dR = dxi + dy j + dz /;:, we define the line integral of F along C' by

/F-dR:/(udx+vdy+wdz):/F(R(t))-R’(t)dt:

dx dy dz

:/ [“(f”(t)’y(t)vz(t))g+U(1’(t)7y(t),2(t))%+w(x(t),y(t),z(t))% dt

Example 13.8. Evaluate /F ‘R, where F = (2 — 22) i + (2y2) ] — 2%k and C is the

c
curve defined parametrically by x = 2, y = 2t, z = ¢, with 0 < ¢t < 1.

Solution: We rewrite F using the parameter ¢:

F(t)=[20)2 - (t)}] i+ [2-(2t) - 1] j — [(ﬂ)ﬂ k=3t%14+425 —t* k.
Moreover, because R(t) = 27 4 2t j + t k, we have
dR = (2tdt) i+ (2dt) j + (dt) &k,
SO
F - dR = (3t°, 4%, —4t*) - (2t dt,2dt, dt) = (6t° + 8* — t*) dt.

Thus,
! 3 8 1.1 119
F-dR = 662+ 82 —tY) dt = |=t* + -3 — 1P| = —.
/ /0( " ) {2 HE 5}0 30
C
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c
following paths:
a. The line segment connecting the two points;

2

b. The parabolic arc y = z* connecting the points.

(2,4)

8

Solution:

a. xr=1t,y=2t, with0 <t <2,

F(t) = (
=F(t)-dR = 4> dt + 4> dt = 8> dt .
Thus,

2

/F-dR:/ 8t dt = [2t1]7 = 32.
0

c

b.y=2> — z=t = y=t* withte€]0,2].
Thus,

~

R(t) =ti+42t) dR = (dt)i+ (2dt) 7.

£y - (20204 (8)2- (2t) ) =431+ 263 5 .

R(t)=ti+t*] — dR=(dt)i+ (2tdt)].

Example 13.9 (Evaluating line integrals along different paths). Let F = zy? i+ 22y
and evaluate the line integral / F - dR between the points (0,0) and (2,4) along the
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~

F:my2%+x2yj:t5%+t4].
F-dR =tdt+2t°dt = 3t°dt.

2 1 2
/F-dR:/ 3t5dt:{—t6} =32.
C 0 2 0

The integral value in this case does not depend on the path. This is not generally true,

but when it is true, the line integral is said to be ”path independent”.

Applications: Mass and Work Consider a thin wire of the shape of a curve C', and let
p(x,y, z) be the density at each point P(x,y, z) of the wire. Then, the mass of the wire is
equal to

mz/p(fc,yyz)d&
C

The center of mass of the wire is the point

Kl

1 1 1
—/ZCp(ZU,y,Z)dS, y_/yp(xayaz)dsa Z_/Zp(xayaz)ds'
m m m
C C C

Example 13.10. A wire has the shape z = /2 sin(t), y = cos(t), z = cos(t), for
0 <t < . The wire has density p(z,y, z) = zyz. Find the mass.

Solution:

2 (t) =V2cos(t),  y(t)=—sint), 2(t)=—sin(t).
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m= [ ol 2 dt = [y WP =

= / V2 sin(t) cos2(t)\/2 cos?(t) + 2sin®(t) dt

= /7r V2 sin(t) cos?(t) V2dt = 2 /7r sin(t) cos?(t) dt =

cos(t)=u — —sin(t)dt =du — sin(t)dt = —du
t=0—-u=1 t=m—=u=-—1

1 1 371
4
= / u2(—du):2/ u2du:2[u—} =—.
1 —1 3 1 3

- The work: Let F be a continuous force field over a domain D. Then the work W performed

as an object moves along a smooth curve C' in D is given by the integral

W:/F-Tds,
c

dR
where T is the unit tangent at each point on C'. Remembering that T = —, we have

ds
W:/F-dR.
C

Example 13.11 (Problem 11, HW 13.1-13.4). Let F be the radial force F = 1 + 3] .
Find the work done by this force along the parabola v =t, y = t2, with 0 < ¢t < 1.

Solution: The position vector R is given by R = (¢,#?). Then, R’ = (1, 2t).

F=(z,y)=(1t") — F-R=t+2"

=1.

2 4!
9 A

1
= W:/(Hmﬂﬁzk+—
0

0

Example 13.12 (Problem 12, HW 13.1-13.4). Find the work done by the force field
F(z,y,2) = 3z1+ 3yj + bk on a particle that moves along the helix r(t) = 7 cos(t) +
7sin(t)j' +2tk, for 0 <t < 2m.
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Solution:
r'(t) = (—Tsin(t), 7 cos(t), 2) F(t) = (21 cos(t), 21 sin(t), 5)

r' - F = —147 cos(t) sin(t) + 147 cos(t) sin(¢) + 10.

2 2
W:/ r’-th:/ 10dt = [10¢]7" =20 7.
0 0
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13.3 The fundamental theorem and path independence

Fundamental theorem for line integrals Let C be a piecewise smooth curve that is
parametrized by the vector function R(t) for a <t < b, and let F(¢) be a vector field that is
continuous on C'. If F is a scalar function such that F = V f, then

/F-dsz(Q)—f(P),

C

where Q = R(b) and P = R(a) are the endpoints of C.

Example 13.13. Evaluate the line integral /F -dR, where F = V (e”sin(y) — zy — 2y)

c
and C'is the path described by R(t) = [t3 sin (gt)} i— [g cos <gt + g)] J.for0<t<1.

Solution: The hypotheses of the fundamental theorem are satisfied since f(z,y) =
e”sin(y) — xy — 2y has continuous partial derivatives. Endpoints:

et=0 — R(0)=(0,00 f(0,0)=0,

el—1 — R(l):<1,g> f(l,z>:e—3—7r.

Thus, using the fundamental theorem,

/F-dR:f<Q)—f(P)=f(1,g)—f(0,0>=<e—3§)—0=e—3§-

C

Conservative vector fields A vector field F is said to be conservative in a region D if
F = Vf for some scalar function f in D. The function f is called a scalar potential of F
in D. That is,

F=V/, for (z,y) € D,

where F is a conservative vector field, and f is the scalar potential.

Example 13.14. Verify that the vector field F = 2zy 7 + 22 j is conservative, with scalar
potential f = z2y.
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I Solution: Vf = Qxy% + mzj' =F = conservative.

Usually, the function f is not given, so we need a theorem to understand if a vector field is

conservative:

Theorem 13.2 (Cross-partial test for a conservative vector field in the plane). Consider
the vector field F(z,y) = u(z,y) i+ v(z,y) J, where u and v have continuous first partials
in the open, simply connected region D in the plane. Then F(z,y) is a conservative in D

if and only if
Ju v

0_3/ =55 troughout D .

Example 13.15. Show that the vector field F = (e*sin(y) — y) i + (¢* cos(y) — . — 2) J
is conservative and then find a scalar potential function f of F.

Solution: 5 9
a—Z:excos(y)—l, a—Z:emcos(y)—l.
0 0
8_u = 8—v = F is conservative. Now, since the field is conservative;
Y x

flo) = [ute.pyde = [ (@ sin(y) ~y) do = & sinfy) ~ 29+ Cw).
The function f is now defined with a constant C(y). This function must also satisfy

fulw.y) = v = cos(y) — a2 0

dc = — =2,
fy=€"cos(y) —z+ % dy

Cly) = / (—2)dy = —2y + .

Thus:
f(x.?y) = 61 Sln(y) — Ty — 21/ + Cl )

where all numbers are allowed in C].
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Theorem 13.3 (The curl criterion for a conservative vector field in R*). Suppose the
vector field F and the curl (F) are continuous in the simply connected region D of R3.
Then F is conservative in D if and only if curl (F) = 0.

Example 13.16. Show that the vector field F = (20232 + 2y?, 4xy, 5z* + 322) is conser-
vative in R¥ and find a scalar potential function for F.

Solution:
i j k
) 9] 0 (5z* +32%) 0 (4xy)\ -
IF=| — — -
cur ox oy 0z < 0z "
2023z + 2% 4wy Sat + 322

_(0(5a'+32%)  0(204° z—|—2y . 4a:y _ 02022+ 29%) o

ox I oy N

:0%—(20x3—20x)y+(4y Ay) k = ooo>

Thus, F is conservative.

Independence on path The line integral / F - dR is independent of path in a region

c
D if for any two points P and @) in D the line integral along every piecewise smooth curve
in D from P to ) has the same value.

Theorem 13.4 (Equivalent conditions for path independence). If F is a continuous vector
field on the open connected set D, then the following three conditions are either all true
or all false:

1. F is conservative on D; that is, F = V f for some functions defined on D;

2. ]{ F - dR = 0 for every piecewise closed curve C' in D;
c

3. / F - dR is independent of path within D.
c
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Example 13.17. Evaluate the line integral / F - dR, where
c

—x _ A x PO S
F = [(2:6—3:23/)6 Y+ tan l(y)] i+ {y2+1 — e y} 7,

for each of the following curves:

a. C : the ellipse 922 + 4% = 36;

b. C5 : the curve with parametric equations

x = t*cos(rt), y=e 'sin(mt), for 0<t<1.

Solution: First, we verify if F is conservative:

Ov 1

. o 3 2 _—xy 3 —xy

gr Pyl ove T

0 1 1

0_Z = il vie™™ 4 (—x)(2x — 2y)e” Y Al 3r7e™™ 4 2ye ™.
ou Ov ) )
— = — — F is conservative.
dy Oz

a. Since F is conservative and C' is closed, then ]{ F-dR = 0;
c
b. The curve Cy starts from t = 0 — P(0,0) and ends at t = 1 — Q(—1,0). Since F

is conservative, then / F - dR is path independent. Thus, to simplify the integral,

c
we can use another parametric curve connecting P and (). We use the segment

PQ:z=—-t, y=0, t €0,1].

C

/F “dR — /OIF(R(t)) R(t) dt —

0

1
:/ 2tdt = 1.
0

_ / [(2(—t) = 2-0) — ¢ + tan""(0)] (~1) + {
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Example 13.18. (#19 HW 13.1-13.4) Consider the vector field

~

F = ysin(2) i+ (xsin(z) 4+ 2y) ]+ (zy cos(z)) k.

Show that F' is conservative and find the potential function f.

/F-dr,
c

where C' goes from (1,1,0) to (2,1, 7).

Then compute

Solution. To verify that F is conservative, compute

0 j i
VxF = 835 8y az

ysinz xsinz+ 2y xycosz

This gives

V xF =i(rcosz—xcosz) — jlycosz —ycosz) + k(sinz —sinz) =0,

so F is conservative.

To find the potential f, integrate:

fe=ysinz = f:/ysinzdxzmysinz.

fy=xsinz+2y = f:/(a:sinz+2y)dy:xysinz+y2.

f.=xycosz = f:/xycoszdz:zysinz.

Hence,
f(z,y,2) = zysinz + y°.

Finally, the line integral is path independent:

/CF dr = f(2,1,2) — f(1,1,0) = [(2)(1) sin(%) + 1%] — [(1)(1) sin(0) + 1%] = 2.



184 Chapter 13. Vector Analysis

13.4 Green’s theorem

Green’s theorem relates a line integral around a closed curve to a double integral over the
region contained by the curve. A Jordan curve is a closed curve that does not intersect
itself. A simply connected region D in the plane has the property that it is connected
and the interior of every Jordan curve C in D also lies in D.

v() OV

Jordan curves Non-Jordan curves

C
D D

Simply connected region Not-simply connected region

Theorem 13.5 (Green’s theorem). Let D be a simply connected region that is bounded
by the positively oriented piecewise smooth Jordan curve C. Then if the vector field
F(z,y) = M(z,y) i+ N(z,y) J is continuously differentiable on D, we have

]{(de+Ndy)=é/ (%—Z—%—A;) dA.

C

Example 13.19. Show that Green’s theorem is true for the line integral

[icvina,

C

where C' is the closed path in the figure.
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Y
Co
y=+V1-—2a?
D
[ S L 2 X
(_170) Cl (LO)

Solution: We first evaluate the line integral:

Ci:zx=t, y=0,with-1<t<1 — dex=dt, dy=0;

Cozx=u, y=v1—uv? with-1<u<l — dr=du, dy=...

Better use the polar coordinates for Cs:
x = cos(u), y = sin(u), with 0 <u <
dxr = —sin(u) du,, dy = cos(u) du .

(—ydw+xdy)+/(—ydx—l—xdy) =
Cy

]{(—ydm—l—ﬂcdy) =

C

‘\9\

1 T
O-dt+1t-0+ / — sin(u)(— sin(u) du) + cos®(u) du =
1 0

s

Il
S—

(sin®(u) + cos®(u)) du = /07r du = .

Now, we evaluate

// (%—a;‘j)) dA://QdAZ2-AreaofD:27T(21)2 .

Example 13.20. A closed path is defined in the figure:
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0,1)| Cy:y=1 (1,1)

(0,0)

Find the work done on an object moving along C' in the force field

~

F = (m + xyz) 1+ 2 (:1:23/ — P sin(y)) 7.

Solution: Remembering that W = j{ F - dR, we can apply the Green’s theorem:
c

0 0

= ¢pF -dR = — (22%y — 2y°si - = A1 dA =

w (Z{ dR é/{ax(xy y*sin(y)) ay(x—i—xy)}d
B - Type 1 1 pl B 1 72 1 B
= (dxy — 2zy) dA =2 rydyde =2 [ z|—| dr=

D 0 Jax2 0 2 22

1 1 7 1 . 2671
—2/035(5—?) da:—/o (m—x)dx—{ _E] =

0
Theorem 13.6 (Area as a line integral). Let D be a simply connected region in the
plane with piecewise smooth, positively oriented closed boundary C. Then, the area A

| 7,

1 1
6 3

DO | —

of region D is given by each of the following integrals

1
Az%xdy:—j{yda::57{[xdy—yda:].

c C c

2 2

Example 13.21. Show that the ellipse x_2 + ?2—2 =1lhas A=mab.
a

Solution: Parametrization: x = acos(f), y = bsin(), for § € [0,27]. Then we have
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dx = —a sin(0) df, dy = b cos(0) db.

A= %?{(—y dx + zdy) = %/0 ' [—b sin(0)(—a) sin(#) + acos(f) becos(0)] df = wab.

Green’s theorem for multiply connected regions To state Green’s theorem, we re-
quired simply connected regions. We can now extend it to multiply-connected regions.

Gy

Theorem 13.7 (Green’s theorem for doubly connected regions). Let R be a doubly
connected region (one hole) in the plane, with outer boundary C, oriented counter-
clockwise, and boundary C5, the hole oriented clockwise. If the boundary curves and
F(z,y) = M(x,y) 1+ N(z,y) j satisfy the hypotheses of Green’s theorem, then

// (%‘%4) dA:]{(Md$+Ndy)+j{(de+Ndy).

C1

—yd d
Example 13.22. Show that 7{ % = 27, where C is any piecewise smooth
5Ty
c
Jordan curve enclosing the origin (0,0) .
- ON oM
Solution: Let M (x,y) = Y and N(z,y) = ° — (z.9) _ (z,9) _
22+ 2 2 4y ox Jy
y? — a2

m. We consider a generic curve C' and an inner circle oriented clockwise.
T )
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e
N,

ON OM

Since e = 8_y on R, we have
—ydr + v dy —ydr+xdy // ON OM
= — —— | dA=0.
% r? + y? +7§ x? + y? or 0Oy !
C oA R
Therefore

j{—ydm—l—xdy__j{—ydx—i—xdy__i_j{ —ydr +zdy

$2 +y2 $2 +y2 33'2 +y2
Cl *Cl

We are interested in the line —C' since it is counterclockwise and we can apply the polar

coordinates:
7{ —ydr+xdy /27T —r sin(0)(—r sin(0) d) + r cos(#)(r cos(0) db) /27r r2 50— 9
- = —df=2m.
z? + y? 0 72 o 12
_Cl

Alternate forms for Green’s theorem Let D be a simply connected region with a
positively oriented boundary C. Then if the vector field F = M ¢ + Nj is continuously
differentiable on D, we have

e Tangential component of F':

7{ -dR = %de—kNdy //(a—N—a—M)dA // curle dA;
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e Normal component of F':

7{F Nds—//(aM aN) a4 = //dldeA

0
Normal derivatives The normal derivative of f, denoted by —f, is the directional deriva-

tive of f in the direction pointing to the exterior of the domain of f. In other words,

of
9 _vf.N
on / ’

where N is the unit normal vector.

Example 13.23 (Green’s formula for the integral of the Laplacian). Suppose f is a scalar
function with continuous first and second partial derivatives in the simply connected
region D. If the piecewise smooth, positively oriented closed curve C' bounds D, show

that 9
/ ngdxdy:j{—fds,
on
D

c
2 of
where V*f = f,. + f,, and o Vf-N.
of of

Solution: Let u = _8_ and v = Iz

/ VQfdxdy—// @—% dxdyGEenj{(ud:L‘—&-vdy)—j{ ud—x—i—z}@ ds =
oy ds ds
D c

d d
Because N = —y, @ by definition.
ds’ ds
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13.5 Surface integrals

Surface integration Let S be a surface defined by z = f(x,y) and R is its projection
in the zy-plane. If f, f, and f, are continuous in R and g is a continuous function of three
variables on S, then the surface integral of g over S is

é/g(x,y, z)dS = 4/g(x,y,f(x,y))\/fz(;p’y)2 + fy () + 1dA.

Note: This integration can again be interpreted as the Riemann sum Z g(Pr)AS, .
k=1

Example 13.24. Evaluate the surface integral //g dS, where g(z,y, z) = zz+2x? —3zy

s
and S is the portion of the plane 2z — 3y + 2z = 6 that lies over the unit square 2 < z <
3,2<y<3

Solution: The plane has equation z = f(z,y) =6 -2 +3y — f,=-2, f,=3.
glz,y, fla,y)) = 2(6 — 22 + 3y) +22° — 3wy = 62 — 2% + 3oy + 22° — 3wy = 6.
3 /3 3 3
//gdS/ / 6x\/(—2)2+(3)2+1d:zdy/ / 6V 142 dr dy =
g 2 J2 2 J2
3
2

6\/ﬁ/23 [‘%T dy6\/ﬁ[y]‘;’<g—2> = 15V14.

Surface area, mass and center of mass of a lamina

- Surface area formula: A = / / ds;
S
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- If p(z,y, z) is the density of the lamina, then the total mass of the lamina is given by

m— [ wp2)ds,
s
and the center of mass is

1 1 1
x—//xpdS, y—//ypdS, z—//zpdS.
m m m
S S S

Example 13.25. Find the mass of a lamina of density p(z,y, z) = z in the shape of the

hemisphere z = \/a? — z? — 2.

Solution:

2y = % (a2 . yz)_% (—2x) = —x (a2 —a® - yz)

[

Zy =~y (CLZ —ZL’2 o y2)_

Flux integrals Let F be a vector field whose components have continuous partial deriva-
tives on the surface S, which is oriented by the unit normal field N. Then the flux of F
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across S is given by the surface integral
FluX://F-NdS.
s

N

In general, if we consider the surface S described as z = f(z,y), then we can define
G(z,y,2z) = z — f(z,y). The upward normal (unit) to S is

VG VG
N— 2 = F-NdS:F-(—),/f3+f2+1dA.
V@] el !
Thus, since ||VG|| = /fZ + fZ + 1 we have

- Upward normal:
é/F'Nzé/R(xvyvf(%yD-<—fx,—fy,1> dA

- Downward normal:

//F'N://R(%y,f(x,y))-<fx,fy,—1> dA .

Example 13.26. Compute the flux integral

[[FNas.
s

where F = zyi+ 2 + (x +vy) /;3, and S is the triangular surface cut off from the plane
x+y+ z=1. Assume N is the upward unit normal.
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h
(0,1)

bl

Solution:

f(I,y):Zil—ZE—y — fZ:_la f’l,l:_l

é/F.NdS é/F(x,y,f(x,y)) A—Ffor—Fy 1) dA =

T 1 1 —z+1
yge // <xy11_x_yax+y><1alal>d‘4:

—z+1 1 y —z+1
/ :py+1—x—y+x+y)dydx/ [ IT—HJ} dr =
0 0

1)2 Vgl 902 — 0 — 20+ 2
/ x+ —&—(-x—&-de/ T o r o ArT dr =
0
1
2

2

3+2x —3r+2 1[ xt 223 322 r
dI:§

T
173 g T

0

__+2_§+2 13
4 3 2 24

Example 13.27. Let R be the region bounded above by the paraboloid z = 9—a? —4? and
below by the xy-plane. The heat flow is the vector field H = —kVT, where T(z,y, z) =

2x +y — 322, and k is constant. Find the total heat flow / H - N dS out of the region

(N outer unit normal).
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Solution: We have the temperature gradient equal to VT' = (2,1 —6z). Then, we should
consider two surfaces: the paraboloid (S;) z = 9 — 2? — y? and the plane (S;) 2 = 0.

Si: G=z+22+1y> -9 — VG = (2z,2y,1)

//H N, dS = // _kVT - VG dS = // )« (22,2, 1) dA =

// (4 +dy — 6(9 — 2% — %)) dA =

= —k/o /o [4r cos(8) + 2rsin(6) — 6(9 — r*)] drdb =

o _ 243
=—k 36 cos(6) + 18sin(f) — - df =2437k.
0

Sy G =

//HdeS // 2-0.0.-1 a4 =~k [ [6zaa— -k [[oaa—o.

D D

VG = (0,0,—1) (Downwards)

since z = 0 on S5.

Total heat low = //H -N = 2437 k.
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13.6 Stoke’s theorem and applications

Definition 13.3 (Compatible orientation). We say that a closed path C' is compatible
with the orientation on the surface S, if the positive direction on C'is counterclockwise
with the outward normal vector N of the surface.

Theorem 13.8 (Stoke’s theorem). Let S be an oriented surface with unit normal vector
field N, and assume that S is bounded by a piecewise smooth Jordan curve C' whose
orientation is compatible with that of S. If F is a vector field that is continuously
differentiable on S, then

1
Example 13.28. Evaluate % <§y2 de + zdy + dz) where C' is the curve of intersection

between the plane x + 2z = 1 and the ellipsoid 22 + 2y? + 22 = 1 oriented counterclockwise
from above.
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- <_1a _11 _y> :
Normal vector to the plane: N = (1,0, 1).
. (1,0,1)  (1,0,1) < 1 >
Unit normal N = = —,0, — ). Thus,
INI[ - VI+1 \v2' 7Vv2
curl F- N = ,0, —(1+1y).
1o (G50, 75) = 750+

We aim to do a surface integral on the plane — 2z, =1, 2z, =0 — dS =

VD202 +1 =42

%F-dR//curlF-NdS//—%ﬂ(l—&—y)d/l,
C S A

where A is the intersection between the plane and the ellipsoid:

z=1—=x
— (1—2)2=1—2%—2¢
{221—x2—2y2 ( ) 4
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1 -2z +22=1—2% -2
2% — 20 + 22 =0

(xQ—x—F}l)-i-yQ:% = -4y’ =0

(=3 =)

1 1
So we have a circle, with center ¢ (5, 0) and radius 5

Y

€

0 e [—g,g] Plug into 22 — z + y? = 0:

— r=0and r=cos(d) = r€l0,cos(d)]

/2 cos(6) /2 2 35in(6 cos(6)
fF-dRz/ / —(1+rsin(0))rdrd0:—/ [r—+r sin )] =
a —n/2J0 2 | 2 3 0

) /,,/2 [0052(9) | cos’(0) sin(e)} » /”/2 [HCOS(?@) L cos’(6) Siﬂ(‘))} -

_77/2 2 3 _71./2 4 3
1, sin(20)  cos*(6) m/2
_[10+ SRR e &

Example 13.29 (Maxwell’s current density equation). In physics, we have that if [ is
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the current crossing a surface S bounded by a closed curve C, then:

?{HdR:I and //J-NdS:I,
c s

where H is the magnetic intensity and J is the electric current density. Use this informa-
tion to derive Maxwell’s current density equation curl H = J.

Solution: By Stoke’s theorem, we have

%H-dR://(curlH-N)dS.

C s
fH-dR://J-NdS = //CurlH-NdS://J-NdS
C S S s

//(curlH—J)-NdS:O - crlH-J=0 — cwlH=J.
S

Since

Example 13.30. Given F(z,y, z) = (z + cos(z),x + y2,y + €7), find %F -dR, where C'

C
is the intersection of the sphere 22 + 3% + 22 = 4, and the cone z = /22 + 12.

Solution: For the Stoke’s theorem, fF -dR = // curl F-NdS.
c c

- First, we compute the curve C:
2 2, .2 2yt (Vat +y?) =4
Ay +27=4 ou? 4 9?4
— €T y =
2 =/x?+ y?

z? +y*> =2 Circle of radius V2

- Then, we evaluate curl F:

curl F = =11 —=0)—j(0—1)+ k(1 —0)=(1,1,1).

Q o
|Q’)%>
SINES

ox oy
z+cos(z) w+y* y+e€*
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- We note that a normal to the circle of radius v/2 is N = (0,0, 1).

Thus, the integral can be evaluated as

frean= [foan-wonas= [ [Tanaw= [7[5] 0=
S

C
(Circle)
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13.7 Divergence theorem and applications

Theorem 13.9 (Divergence theorem). Let S be a smooth, orientable surface that encloses
a solid region R in R3. If F is a continuous vector field whose components have continuous
partial derivatives, in an open set containing R, then

/S/F-NdS:/R//dideV,

where N is the unit outward normal field for the surface S.

Example 13.31. Evaluate / F-NdS, where F = 220 + 2y j + 233k and S is the

s
surface of the tetrahedron bounded by the plane z + 7+ z = 1 and the coordinate planes.

Solution: First, we evaluate div F:

oF, O0F, OF.
divF = =~ L £ =2 =3z.
v 8x+8y+8z r+x+0=3z

/S/F-NdS:/R//Sde,

where R is the tetrahedron volume.

Thus

In z-direction:
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e Upper bound: Planez +y+2=1 — z=1—2—y;

e Lower bound: xy-plane — 2z =0.

/V//Sa:dV: é//ol_x_ygmm,

where A is the projection of the tetrahedron on the xy-plane (triangle).

Y
y=1—=x
x
1
Type I
z=1—xz—y l—-2z—-—y=0 P
e :BG[Ol]
z=0 y=1—=x
€[0,1—x.

11—z
3I/ lxydydx—

27 1—x
3x{—xy——} dr =

l—z—y 1 l—z—y
/// 3rdzdA = / / / 3rdzdydr =
S Jo 0o Jo 0

1 1-2
/3x (1—2—y)dyde =
0 0

1 1_ 2
/3x<1—x—x+x—( x))dx
0 2
1— 2z + 2? ! , 1
3:]5 1—2z+422——" " | dx=3 —r—x" 4+ =x° | dx
0 2 0 \2 2
3 [22 411 3/1 2 1 36-8+3 1
212 3 40 2\2 3 4 2 12 8

Example 13.32. Let F = 221—3y j+52 k, and let S be the hemisphere z = /9 — 22 — ¢/2
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together with the disk 2% + y? < 9 in the zy-plane. Evaluate // F-NdS.
s

Solution: Using the divergence theorem, we can compute a triple integral over the
considered volume (sphere of radius 3, z > 0).

0(2zx) 0(-3y) 0(52)
ox - dy - 0z

é/F-NdS/R//ZLdV,

where R can be identified in spherical coordinates as

div F = =2—-3+5=4.

Thus

pel0,3, 0efo2q], ¢e[0,g}.
/R/ / 4dV = /0”/2 /02” /O 34p2sm(¢)dpd9d¢: /0”/2 /OZWSin(¢)4{%Tzd9d¢
/2 27

= 36/0 sin(¢)/ dfdy =127 — cos(@)]g/z = T,

0

Example 13.33. Use the divergence theorem to evaluate
x> A
//F-NdS, WhereF:§€+2j+yzzk,
5

and S is the external surface of the solid bounded above by z = 1 — 2% — y? and below
by z = 0.
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Solution. Divergence theorem:

//SF~NdS://VV~FdV.

0 0
3 v Y2y 2 2 _ 2 2
x/3>+8y(z)+8z(yz) 4+ 0+y Y T

Compute the divergence:

0

Region V: z € [0,1 — 2% — 9], with bounds in the xy plane given by the intersection:
z2=1—a2—1?
{ 0 Yoo a2y y® = 1 (circle of radius = 1)
Z =

Use cylindrical coordinates x = rcosf, y = rsinf, 2z =2, 0<r <1,0<60 < 2m In
cylindrical, 2% 4+ y? = 7% and dV = r dz dr df. Hence

2 pl pl-r? 2r pl
///(x2+y2)dV:/ // r2rdzdrd0:/ / r3(1 —r?) drdb.
v o Jo Jo o Jo

Compute:

27rd0 1 5 ) d 1 5 5 d 1 1 1
/o , /o r*(1—r%)dr /o (r° —7r°)dr 1 =D

Therefore 1
F-NdS = 2 0 dV =2 — = &
//g ///v(x ) 1276




