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In this chapter, we will move from the single integrals

∫ b

a

f(x) dx, to multiple integrals

where the integrand is a function of many variables.
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12.1 Double integration over rectangular regions

Definition of double integral Recall the definition for single integrals:
∫ b

a

f(x) dx is the limit of the Riemann sum
n
∑

k=1

f(xk) ·∆xk, where a = x0 < x1 < x2 < · · · <

xn = b. Now we consider a rectangle:

x

y

a b

c

d

(x∗
k, y

∗
k)

Step 1: Partition the [a, b] interval intom subintervals and

[c, d] into n subintervals ⇒ n ·m cells.

Step 2: Choose a representative point for each cell (x∗
k, y

∗
k)

such that we have the sum
N=n·m
∑

k=1

f(x∗
k, y

∗
k) ·∆Ak,

where ∆Ak is the area of the cell.

Step 3: We define ||P || as the length of the diagonal of

the cell. We can define lim
||P ||→0

N
∑

k=1

f(x∗
k, y

∗
k) · ∆Ak

(double integral).

Definition 12.1. If f is defined on a close, bounded rectangular region R in the xy-plane,

then the double integral of f over R is

∫∫

R

f(x, y) dA = lim
||P ||→0

N
∑

k=1

f(x∗
k, y

∗
k)∆Ak .

Remark: If f(x, y) is continuous on a rectangle R then is integrable over R.

Properties of the double integrals

- Linearity rule: For constants a and b
∫∫

R

[a f(x, y) + b g(x, y)] dA = a

∫∫

R

f(x, y) dA+ b

∫∫

R

g(x, y) dA .

- Dominance rule: If f(x, y) ≥ g(x, y) over R, then
∫∫

R

f(x, y) dA ≥
∫∫

R

g(x, y) dA .
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Theorem 12.1 (Fubini’s theorem over a rectangular region). If f(x, y) is continuous over

the rectangle R: a ≤ x ≤ b, c ≤ y ≤ d, then the double integral

∫∫

R

f(x, y) dA

may be evaluated by either iterated integrals, that is

∫∫

R

f(x, y) dA =

∫ d

c

[
∫ b

a

f(x, y) dx

]

dy =

∫ b

a

[
∫ d

c

f(x, y) dy

]

dx .

Note: If we are able to separate the variables as f(x, y) = g(x) · h(y) (not for f(x, y) =

g(x) + h(y)), then
∫∫

R

f(x, y) dA =

∫ b

a

g(x) dx ·
∫ d

c

h(y) dy .

Note: to apply this theorem, one should first compute the integral inside the inner brackets,

considering the variable that is not integrated as a constant.

Example 12.1. Given the following integral

∫ d

c

[
∫ b

a

f(x, y) dx

]

dy

when integrate in dx we consider y as a constant. Then, the result should be integrated

in dy.

Remark: Fubini’s theorem also works for bounded functions that are not continuous on a

subset S of R of area = 0.

Example 12.2. Compute
∫∫

R

(2− y) dA ,

where R is the rectangle with vertices (0, 0), (3, 0), (3, 2), (0, 2).
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Solution: The region is the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, so the integral is

∫ 3

0

[
∫ 2

0

(2− y) dy

]

dx =

∫ 3

0

[

2y − y2

2

]2

0

dx =

∫ 3

0

[

4− 4

2
− 0

]

dx =

∫ 3

0

2 dx =
[

2x
]3

0
= 6 .

Example 12.3. Evaluate
∫∫

R

x2y5 dA

over R : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1 with a) y-integration first b) x-integration first.

Solution:

a)

∫ 2

1

[
∫ 1

0

x2y5 dy

]

dx =

∫ 2

1

[

x2 · y
6

6

]1

0

dx =

∫ 2

1

[

x2 · 1
6
− 0

]

dx =

[

1

6
· x

3

3

]2

1

=

[

x3

18

]2

1

=
7

18
.

b)

∫ 1

0

[
∫ 2

1

x2y5 dx

]

dy =

∫ 1

0

[

x3

3
y5
]2

1

dy =

∫ 1

0

[

8

3
y5 − 1

3
y5
]

dy =

∫ 1

0

7

3
y5 dy =

[

7

3

y6

6

]1

0

=
7

18
.

Example 12.4 (Choosing the order of integration). Evaluate

∫∫

R

x cos(xy) dA

for R : 0 ≤ x ≤ π

2
, 0 ≤ y ≤ 1.

Solution: If I integrate with respect to x first, I would need to integrate by parts. Thus,

we start with y-integration.

∫ π
2

0

[
∫ 1

0

x cos(xy) dy

]

dx =

∫ π
2

0

[

x
sin(xy)

x

]1

0

dx =

∫ π
2

0

[

sin(x)−sin(0)
]

dx =
[

−cos(x)
]

π
2

0
= 1 .
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12.2 Double integration over nonrectangular regions

Double integrals over type I and type II regions. We start defining the type I and

type II regions:

- Type I: D1 : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x).

This region is the set of all points (x, y) such that for each fixed x between x = a and

x = b the vertical line segment g1(x) ≤ y ≤ g2(x) lies in the region.

x

y

a b

y = g1(x)

y = g2(x)

- Type II: D1 : c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y).

This region is the set of all points (x, y) such that for each fixed y between y = c and

y = d the horizontal line segment h1(y) ≤ x ≤ h2(y) lies in the region.

x

y

c

d

h1(y) h2(y)

Theorem 12.2 (Fubini’s theorem for non rectangular regions). If D1 is a type I region,

then
∫∫

D1

f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx ,
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whenever both integrals exist.

Similarly, if D2 is a type II region, then

∫∫

D2

f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)

f(x, y) dx dy .

Example 12.5. Evaluate
∫ 1

0

∫

√
x

x2

160 x y3 dy dx ,

in the region between the functions y =
√
x and y = x2, with 0 ≤ x ≤ 1.

Solution:

x

y
y = x2

y =
√
x

1

1

∫ 1

0

∫

√
x

x2

160 x y3 dy dx =

∫ 1

0

[

160 x · y
4

4

]

√
x

x2

dx =

∫ 1

0

160 x

(

(
√
x)4

4
− (x2)4

4

)

dx =

=

∫ 1

0

160 x

(

x2

4
− x8

4

)

dx =

∫ 1

0

160

4

(

x3 − x9
)

dx =

= 40

[

x4

4
− x10

10

]1

0

= 40

(

1

4
− 1

10

)

= 40

(

5− 2

20

)

= 6 .

Example 12.6. Let T be the triangular region enclosed by the lines y = 0, y = 2x and
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x = 1. Evaluate the double integral

∫∫

T

(x+ y) dA ,

using an iterate integral with: a) y-integration first, b) x-integration first.

Solution:

x

y y = 2x

x = 1

1

a) y-integration first: extremes are y = 0 and y = 2x.

∫∫

T

(x+ y) dA =

∫ 1

0

∫ 2x

0

(x+ y) dy dx =

∫ 1

0

[

xy +
y2

2

]2x

0

dx =

=

∫ 1

0

(

2x2 +
4x2

2

)

dx =

∫ 1

0

4x2 dx =

[

4x3

3

]1

0

=
4

3
.

b) x-integration first. If y = 2x → x =
y

2
. The lower extreme for x- variable is x =

y

2
,

the upper extreme is x = 1. The y variable goes from to 0 to 2.

∫∫

T

(x+ y) dA =

∫ 2

0

∫ 1

y

2

(x+ y) dx dy =

∫ 2

0

[

x2

2
+ xy

]1

y

2

dy =

∫ 2

0

(

1

2
+ y − y2

8
− y2

2

)

dy =

=

∫ 2

0

(

1

2
+ y − y2 + 4y2

8

)

dy =

∫ 2

0

(

1

2
+ y − 5

8
y2
)

dy =

=

[

1

2
y +

y2

2
− 5y3

24

]2

0

= 1 + 2− 5 · 8
24

= 3− 5

3
=

9− 5

3
=

4

3
.
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Double integral as area and volume

- The area of a region D can be computed as

A =

∫∫

D

dA .

- The volume of a solid under the surface z = f(x, y) above the region D can be

evaluated, if f(x, y) ≥ 0 on D, as

V =

∫∫

D

f(x, y) dA .

Example 12.7. Find the area of the region D between y = cos(x) and y = sin(x) over

the interval 0 ≤ x ≤ π

4
. Do it a) with a single integral, b) with a double integral.

Solution:

x

y

y = cos(x)

y = sin(x)

π

4

a)

∫ π
4

0

[cos(x)− sin(x)] dx = [sin(x) + cos(x)]
π
4
0 = sin

(π

4

)

+ cos
(π

4

)

− sin(0)− cos(0) =

=

√
2

2
+

√
2

2
− 1 =

√
2− 1 .
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b)

∫∫

D

1 dx dy =

∫ π
4

0

∫ cos(x)

sin(x)

1 dy dx =

∫ π
4

0

[

y
]cos(x)

sin(x)
dx =

∫ π
4

0

[cos(x)− sin(x)]dx =
√
2− 1 .

Example 12.8. Find the volume of a solid bounded above by the plane z = y, and below

in the xy-plane by the part of the disk x2 + y2 ≤ 1 in the first quadrant.

Solution:

x

y

x2 + y2 = 1

V =

∫∫

D

f(x, y) dx dy =

∫ 1

0

∫

√
1−x2

0

y dy dx =

∫ 1

0

[

y2

2

]

√
1−x2

0

dx =

∫ 1

0

1− x2

2
dx =

=

[

1

2
x− x3

6

]1

0

=
1

2
− 1

6
=

3− 1

6
=

1

3
.

Choosing the order of integration in a double integral

Example 12.9 (How to reverse the order of integration in a double integral). Reverse

the order of integration in the iterated integral

∫ 2

0

∫ ex

1

f(x, y) dy dx .
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Solution:

x

y

y = 1

y = ex

2

1

e2

We first draw the domain of the integration ⇒ x ∈ [0, 2], y ∈ [1, ex].

Revers order: for fixed y-value, the x-value goes from y = ex (bottom line) and x = 2

(top line). Indeed, y = ex → x = ln(y).

Considering that now y varies from 1 to e2, the new integral (reversed) is:

∫ e2

1

∫ 2

ln(y)

f(x, y) dx dy .

Example 12.10. The region D is bounded by the parabola y = x2−2 and the line y = x

is vertically and horizontally simple. To find the area of D, would you prefer to use type

I or type II?

Solution:
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x

y

−2

y = xy = x2 − 2

- Type I: We find the intersections :

{

y = x

y = x2 − 2
→

{

y = x

x = x2 − 2

x2 − x− 2 = 0

(x− 2)(x+ 1) = 0

1)

{

x = 2

y = 2
2)

{

x = −1

y = −1

For a fixed x ⇒ y is bounded by y = x2 − 2 (lower) and y = x (higher).

- Type II: it is not straightforward to compute: for a fixed y → x is bounded by

y = x2 − 2 ⇒ x =
√
y + 2 (higher bound) and x = y (lower bound). For y < −1,

x is bounded by x = −√
y + 2 and x =

√
y + 2 ⇒ in this case is better to use

Type 1.

A =

∫ 2

−1

∫ x

x2−2

1 dy dx =

∫ 2

−1

[

y
]x

x2−2
dx =

∫ 2

−1

(

x− x2 + 2
)

dx =

[

x2

2
− x3

3
+ 2x

]2

−1

=

=
4

2
− 8

3
+ 4− 1

2
− 1

3
+ 2 =

12− 16 + 36− 3− 2

6
=

27

6
=

9

2
.
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NB. Using Type II we have:

A =

∫ −1

−2

∫

√
y+2

−√
y+2

dx dy +

∫ 2

−1

∫

√
y+2

y

dx dy .

Example 12.11 (Evaluating an integral by reversing the order). Evaluate

∫ 1

0

∫ 1

x

ey
2

dy dx .

Solution:

x

y

1
y = 1

1

y = x

Note: Sometimes it is not possible to solve an integral (we do not know the antiderivative

of ey
2
) ⇒ we can try to reverse the order of the integral.

We first sketch the domain considering x ∈ [0, 1] and y ∈ [x, 1].

Reversing for a fixed y (y ∈ [0, 1]) we have x = y (upper bound) and x = 0 (lower bound).

Thus, we have

∫ 1

0

∫ 1

x

ey
2

dy dx =

∫ 1

0

∫ y

0

ey
2

dx dy =

∫ 1

0

[

ey
2

x
]y

0
dy =

∫ 1

0

yey
2

dy .

Now, consider the substitution: u = y2 that leads to y =
√
u and dy =

1

2
√
u
du.

⇒
∫ 1

0

√
u eu

1

2
√
u
du =

∫ 1

0

eu

2
du =

[

eu

2

]1

0

=
e

2
− 1

2
.
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12.3 Double integral in polar coordinates

Change of variables in polar form Using the polar coordinates for integration can

be useful when the integrated or the region of integration (or both) has a simple polar

description.

Polar description:
{

x = r cos(θ)

y = r sin(θ)
⇒

r =
√

x2 + y2

tan θ =
y

x
.

Example 12.12. Consider the integral

∫∫

R

(

x2 + y2 + 1
)

dA ,

where R is the region (disk) in the xy-plane bounded by the circle x2 + y2 = 4.

Solution:

x

y

2

2

We have a bound for x: x ∈ [−2, 2]. If we fix x ⇒ y is between −
√
4− x2 (lower bound)

and
√
4− x2 (upper bound). Then, we obtain

∫∫

R

(

x2 + y2 + 1
)

dA =

∫ 2

−2

∫

√
4−x2

−
√
4−x2

(

x2 + y2 + 1
)

dy dx → Not easy to solve!
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To apply a change of variable, we need to plug

x = r cos(θ)

y = r sin(θ) .

Extreme of integration:

r from 0 to 2 (= radius)

θ from 0 to 2π (circle)

f (r cos(θ), r sin(θ)) = r2 cos2(θ) + r2 sin2(θ) + 1 = r2 + 1 .

→ now we need to introduce a theorem to transform dx dy into dr dθ.

Theorem 12.3 (Double integral in polar coordinates). If f is continuous in the polar

region D described by 0 ≤ r1(θ) ≤ r ≤ r2(θ), α ≤ θ ≤ β, where 0 ≤ β − α ≤ 2π, then

∫∫

D

f(r, θ) dA =

∫ β

α

∫ r2(θ)

r1(θ)

f(r, θ) r dr dθ .

Note:

- We have the presence of r in the second integral.

- From this theorem, we get the transformation from a cartesian integral to a polar one

∫∫

R

f(x, y) dA =

∫∫

D

f(r cos(θ), r sin(θ)) r dr dθ .

Preview of section 12.8: In general, the change of variable x = x(u, v), y = y(u, v)

transforms the integral

∫∫

f(x, y) dA into

∫∫

f(u, v) |J(u, v)| du dv, where

J(u, v) =

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

→
|J(u, v)|

Jacobian of the transformation.
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In the polar coordinates case, we have (with x = r cos(θ), y = r sin(θ))

J(r, θ) =

∣

∣

∣

∣

∣

∣

∣

∂

∂r
(r cos(θ))

∂

∂θ
(r cos(θ))

∂

∂r
(r sin(θ))

∂

∂θ
(r sin(θ))

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

cos(θ) −r sin(θ)

sin(θ) r cos(θ)

∣

∣

∣

∣

= r cos2(θ) + r sin2(θ) = r .

This confirms the theorem statement:

∫∫

R

f(x, y) dA =

∫∫

D

f(r, θ) r dr dθ =

∫ β

α

∫ r2(θ)

r1(θ)

f (r cos(θ), r sin(θ)) r dr dθ .

Area and volume in polar form

Example 12.13 (Double integral in polar form). Evaluate

∫∫

D

(

x2 + y2 + 1
)

dA ,

where D is the region inside the circle x2 + y2 = 4.

Solution:

x

y

2

2

The given circle, in polar coordinates, is represented by 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π (circle of
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radius 2). Thus:

∫∫

D

(

x2 + y2 + 1
)

dA =

∫ 2π

0

∫ 2

0

[

(r cos(θ))2 + (r sin(θ))2 + 1
]

r dr dθ =

=

∫ 2π

0

∫ 2

0

[

r2 cos2(θ) + r2 sin2(θ) + 1
]

r dr dθ =

=

∫ 2π

0

∫ 2

0

(

r3 + r
)

dr dθ =

∫ 2π

0

[

r4

4
+

r2

2

]2

0

dθ =

=

∫ 2π

0

[

16

4
+

4

2

]

dθ =

∫ 12

0

(4 + 2) dθ =
[

6 θ
]2π

0
= 12π .

Example 12.14 (Computing area in polar form using a double integral). Compute the

area of the region D bounded above by the function y = x and below by the circle

x2 + y2 − 2y = 0.

Solution:

x

y

1

x2 + y2 − 2y = 0

y = x

x2 + y2 − 2y + 1− 1 = 0 → x2 + (y − 1)2 = 1

Therefore, we have a circle with center in (0, 1) and radius equal to 1.

Transform in polar coordinates: y = x is represented by θ =
π

4
. The circle is:

x2 + y2 − 2y = 0 → (r cos(θ))2 + (r sin(θ))2 − 2 r sin(θ) = 0

r2 − 2 r sin(θ) = 0 , r(r − 2 sin(θ)) = 0 .

r − 2 sin(θ) → r = 2 sin(θ) .
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Thus, the angle θ varies from 0 to
π

4
, the radius from 0 to 2 sin(θ)

A =

∫∫

D

dA =

∫ π
4

0

∫ 2 sin(θ)

0

r dr dθ =

∫ π
4

0

[

r2

2

]2 sin(θ)

0

dθ =

∫ π
4

0

(

4 sin2(θ)

2
− 0

)

dθ =

=

∫ π
4

0

2 sin2(θ)dθ = . . . Recalling that sin2(θ) =
1− cos(2θ)

2
· · · =

=

∫ π
4

0

2
1− cos(2θ)

2
dθ =

[

θ − sin(2θ)

2

]
π
4

0

=
π

4
− sin

(

π
2

)

2
− 0 +

sin(0)

2
=

π

4
− 1

2
.

Example 12.15 (Volume in polar form). Show that a sphere of radius a has volume
4

3
πa3.

Solution:

Consider the sphere domain: x2+y2+ z2 ≤ a2 (the inner domain). If z ≥ 0 (half sphere),

we can write z =
√

a2 − x2 − y2. As a domain, we consider the circle x2 + y2 = a2.

z =
√

a2 − x2 − y2
Polar form−−−−−−→ z =

√
a2 − r2 (r2 = x2 + y2)

Disk x2 + y2 = a2
Polar form−−−−−−→ r ∈ [0, a], θ ∈ [0, 2π]

V ∗ =
V

2
=

∫∫

Disk

z dA =

∫ 2π

0

∫ a

0

√
a2 − r2 r dr dθ = . . .

Consider now: u = a2 − r2, du = −2 r dr

. . . =

∫ 2π

0

∫ a

0

−1

2

√
a2 − r2 (−2r) dr dθ =

∫ 2π

0

−1

2

[

(a2 − r2)
3
2

3
2

]a

0

dθ =

=

∫ 2π

0

−1

2

[

−a3

3
2

]

dθ =
1

3
a3
∫ 2π

0

dθ =
2π

3
a3

To have the complete volume: V = 2V ∗ =
4π

3
a3.

Example 12.16 (Region of integration between two polar curves). Evaluate

∫∫

D

1

x
dA,

where D is the region that lies inside the circle r = 3 cos(θ) and outside the cardioid
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r = 1 + cos(θ).

Solution:

x

y

a

Sketch of the generic cardioid r = a+ a cos(θ).

[See solution on page 946 of the textbook (not covered in class).]

Example 12.17 (Converting an integral to polar form). Evaluate

∫ 2

0

∫

√
2x−x2

0

y
√

x2 + y2 dy dx

by converting it in polar coordinates.

Solution: The integration region is x ∈ [0, 2], y ∈ [0,
√
2x− x2]. Note that:

y =
√
2x− x2

y2 = 2x− x2 → x2 + y2 − 2x = 0

x2 − 2x+ 1 + y2 − 1 = 0

(x− 1)2 + y2 = 1 (Circle of radius = 1 and center in (1,0))

Thus, y =
√
2x− x2 is the semicircle.

x

y

1

y =
√
2x− x2
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Let’s put the semicircle in polar form:

y =
√
2x− x2

y2 = 2x− x2

x2 + y2 = 2x

(r sin(θ))2 + (r cos(θ))2 = 2 r cos(θ)

r2 = 2 r cos(θ) → r = 2 cos(θ) , r = 0 .

The angle θ in this semicircle varies from 0 to
π

2

∫ 2

0

∫

√
2x−x2

0

y
√

x2 + y2 dy dx =

∫∫

D

y
√

x2 + y2 dA =

∫ π
2

0

∫ 2 cos(θ)

0

r sin(θ)
√
r2 r dr dθ =

=

∫ π
2

0

∫ 2 cos(θ)

0

r3 sin(θ) dr dθ =

∫ π
2

0

[

r4

4

]2 cos(θ)

0

sin(θ) dθ =

=

∫ π
2

0

16 cos4(θ)

4
sin(θ) dθ = 4

[

−cos5(θ)

5

]
π
2

0

=
4

5
.
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3D

y

z

x

2D

x

y

1

1

y = −x+ 1

Consider the plane x+ y + z = 1, with its normal vector 〈1, 1, 1〉 and the point (0, 0, 1).

For z = 0 we have x+ y = 1 ⇒ y = −x+ 1. We recall that

S =

∫∫

√

f 2
x + f 2

y + 1 dA ,

and given the function f(x, y) = z = 1− x− y we have fx = −1 and fy = −1. Therefore,

S =

∫∫ √
1 + 1 + 1 dA =

∫ 1

0

∫ −x+1

0

√
3 dy dx =

∫ 1

0

[√
3x
]−x+1

0
dx =

=

∫ 1

0

√
3 (−x+ 1) dx =

√
3

[

−x2

2
+ x

]1

0

=
√
3

(

−1

2
+ 1

)

=

√
3

2
.

Example 12.19 (Surface area by changing to polar coordinates.). Find the surface area

of that part of the paraboloid x2 + y2 + z = 5 that lies above the plane z = 1.

Solution:
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y

z

x

10

10

Solution: Consider the function z =
√

100− x2 − y2 = f(x, y) (from the sphere), and

the intersection between the curves (domain of the integration).

z =
√

x2 + y2 → x2 + y2 + (
√

x2 + y2)2 = 100

2x2 + 2y2 = 100 → x2 + y2 = 50 (circle of radius
√
50)

Recalling that

∫∫

D

√

f 2
x + f 2

y + 1 dA, we have

fx =
−2x

2
√

100− x2 − y2
= − x

√

100− x2 − y2

fy =
−2y

2
√

100− x2 − y2
= − y

√

100− x2 − y2
.

Therefore,
∫∫

D

√

x2 + y2

100− x2 − y2
+ 1 dA .

Switching to polar coordinates with r ∈ [0,
√
50], θ ∈ [0, 2π] we have

∫∫

D

√

x2 + y2 + (100− x2 − y2)

100− x2 − y2
dA =

∫∫

D

√

100

100− x2 − y2
=

∫ 2π

0

∫

√
50

0

10r√
100− r2

dr dθ .
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We switch to polar coordinates for the domain: θ ∈ [0, 2π] and r ∈ [0, 4].

∫∫

D

√
4 + 9 + 1 dA =

∫ 2π

0

∫ 4

0

√
14 r dr dθ =

∫ 2π

0

√
14

[

r2

2

]4

0

dθ =
√
14 · 8 · 2π = 16π

√
14 .

Example 12.22 (16 HW 12.3-12.5). Find the surface area of the part of the plane

2x + 2y + z = 4 that lies above the triangle formed by the three points (3, 3, 0), (8, 3, 0)

and (8, 6, 0).

x

y

(3, 3, 0) (8, 3, 0)

(8, 6, 0)

Solution: We start considering that x ∈ [3, 8] and y ∈
[

3,
3

5
x+

6

5

]

(line between two

points (3,3) and (8,6)).

x− 3

8− 3
=

y − 3

6− 3
→ 3x− 9 = 5y − 15 → y =

3

5
x+

6

5
.

The function is f(x, y) = z = 4− 2x− 2y → fx = −2 and fy = −2.

S =

∫∫

D

√
4 + 4 + 1 dA =

∫ 8

3

∫ 3
5
x+ 6

5

3

√
9 dy dx =

∫ 8

3

[3y]
3
5
x+ 6

5
3 dx =

∫ 8

3

(

9

5
x+

18

5
− 9

)

dx =

=

∫ 8

3

(

9

5
x− 27

5

)

dx =
9

5

∫ 8

3

(x− 3) dx =
9

5

[

x2

2
− 3x

]8

3

=

=
9

5

(

64

2
− 24− 9

2
+ 9

)

=
9

5

(

32− 24 + 9− 9

2

)

=
9

5

25

2
=

45

2
.
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12.5 Triple integrals

While a double integral

∫∫

D

f(x, y) dA is evaluated over a two-dimensional domain D, a triple

integral

∫∫∫

D

f(x, y, z) dV is evaluated over a closed, bounded region (solid) D ∈ R
3.

Similarly to the double integrals, we partition the domain into boxes.

x

y

z

∆V ∗
k

(x∗, y∗, z∗)

If f is a function defined over a closed, bounded, solid region D, then the triple integral of f

over D is defined to be the limit

∫∫∫

D

f(x, y, z) dV = lim
||P ||→0

n
∑

k=1

f(x∗
k, y

∗
k, z

∗
k)∆Vk

provided this limit exists. ||P || is the longest diagonal of ∆Vk. The basic rules for double

integrals are still valid:

- Linearity rule:

∫∫∫

D

af(x, y, z) + bg(x, y, z) dV = a

∫∫∫

D

f(x, y, z) dV + b

∫∫∫

D

g(x, y, z) dV .
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- Dominance rule: if f > g on D then

∫∫∫

D

f(x, y, z) dV ≥
∫∫∫

D

g(x, y, z) dV .

- Subdivision rule:
∫∫∫

D

=

∫∫∫

D1

+

∫∫∫

D2

where D = D1 ∪D2, D1 ∩D2 6= 0.

Iterated integration

Theorem 12.4 (Fubini’s theorem over a parallepiped in space). If f(x, y, z) is continuous

over a rectangular box B : a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s, then the triple integral may

be evaluated by iterated integral

∫∫∫

B

f(x, y, z) dV =

∫ s

r

∫ d

c

∫ b

a

f(x, y, z) dx dy dz .

The iterated integration can be performed in any order.

Remark: As in the case of double integrals, if f(x, y, z) = f1(x) f2(y) f3(z) (separation of

variables), then the integration can be written as

∫∫∫

B

f(x, y, z) dV =

∫ b

a

f1(x) dx

∫ d

c

f2(y) dy

∫ s

r

f3(z) dz .

Example 12.23. Evaluate

∫∫∫

B

z2 y ex dV , where B is the box given by 0 ≤ x ≤ 1,

1 ≤ y ≤ 2, −1 ≤ z ≤ 1.
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x

y

z

Domain B

21

1

1

Solution:

∫∫

B

f(x, y, z) dV =

∫ 1

−1

∫ 2

1

∫ 1

0

z2 y ex dx dy dz =

∫ 1

−1

∫ 2

1

z2 y [ex]10 dy dz =

=

∫ 1

−1

∫ 2

1

z2 y (e− 1) dy dz =

∫ 1

−1

z2 (e− 1)

[

y2

2

]2

1

dz =

=

∫ 1

−1

z2 (e− 1)

(

2− 1

2

)

dz =

[

z3

3

]1

−1

(e− 1)
3

2
=

=
2

3

3

2
(e− 1) = e− 1 .

Triple integrals over z-simple solid region

Theorem 12.5 (Triple integral over z-simple solid region). Suppose D is a solid region

bounded below by the surface z = u(x, y) and above by z = v(x, y), that projects onto

the region A in the xy-plane. If A is either type I or type II, then the integral of the

continuous function f(x, y, z) over D is

∫∫∫

D

f(x, y, z) dV =

∫∫

A

[

∫ v(x,y)

u(x,y)

f(x, y, z) dz

]

dA .

Example 12.24. Evaluate

∫∫∫

D

x dV , where D is the solid in the first octant bounded

by the cylinder x2 + y2 = 4 and the plane 2y + z = 4.
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Volume by triple integrals As a double integral can be interpreted as the area of the

region of integration, a triple integral may be interpreted as the volume of a solid:

V =

∫∫∫

D

dV .

Example 12.25 (Volume of a tetrahedron). Find the volume of the tetrahedron T

bounded by the plane 2x + y + 3z = 6 and the coordinate planes x = 0, y = 0 and

z = 0.

x

y

z

Plane

Solution: The z coordinate is bounded above by the plane 3z = 6− 2x− y → z =

2− 2

3
x− 1

3
y, and below by the plane z = 0.

The domain of integration along the xy plane is a triangle







z = 0

z = 2− 2

3
x− 1

3
y







z = 0

2

3
x+

1

3
y − 2 = 0
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between the sphere and the plane.

{

z =
√

4− x2 − y2

z = 2− y
⇒

√

4− x2 − y2 = 2− y

4− x2 − y2 = (2− y)2

4− x2 − y2 = 4− 4y + y2

x2 + 2y2 − 4y = 0 (Ellipse)

x2 + 2(y2 − 2y + 1)− 2 = 0

x2 + 2(y − 1)2 = 0 .

Although this intersection occurs in R
3, its equation does not contain z ⇒ we can

use it as a projection of the volume of integration on the xy plane.

x

y

Ellipse: x2 + 2(y − 1)2 = 0

(0, 1)

It is better to consider this as a type II region, since

x2 = −2(y − 1)2 + 2 = 4y − 2y2 → x = ±
√

4y − 2y2 .

Thus x ∈
[

−
√

4y − 2y2,+
√

4y − 2y2
]

, y ∈ [0, 2], z ∈
[

2− y,
√

4− x2 − y2
]

(the plane

and the sphere).

V =

∫ 2

0

∫

√
4y−2y2

−
√

4y−2y2

∫

√
4−x2−y2

2−y

dz dx dy .

Example 12.27. Find the volume of the solid D bounded below by the paraboloid

z = x2 + y2 and above by the plane 2x+ z = 3 (do not solve, only find the integral).
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12.6 .
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12.7 Cylindrical and spherical coordinates

12.7.1 Cylindrical coordinates

The cylindrical coordinates are an extension of the polar coordinates in R
3.

Conversion:

- Cylindrical to rectangular











x = r cos(θ)

y = r sin(θ)

z = z

- Rectangular to cylindrical















r =
√

x2 + y2

tan(θ) =
y

x

z = z

Main examples:

Cylinder Cone Paraboloid

Rect. x2 + y2 = a2 x2 + y2 = z2 x2 + y2 = az

Cyl. r = a r = z r2 = az

y

z

x

y

z

x

y

z

x

Example 12.28. Find an equation in cylindrical coordinates for the elliptic paraboloid

z = x2 + 3y2.

Solution:
x = r cos(θ)

y = r sin(θ)

z = z

→
z = r2 cos2(θ) + 3r2 sin2(θ)

z = r2
(

1− sin2(θ) + 3 sin2(θ)
)

z = r2
(

1 + 2 sin2(θ)
)
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Integration with cylindrical coordinates For a z-simple integral, if the projection in

xy-plane can be described better with polar coordinates, then

∫∫∫

D

f(x, y, z) dV =

∫∫

A

[

∫ v(x,y)

u(x,y)

f(x, y, z) dz

]

dA =

∫∫

A

[

∫ v(x,y)

u(x,y)

f (r cos(θ), r sin(θ)) dz

]

dA ,

where u(x, y) ≤ z ≤ v(x, y). Then, we should also transform the boundaries in the z-direction

as a function of r and θ.

- Let D be a solid with upper surface z = v(r, θ) and lower surface z = u(r, θ), and let A

be the projection of D in the xy-plane. Then,

∫∫∫

D

f(x, y, z) dV =

∫ β

α

∫ g2(θ)

g1(θ)

∫ v(r,θ)

u(r,θ)

f (r cos(θ), r sin(θ), z) r dz dr dθ ,

where A =
{

(r, θ) such that α ≤ θ ≤ β and g1(θ) ≤ r ≤ g2(θ)
}

.

Example 12.29. Find the volume of the solid in the first octant that is bounded by the

cylinder x2 + y2 = 2y, the half cone z =
√

x2 + y2 and the xy-plane.

y

z

x

Region D

Solution: The domain in the xy- plane can be recognized as a half circle ⇒ we
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transform in cylindrical coordinates.

- Cylinder: x2 + y2 = 2y → r2 cos2(θ) + r2 sin2(θ) = 2 r sin(θ)

r2 = 2r sin(θ)

r = 2 sin(θ)

- Half cone: z =
√

x2 + y2 → z =
√

r2 cos2(θ) + v2 sin2(θ)

z =
√
r2

z = r

The region D has the following bounds:

z ∈ [0, r] (half cone), r ∈ [0, 2 sin(θ)], θ ∈
[

0,
π

2

]

(first octant).

V =

∫∫∫

D

dV =

∫∫

A

∫ v(r,θ)

u(r,θ)

r dz dA =

∫ π
2

0

∫ 2 sin(θ)

0

∫ r

0

r dz dr dθ =

∫ π
2

0

∫ 2 sin(θ)

0

r
[

z
]r

0
dr dθ =

=

∫ π
2

0

∫ 2 sin(θ)

0

r2dr dθ =

∫ π
2

0

[

r3

3

]2 sin(θ)

0

dθ =

∫ π
2

0

8

3
sin3(θ) dθ =

8

3

∫ π
2

0

sin3(θ) dθ =

=
8

3

∫ π
2

0

sin2(θ) · sin(θ) dθ =
8

3

∫ π
2

0

(

1− cos2(θ)
)

sin(θ) dθ = . . .

let u = cos(θ) → du = − sin(θ) dθ → −du = sin(θ) dθ

for θ = 0 → u = cos(0) = 1

for θ =
π

2
→ u = cos

(π

2

)

= 0

. . . =
8

3

∫ 0

1

(

1− u2
)

(−du) =
8

3

∫ 1

0

(

1− u2
)

du =
8

3

[

u− u3

3

]1

0

=
8

3
· 2
3
=

16

9
.

12.7.2 Spherical coordinates

In spherical coordinates we label a point P by a triple (ρ, θ, φ):
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y

z

x

ρ
φ

θ

ρ = distance from the origin of the point P (ρ ≥ 0).

θ = polar angle (as in polar coordinates) 0 ≤ θ ≤ 2π.

φ = angle between z-axis and the vector OP , 0 ≤ φ ≤ π.

Note: the spherical coordinates can be led back to the latitude and the longitude of the

earth.

y

z

x

ρ

φ

θ

φ = north latitude

ρ = radius of the earth

θ = longitude east

- Spherical to rectangular











x = ρ sin(φ) cos(θ)

y = ρ sin(φ) sin(θ)

z = ρ cos(θ)

- Spherical to cylindrical











r = ρ sin(φ)

θ = θ

z = ρ cos(φ)

- Rectangular to spherical



























ρ =
√

x2 + y2 + z2

tan(θ) =
y

x

φ = cos−1

(

z
√

x2 + y2 + z2

)

- Cylindrical to spherical



















ρ =
√

x2 + y2

θ = θ

φ = cos−1

(

z√
r2 + z2

)
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Main examples:

Sphere Half-Cone Vertical half-plane

Rect. x2 + y2 + z2 = a2 tan(a) · z =
√

x2 + y2 θ = a

Sph. ρ = a φ = a, 0 < a <
π

2
0 ≤ θ ≤ 2π

y

z

x

y

z

x

a

y

z

x θ

Example 12.30. Convert in spherical coordinates the paraboloid z = x2 + y2.

Solution:
ρ cos(φ) =

(

ρ sin(φ) cos(θ)
)2

+
(

ρ sin(φ) sin(θ)
)2

ρ cos(φ) =
(

ρ2 sin2(φ)
)

·
(

cos2(θ) + sin2(θ)
)

ρ cos(φ) = ρ2 sin2(φ)

ρ cos(φ) = ρ sin2(φ) → ρ =
cos(φ)

sin2(φ)
=

cot(φ)

sin(φ)
.

Integration with spherical coordinates If f is continuous on the bounded solid region

D, then the triple integral of f over D is given by

∫∫∫

D

f(x, y, z) dV =

∫∫∫

D

f
(

ρ sin(φ) cos(θ), ρ sin(φ) sin(θ), ρ cos(φ)
)

ρ2 sin(φ) dρ dθ dφ ,

whereD is the regionD expressed in spherical coordinates. Note that dV = ρ2 sin(φ) dρ dθ dφ.

Example 12.31. Verify that a sphere of radius R has volume V =
4

3
πR3.

Solution: we have the following extremes:

ρ ∈ [0, R], θ ∈ [0, 2π], φ ∈ [0, π] .
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V =

∫∫∫

D

dV =

∫ 2π

0

∫ π

0

∫ R

0

ρ2 sin(φ) dρ dφ dθ =

∫ 2π

0

∫ π

0

sin(φ)

[

ρ3

3

]R

o

dφ dθ =

=

∫ 2π

0

[

− cos(φ)
]π

0

R3

3
dθ =

[

θ
]2π

0
(1 + 1)

R3

3
=

4

3
R3 π .

Example 12.32. Evaluate the integral I =

∫ 1

−1

∫

√
1−x2

−
√
1−x2

∫

√
2−x2−y2

x2+y2
z dz dy dx.

y

z

x

Solution: Consider the z boundaries:

Lower: z = x2 + y2 (paraboloid)

Upper: z =
√

2− x2 − y2 (half sphere) → z2 = 2− x2 − y2 → x2 + y2 + z2 = 2 .

In spherical coordinates:

Lower: ρ cos(φ) = ρ2 sin2(φ) cos2(θ) + ρ2 sin2(φ) sin2(θ) → ρ cos(φ) = ρ2 sin2(φ)

⇒ ρ =
cos(φ)

sin2(φ)

Upper: x2 + y2 + z2 = 2 ⇒ ρ =
√
2.

Note that, depending on the value of φ, the maximum value for ρ can be either ρ =
√
2

or ρ =
cos(φ)

sin2(φ)
⇒ we need to find the intersection between the two curves:











ρ =
√
2

ρ =
cos(φ)

sin2(φ)

→ cos(φ)

sin2(φ)
=

√
2 (no answer)
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{

x2 + y2 + z2 = 2

z = x2 + y2
→

z + z2 = 2

z2 + z − 2 = 0 → (z + 2)(z − 1) = 0 .

z = −2 (impossible, z ≥ 0)

z = 1 → x2 + y2 = 1 (circle of radius =1, at z = 1)

⇒ For: φ ≤ π

4
→ ρmax =

√
2

φ >
π

4
→ ρmax =

cos(φ)

sin2(φ)

y

z

x

45◦

1

So we need to split the φ integral in two parts:

I =

∫ 2π

0

∫ π
4

0

∫

√
2

0

(

ρ cos(φ)
)

ρ2 sin(φ)dρdφdθ +

∫ 2π

0

∫ π
2

π
4

∫
cos(φ)

sin2(φ)

0

(

ρ cos(φ)
)

ρ2 sin(φ)dρdφdθ =

=

∫ 2π

0

∫ π
4

0

[

ρ4

4

]

√
2

0

cos(φ) sin(φ) dφ dθ +

∫ 2π

0

∫ π
4

0

[

ρ4

4

]

cos(φ)

sin2(φ)

0

cos(φ) sin(φ) dφ dθ = . . .

⇒ not easy to solve!

However, in this case, the simplest approach is the cylindrical coordinates:

∫∫

A

∫

√
2−x2−y2

x2+y2
z dz dA ,
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where A is the circle of radius =1 (”shadow” of the area found before, θ ∈ [0, 2π] and

r ∈ [0, 1]).

∫∫

A

∫

√
2−x2−y2

x2+y2
z dz dA =

∫ 2π

0

∫ 1

0

∫

√
2−r2

r2
z r dz dr dθ =

∫ 2π

0

∫ 1

0

[

z2

2
r

]

√
2−r2

r2
dr dθ

=

∫ 2π

0

∫ 1

0

(

(2− r2)r

2
− r4 · r

2

)

dr dθ =

∫ 2π

0

∫ 1

0

(

2r − r3 − r5

2

)

dr dθ =

=

∫ 2π

0

1

2

[

2r2

2
− r4

4
− r6

6

]1

0

dθ =

∫ 2π

0

1

2

(

1− 1

4
− 1

6

)

dθ =

= 2π · 1
2
· 12− 3− 2

12
=

7π

12
.

Example 12.33. Evaluate

∫∫∫

D

√

x2 + y2 + z2 dV , where D is the portion of the ball

x2 + y2 + z2 ≤ 4 in the first octant (x ≥ 0, y ≥ 0, z ≥ 0).

Solution:

x2 + y2 + z2 = ρ2 cos2(θ) sin2(φ) + ρ2 sin2(θ) sin2(φ) + ρ2 cos2(φ) =

= ρ2 sin2(φ)
(

cos2(θ) + sin2(θ)
)

+ ρ2 cos2(φ) = ρ2 .

Sphere, first octant → φ ∈
[

0,
π

2

]

, θ ∈
[

0,
π

2

]

, ρ ∈ [0, 2] ⇒

∫∫∫

D

√

x2 + y2 + z2 dV =

∫ π/2

0

∫ π/2

0

∫ 2

0

ρ · ρ2 sin(φ) dρ dθ dφ =

∫ π/2

0

∫ π/2

0

[

ρ4

4

]2

0

sin(φ) dθ dφ =

=

∫ π/2

0

∫ π/2

0

4 sin(φ) dθ dφ =

∫ π/2

0

4 sin(φ)
[

θ
]π/2

0
dφ =

=

∫ π/2

0

2π sin(φ) dφ = −2π
[

cos(φ)
]π/2

0
= 2π .
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12.8 Jacobian: change of variables

12.8.1 Change of variables in double integrals

In a single integral, the change of variables works as follows:

- x = g(u)

- dx = g′(u) du

∫ b

a

f(x) dx =

∫ d

c

f(g(u)) g′(u) du

- Extremes: a, b → g(c) = a, g(d) = b. In general, this process involves a ”mapping factor”,

called Jacobian.

Theorem 12.6 (Change of variables in a double integral). Let f be a continuous function

on the interior of a region D in the xy-plane and bounded on that region, and let T be a

one-to-one transformation except possibly on the boundary that maps the region D∗ in

the uv-plane onto D under the change of variables x = g(u, v), y = h(u, v), where g and

h are continuously differentiable functions in D∗. Then,

∫∫

D

f(x, y) dy dx =

∫∫

D∗

f (g(u, v), h(u, v)) · |J(u, v)| du dv ,

where

J(u, v) =

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

=
∂x

∂u
· ∂y
∂v

− ∂x

∂v
· ∂y
∂u

.

Note: The transformation T is a function that transforms the uv-plane onto the xy-plane.

Its inverse T−1 maps the xy-plane onto the uv-plane.

u

v

(u, v)

D

x

y

(x, y)

D∗

T−1

T
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Example 12.34. Find the Jacobian for the change of variables from rectangular to polar

coordinates, namely x = r cos(θ), y = r sin(θ).

θ

r

D∗

r1 r2

θ1

θ2

x

y

r1

r2

θ1 θ2

D

T

Solution:

J =

∣

∣

∣

∣

∣

∣

∣

∂
(

r cos(θ)
)

∂r

∂
(

r cos(θ)
)

∂θ
∂
(

r sin(θ)
)

∂r

∂
(

r sin(θ)
)

∂θ

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

cos(θ) −r sin(θ)

sin(θ) r cos(θ)

∣

∣

∣

∣

= r cos2(θ) + r sin2(θ) = r .

Example 12.35. If u = xy and v = x2 − y2, express the Jacobian in terms of u and v.

Solution: It is not easy to express x, y as a function of u, v.

⇒ J−1 =
∂(u, v)

∂(x, y)
=







∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y






=

[

y x

2x 2y

]

= −2y2 − 2x2 = −2(x2 + y2) .

Since (x2 + y2)2 = (x2 − y2)2 − 4x2y2 = v2 − 4u2 → (x2 + y2) =
√
v2 − 4u2.

J−1 = −2
√
v2 − 4u2 → J =

−1

2
√
v2 − 4u2

.

Example 12.36. Compute

∫∫

D

(

x− y

x+ y

)4

dy dx, whereD is the triangular region bounded

by the line x+ y = 1 and the coordinate axis.
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Solution: A good substitution for the given integral is: u = x− y and v = x+ y.

⇒ x = u+ y ⇒ v = u+ y + y ⇒ 2y = v − u ⇒ y =
v − u

2

x = u+
v − u

2
=

u+ v

2










x =
u+ v

2

y =
v − u

2

Thus, the Jacobian reads

J =
∂(x, y)

∂(u, v)
=







∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v






=







1

2

1

2

−1

2

1

2






=

1

4
+

1

4
=

1

2
.

Boundaries:

- line x = 0 → u+ v

2
= 0 → u+ v = 0 → u = −v

- line y = 0 → v − u

2
= 0 → u− v = 0 → u = v

- line x+ y = 1 → u+ v

2
+

v − u

2
= 1 → v = 1

x

y

y = 1− x

1

1

u

v

v = uv = −u
v = 11
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Type II integral

∫ 1

0

∫ v

−v

(u

v

)4

J du dv =

∫ 1

0

∫ v

−v

1

2

(u

v

)4

du dv =

∫ 1

0

1

2

1

v4

[

u5

5

]v

−v

dV =

=

∫ 1

0

1

2v4

(

v5

5
+

v5

5

)

dV =

∫ 1

0

1

2v4
2v5

5
dv =

∫ 1

0

v

5
dV =

[

v2

10

]1

0

=
1

10
.

Example 12.37 (Change of variables to simplify a region). Find the area of the region

E bounded by the ellipse
x2

a2
+

y2

b2
= 1.

Solution: The area is given by A =

∫∫

D

1 dy dx. To solve a simpler integral, we can

consider the transformation

u =
x

a
v =

y

b
x = au y = bv

⇒ x2

a2
+

y2

b2
= 1 → u2 + v2 = 1 .

x

y

−a a

b

−b

T

u

v

1

1

c

The transformed region is the circle c with radius equal to 1.

J =

[

a 0

0 b

]

= ab

A =

∫∫

C

1 · J du dv =

∫ 2π

0

∫ 1

0

a b r dr dθ = a b π .

(Area of the circle of radius =1 → A = π (1)2 = π).
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12.8.2 Change of variables in a triple integral

The change of variables formula for triple integrals is similar to the formula for double

integrals:

T : x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) .

Then, the Jacobian is the determinant of

J =
∂(x, y, z)

∂(u, v, w)
=













∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w













.

And the change of variables yields

∫∫∫

R

f(x, y, z) dx dy dz =

∫∫∫

R∗

f
(

x(u, v, w), y(u, v, w), z(u, v, w)
)

∣

∣

∣

∣

∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

du dv dw .

Example 12.38 (HW set 12.7-12.8 Ex. 16). Given

x = 8u− 10uv

y = 7uv − uvw

z = −6uvw

find J .

Solution:

J =
∂(x, y, z)

∂(u, v, w)
=





8− 10v −10u 0

7v − vw 7u− uw −uv

−6vw −6uw −6uv



 =

=(8− 10v)(7u− uw)(−6uv) + (−10u)(−uv)(−6vw) + 0− 0−
+(−6uw)(−uv)(8− 10uv)− (7v − vw)(−10u)(−6uv) = . . .


