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11.1 Functions of several variables

Definition 11.1 (Function of 2 variables). A function of two variables is a rule that

assigns to each pair (x, y) in a set D a unique number f(x, y). The set D is called the

domain of the function, and the corresponding values of f(x, y) constitute the range of

f .

Note: We may write z− f(x, y) where x and y are the independent variable and z is the

dependent variable.

Example 11.1. Given the function f(x, y) =
√

9− x2 − 4y2, evaluate f(2, 1), f(2t, t2),

and the domain D of f .

Solution:

- f(2, 1) =
√
9− 4− 4 = 1

- f(2t, t2) =
√

9− (2t)2 − 4(t2)2) =
√
9− 4t2 − 4t4

- D : 9− x2 − 4y2 ≥ 0 → x2 + 4y2 ≤ 9, that is satisfied by the internal points of the

ellipse
x2

9
+

y2

9/4
= 1.

x

y

3

3/2

D

Operations with functions of 2 variables.

- Sum/difference: (f ± g)(x, y) = f(x, y)± g(x, y)

- Product: (f · g)(x, y) = f(x, y) · g(x, y)
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Example 11.3. Sketch the level curves of the function f(x, y) = 10− x2 − y2 for z = 1,

z = 4 and z = 9.

Solution:

- z = 1 → 10− x2 − y2 = 1 → x2 + y2 = 9 → Circle with radius equal to 3

- z = 6 → 10− x2 − y2 = 1 → x2 + y2 = 4 → Circle with radius equal to 2

- z = 9 → 10− x2 − y2 = 1 → x2 + y2 = 1 → Circle with radius equal to 1

z=
1

z=
2

z=
3

x

y

Graph of a function of two variables.

Example 11.4. Graph the function of f(x, y) = x2 + y2.

Solution: To graph it we consider the trace z = k. To have additional information we

can also consider x = A and y = B, with A,B constant (traces along x-axis and y-axis

respectively). Thus, with z = x2 + y2 we have:

- z = k → x2 + y2 = k → Circle of radius r equal to
√
k, with k ≥ 0

- x = A → A2 + y2 = z → Parabola

- y = B → x2 +B2 = z → Parabola
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11.2 Limits and continuity

Open and closed sets in R
2 and R

3.

- Open disk:
√

(x− a)2 + (y − b)2 < r

- Closed disk:
√

(x− a)2 + (y − b)2 ≥ r

x

y
Open disk

(boundary exluded)

Same analogy to open and closed set ]a, b[ and [a, b].

- Open set→ A set where the boundary is excluded from the domain

- Closed set→ A set where the boundary is included in the domain

Definition 11.2. Given the set S define:

• Interior point of S: a point P0 such that ∃ an open set centered in P0 contained

entirely within the set S.

• Boundary point P0 of S: every open disk centered in P0 contains both points of S

and points outside S.

11.2.1 Limit of a function of two variables

The limit statement

lim
(x,y)→(x0,y0)

f(x, y) = L

means that for each given number ε > 0, there exists a number δ > 0 so that whenever (x, y)

is a point in the domain D of f such that

0 <
√

(x− x0)2 + (y − y0)2 < δ ,

then

|f(x, y)− L| < ε .
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x

y

x0

y0

δ

Example 11.5.

lim
(x,y)→(0,0)

x2 + x− xy − y

x− y
.

Solution: Note that, for x+ y we have

x(x+ 1)− y(y + 1)

x− y
=

(x− y)(x+ 1)

x− y
= x+ 1 .

Thus:

lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x+ 1 = 1 .

Note: As in 2D, the limit can be examined from two different directions (left or right). In

3D the limit can be evaluated along any line.

If the limit

lim
(x,y)→(x0,y0)

f(x, y) = L

is not the same for all approaches (paths) then the limit does not exist.

Example 11.6. If f(x, y) =
2xy

x2 + y2
, show that lim

(x,y)→(0,0)
f(x, y) does not exist by eval-

uating the limit along the x-axis, the y-axis and the line x = y.

Solution:

- x-axis→ y = 0 : lim
(x,y)→(0,0)

f(x, 0) = lim
(x,y)→(0,0)

2x(0)

x2
= 0
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- y-axis→ x = 0 : lim
(x,y)→(0,0)

f(0, y) = 0

- x− y line x = y : lim
(x,y)→(0,0)

f(x, x) = lim
(x,y)→(0,0)

2x2

2x2
= 1

Therefore, the limit does not exist.

Example 11.7. General approach to show that the limit does not exist.

lim
(x,y)→(0,0)

x2y

x4 + y2

Solution: We consider the general line passing through (0, 0): y = mx

lim
(x,y)→(0,0)

f(x,mx) = lim
(x,y)→(0,0)

x2mx

x4 + (mx)2
= lim

(x,y)→(0,0)

mx3

x4 + x2m2
= lim

(x,y)→(0,0)

mx

x2 +m
= 0 ∀m.

But if we consider the parabolic path y = x2 we have

lim
(x,y)→(0,0)

f(x, x2) = lim
(x,y)→(0,0)

x2 · x2

x4 + (x2)2
= lim

(x,y)→(0,0)

x4

2x4
=

1

2
.

Depending on the path, we have different limits ⇒ the limit does not exist.

Basic formulas and rules of limits in two variables. Suppose lim
(x,y)→(x0,y0)

f(x, y) = L

and lim
(x,y)→(x0,y0)

g(x, y) = M . Then, for any constant a ∈ R, we have

- Scalar multiple rule: lim
(x,y)→(x0,y0)

[af ](x, y) = aL

- Sum rule: lim
(x,y)→(x0,y0)

[f + g](x, y) = L+M

- Product rule: lim
(x,y)→(x0,y0)

[fg](x, y) = LM

- Quotient rule: lim
(x,y)→(x0,y0)

[

f

g

]

(x, y) =
L

M
if M 6= 0
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Example 11.8. Assuming that these limits exist, evaluate

• lim
(x,y)→(4,3)

x2 + xy + y2 = 37 .

• lim
(x,y)→(1,2)

2xy

x2 + y2
=

lim
(x,y)→(1,2)

2xy

lim
(x,y)→(1,2)

x2 + y2
=

4

5
.

11.2.2 Continuity of a function of 2 variables

The function f(x, y) is continuous at the point (x0, y0) if and only if

1. f(x0, y0) is defined;

2. lim
(x,y)→(x0,y0)

f(x, y) exists;

3. lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0);

A function is continuous on a set S if it is continuous at each point in S.

Example 11.9. Test the continuity of f(x, y) =
1

y − x2
.

Solution: The function is a rational function in x and y, so it is not continuous when

the denominator is = 0.

y − x2 = 0 ⇒ not continuous along the parabola y = x2 .

11.2.3 Limits and continuity for functions with 3 variables

The extension from functions with 2 variables is straightforward (same rules).

- Limit:

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L

means that for each number ε > 0, there exists a number δ > 0 such that

|f(x, y, z)− L| < ε
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whenever (x, y, z) is a point of the domain of f such that

0 ≤
√

(x− x0)2 + (y − y0)2 + (z − z0)2 < δ .

- Continuity: the function is continuous in P (x0, y0, z0) if

1. f(x0, y0, z0) is defined;

2. lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) exists;

3. lim
(x,y,z)→(x0,y0,z0)

f(x, y) = f(x0, y0, z0).

Example 11.10. For what points f(x, y, z) =
3

√

x2 + y2 − 2z
is continuous?

Solution: The function is continuous if x2 + y2 − 2z > 0. Therefore, the continuity is

present for the points outside the paraboloid z <
x2

2
+

y2

2
.
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11.3 Partial derivatives

The process of differentiating a function of several variables with respect to one of its variables

while keeping the other variables fixed is called partial differentiation and the resulting

derivative is a partial derivative of the function.

Definition 11.3. If z = f(x, y), then the partial derivatives of f with respect to x and

y are the functions fx and fy, respectively, defined by

fx(x, y) = lim
∆x→0

f(x+∆x, y)− f(x, y)

∆x

fy(x, y) = lim
∆y→0

f(x, y +∆y)− f(x, y)

∆y

provided the limits exist.

Note: to compute fx(x, y) we can consider y as a constant and vice-verse.

Example 11.11. Given f(x, y) = x3y + x2y2, find fx, fy.

Solution:

• fx: y as a constant → fx = 3x2y + 2xy2

• fy: x as a constant → fy = x3 + 2x2y

Alternative notation for partial derivatives.

fx(x, y) =
∂f

∂x
=

∂z

∂x
=

∂

∂x
f(x, y) = zx = Dx(f)

fy(x, y) =
∂f

∂y
=

∂z

∂y
=

∂

∂y
f(x, y) = zy = Dy(f)

The values of f(x, y) derivatives at the point (a, b) are denoted by
∂f

∂x

∣

∣

∣

∣

(a,b)

= fx(a, b) and

∂f

∂y

∣

∣

∣

∣

(a,b)

= fy(a, b).
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Example 11.12. Given z = x2 sin(3x+ y3), evaluate
∂z

∂x

∣

∣

∣

∣

(π
3
,0)

and zy at (1,1).

Solution:

1.
∂z

∂x
= 2x sin(3x+ y3) + x2 3 cos(3x+ y3)

∂z

∂x

∣

∣

∣

∣

(π
3
,0)

= 2
π

3
sin
(

3
π

3

)

+
(π

3

)2

3 cos
(

3
π

3

)

=

=
2π

3
sin(π) +

π2

3
cos(π) = −π2

3
.

2.

∂z

∂y
= x2 3y2 cos

(

3x+ y3
)

∂z

∂y

∣

∣

∣

∣

(1,1)

= 3 cos(4) .

Example 11.13. Given the 3 variables function f(x, y, z) = x2 + 2xy2 + yz3, we have

fx = 2x+ 2y2 , fy = 4xy + z3 , fz = 3yz2 .

Example 11.14 (Partial derivative of an implicitly defined function). Let z be an im-

plicitly defined function

x2z + yz3 = x .

Determine 1)
∂z

∂x
and 2)

∂z

∂y
.

Solution:

1) We differentiate everything treating y as a constant.
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Example:
∂(x2z)

∂x
=

∂(x2)

∂x
z + x2 ∂z

∂x
. So, we have

2xz + x2 ∂z

∂x
+ y

∂(z3)

∂x
= 1

2xz + x2 ∂z

∂x
+ y 3z2

∂z

∂x
= 1

∂z

∂x
(x2 + 3yz2) = 1− 2xz → ∂z

∂x
=

1− 2xz

x2 + 3yz2
.

2) We treat x as a constant, and we differentiate in the y variable:

x2 ∂z

∂y
+ z3 + y

∂(z3)

∂y
= 0

x2 ∂z

∂y
+ z3 + 3yz2

∂z

∂y
= 0

∂z

∂y
(x2 + 3yz2) → ∂z

∂y
= − z3

x2 + 3yz2
.

Partial derivative as a slope The line parallel to the xz-plane and tangent to the surface

z = f(x, y) at the point P0(x0, y0, z0) has slope fx(x0, y0). Likewise, the tangent line to the

surface at P0 that is parallel to the yz-plane has slope fy(x0, y0).

y

z

x

P0

Plane y = const, // to xz

Slope of the tangent in P0

along this direction = fx(x0, y0)

Partial derivatives as rate As the point (x, y) moves from the fixed point P0(x0, y0), the

function f(x, y) changes at a rate given by fy(x0, y0) in the direction of the positive x-axis

and by fy(x0, y0) in the direction of the positive y-axis.
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Higher order partial derivatives

- Second order partial derivatives

∂2f

∂x2
=

∂

∂x

(

∂f

∂x

)

= (fx)x = fxx

∂2f

∂y2
=

∂

∂y

(

∂f

∂y

)

= (fy)y = fyy

- Mixed second order partial derivatives

∂2f

∂x∂y
=

∂

∂x

(

∂f

∂y

)

= (fy)x = fyx

∂2f

∂y∂x
=

∂

∂y

(

∂f

∂x

)

= (fx)y = fxy

Theorem 11.1 (Equality of mixed partials). If the function f(x, y) has mixed second

order partial derivatives fxy and fyx that are continuous in an open disk containing

(x0, y0), then

fxy(x0, y0) = fyx(x0, y0) .

Example 11.15. Given z = f(x, y) = 5x2 − 2xy + 3y3, determine
∂2f

∂x∂y
,

∂2f

∂y∂x
,
∂2z

∂x2
.

Solution:

1.
∂

∂x

(

∂f

∂y

)

=
∂

∂x
(−2x+ 9y2) = −2 .

2.
∂

∂y

(

∂f

∂x

)

=
∂

∂y
(10x− 2y) = −2 .

3.
∂2z

∂x2
=

∂

∂x

(

∂z

∂x

)

=
∂

∂x
(10x− 2y) = 10 .
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Example 11.16. Given f(x, y) = x2yey, find fxy, fyx, fxx, fxxy.

Solution:

fxy = (fx)y = (2xyey)y = 2xey + 2xyey = 2xey(1 + y) .

fyx = (fy)x = (x2ey + x2yey)x = 2xey + 2xyey = 2xey(1 + y) .

fxx = (fx)x = (2xyey)x = 2yey .

fxxy = ((fx)x)y = ((2xyey)x)y = (2yey)y = 2ey + 2yey = 2ey(1 + y) .

Example 11.17 (Partial differential equation: the Heat Equation).

∂T

∂t
= c2

∂2T

∂x2
T (x, t) → temperature

Equation for the study of the temperature in a thin rod at position x at time t.

Verify that T (x, t) = e−t cos
(x

c

)

satisfies the heat equation.

Solution:

∂T (x, t)

∂t
=

∂
[

e−t cos
(x

c

)]

∂t
= −e−t cos

(x

c

)

∂T (x, t)

∂x2
=

∂

∂x





∂
[

e−t cos
(x

c

)]

∂x



 =
∂

∂x

[

e−t1

c

(

− sin
(x

c

))

]

=

=
e−t

c

1

c

(

− cos
(x

c

))

=
−e−t

c2
cos
(x

c

)

∂T

∂t
= c2

∂2T

∂x2
⇒ −e−t cos

(x

c

)

= c2
(−e−t

c2
cos
(x

c

)

)

.

Example 11.18. Show that fxyz = fyzx = fzyx for the function f(x, y, z) = xyz+x2y3z4.
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Solution:

fxyz = ((fx)y)z = ((yz + 2xy3z4)y)z = (z + 6xy2z4)z = 1 + 24xy2z3 .

fyzx = ((fy)z)x = ((xz + 3x2y2z4)z)x = (x+ 12x2y2z3)x = 1 + 24xy2z3 .

fzyx = . . .
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General equation of a plane passing through P0(x0, y0, z0):

A(x− x0) + B(y − y0) + C(z − z0) = 0

C(z − z0) = −A(x− x0)− B(y − y0)

z − z0 = −A

C
(x− x0)−

B

C
(y − y0) .

We introduce a =
A

C
and b =

B

C
and we obtain

z − z0 = a(x− x0) + b(y − y0) .

On the plane (*), the slope of the tangent is the derivative of f along y. In (**) the slope of

the tangent is the derivative along x. Thus we have:

a = fx(x0, y0) =
∂f

∂x

∣

∣

∣

∣

(x0,y0)

b = fy(x0, y0) =
∂f

∂y

∣

∣

∣

∣

(x0,y0)

.

Definition 11.4. Suppose S is a surface with equation z = f(x, y) and P0(x0, y0, z0) be

a point of S at which a tangent plane exists. Then, the tangent plane to S at P0 is:

z − z0 =
∂f

∂x

∣

∣

∣

∣

(x0,y0)

(x− x0) +
∂f

∂y

∣

∣

∣

∣

(x0,y0)

(y − y0) .

Example 11.19. Find the tangent plane to z = f(x, y) = tan−1
(y

x

)

at the point

P0(1,
√
3,

π

3
).

Solution:

∂f

∂x
=

− y
x2

1 +
(

y
x

)2 =
− y

x2

x2+y2

x2

=
−y

x2 + y2
→ ∂f

∂x

∣

∣

∣

∣

(1,
√
3)

=
−
√
3

1 + 3
= −

√
3

4
.

∂f

∂y
=

1

1 +
(

y
x

)2

1

x
=

1
x2+y2

x2 x
=

x

x2 + y2
→ ∂f

∂y

∣

∣

∣

∣

(1,
√
3)

=
1

4
.

Therefore we have

z − π

3
= −

√
3

4
(x− 1) +

1

4
(y −

√
3) .
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y

x

z

∆x

∆z

∆y

Solution: The surface area is given by the bottom plus four sides

S = xy + 2xz + 2zy .

Therefore the cost ($3/Ft2 for the bottom, $2/Ft2 for the sides) is:

C(x, y, z) = 3xy + 2(2xz + 2zy) .

Partial derivative:

Cx = 3y + 4z Cy = 3x+ 4z Cz = 4x+ 4y .

Change of dimensions

∆x =
3 in

12 in/Ft
= 0.25 Ft ∆y = 0.25 Ft ∆x = − 4

12 in/Ft
= −0.33 Ft .

Thus, the change in the total cost is approximated by

∆C = Cx(3, 1, 2)∆x+ Cy(3, 1, 2)∆y + Cz(3, 1, 2)∆z =

= (3 · 1 + 4 · 2) 0.25 + (3 · 3 + 4 · 2) 0.25 + (4 · 3 + 4 · 1)(−0.33) ≃ 1.67 $ .

The total differential For function of one variable we have: dy = f ′(x)dx. For two-

variable case, the total differential of the function f(x, y) is:

df =
∂f

∂x
dx+

∂f

∂y
dy = fx(x, y) dx+ fy(x, y) dy .
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For three-variable functions, we have:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz .

Example 11.21. Determine the total differential of

a. f(x, y) = x2 ln(3y2 − 2x) .

b. f(x, y) = 2x3 + 5y4 − 6z .

Solution:

a. df =
∂f

∂x
dx+

∂f

∂y
dy =

[

2x ln(3y2 − 2x) + x2 −2

3y2 − 2x

]

dx+

[

6x2y

3y2 − 2x

]

.

b. df = 6x2dx+ 20y3dy − 6dz .

11.4.2 Differentiability

In two-dimension, the increment of f(x) at a point x0 is

∆f = f(x0 +∆x)− f(x0) = f ′(x0)∆x+ ε∆x

where ε → 0 as ∆x → 0 .

For two-variable functions, the differentiability can be defined as:

Definition 11.5. The function f(x, y) is differentiable at (x0, y0) if the increment of f

can be expressed as

∆f = fx(x0, y0)∆x+ fy(x0, y0)∆y + ε1∆x+ ε2∆y

where ε1 → 0 and ε2 → 0 as ∆x → 0 and ∆y → 0, respectively. In addition, f(x, y) is

said to be differentiable in the region R if f is differentiable ∀ (x, y) ∈ R.

Theorem 11.2 (Differentiability implies continuity). If f(x, y) is differentiable at (x0, y0),

it is also continuous there.
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Example 11.22 (A non-differentiable function for which fx and fy exist.). Let

f(x, y) =

{

1 if x > 0 and y > 0

0 otherwise .

Show that the partial derivatives fx and fy exist at the origin, but f is not differentiable

there.

Solution: Since f(0, 0) = 0 on all the x-axis and y-axis, we have

fx(0, 0) = lim
∆x→0

f(0 + ∆x, 0)− f(0, 0)

∆x
= 0

fy(0, 0) = lim
∆y→0

f(0, 0 + ∆y)− f(0, 0)

∆y
= 0 .

The partial derivatives both exist at the origin. If f(x, y) were differentiable at the origin,

it would have to be continuous there. Thus, we can show that f is not differentiable by

showing that is not continuous at (0, 0).

x = y : lim
(x,x)→(0,0)

f(x, x) = 1

x = 0 : lim
(0,y)→(0,0)

f(0, y) = 0











not continuous → not differentiable.

Theorem 11.3 (Sufficient condition for differentiability). If f is a function and f , fx
and fy are continuous in a disk D centered in (x0, y0) → f is differentiable at (x0, y0) .
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11.5 Chain rules

If the two variables x and y of a function f(x, y) can be both written as a function of a

parameter t, then z = f(x(t), y(t)) and the following theorem can be stated.

Theorem 11.4. Let f(x, y) be a differentiable function of x and y, and let x = x(t) and

y = y(t) be differentiable function of t. Then, z = f(x, y) is a differentiable function of t,

and
dz

dt
=

∂z

∂x
· dx
dt

+
∂z

∂y
· dy
dt

.

Example 11.23. Let z = x2 + y2, with x =
1

t
and y = t2. Compute

dz

dt
in two ways:

1) expressing x explicitly in terms of t;

2) using the chain rule.

Solution:

1) z =

(

1

t

)2

+ t4 ⇒ dz

dt
= −2t−3 + 4t3 = − 2

t3
+ 4t3 .

2)
dx

dt
=

d
(

1
t

)

dt
= − 1

t2
dy

dt
=

d (t2)

dt
= 2t

dz

dt
=

∂z

∂x
· dx
dt

+
∂z

∂y
· dy
dt

= 2x ·
(

− 1

t2

)

+2y · (2t) = 2 · 1
t
·
(

− 1

t2

)

+2t2 · (2t2) = − 2

t3
+4t3 .

Example 11.24. Let z =
√

x2 + 2xy, where x = cos θ and y = sin θ. Find
dz

dθ
in term

of x, y and z.

Solution:

∂z

∂x
=

1

2
(x2 + 2xy)

1

2
−1(2x+ 2y) =

1

2
√

x2 + 2xy
(2x+ 2y) =

x+ y
√

x2 + 2xy
,

∂z

∂y
=

1

2
(x2 + 2xy)

1

2
−12x =

x
√

x2 + 2xy
.
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Therefore, we have

dz

dθ
=

∂z

∂x

dx

dθ
+
∂z

∂y

dy

dθ
=

x+ y
√

x2 + 2xy
(− sin θ)+

x
√

x2 + 2xy
(cos θ) =

−(x+ y) sin θ + x cos θ
√

x2 + 2xy
.

Theorem 11.5 (Implicit function theorem). Let F be defined on a disk containing (a, b)

as an interior point, such that F (a, b) = 0, and assume Fx and Fy both continuous on the

disk, with Fy(a, b) 6= 0. Then, there exist an interval I on the real line containing a as an

interior point and a unique function y = y(x) defined on the interval I, such that y(a) = b

and F (x, y(x)) = 0, for every value x on the interval I. Furthermore, the derivative of y

is given by
dy

dx
= −Fx

Fy

.

Example 11.25 (Implicit differentiation using partial derivatives.). If y is a function of

x such that

sin(x+ y) + cos(x− y) = y ,

find
dy

dx
.

Solution: Let F (x, y) = sin(x+ y) + cos(x− y)− y so that F (x, y) = 0.

Then

Fx(x, y) = cos(x+ y)− sin(x− y)

Fy(x, y) = cos(x, y) + sin(x− y)− 1 .

By using the theorem:
dy

dx
= −Fx

Fy

⇒ dy

dx
= − cos(x+ y)− sin(x− y)

cos(x+ y) + sin(x− y)− 1
.

Extension of the chain rule Now we consider z = F (x, y), where x = x(u, v) and

y = y(u, v) are both functions of independent parameters u and v. Then, using the chain

rule we can find
∂z

∂u
,
∂z

∂v
.
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Theorem 11.6 (Chain rule for two independent parameters). Suppose z = f(x, y) is

differentiable at (x, y) and the partial derivatives of x and y exist at (u, v). Then, the

composite function z = f [x(u, v), y(u, v)] is differentiable at (u, v) with

∂z

∂u
=

∂z

∂x
· ∂x
∂u

+
∂z

∂y
· ∂y
∂u

and
∂z

∂v
=

∂z

∂x
· ∂x
∂v

+
∂z

∂y
· ∂y
∂v

.

Example 11.26. Let z = 4x− y2, where x = uv2 and y = u3v. Find
∂z

∂u
and

∂z

∂v
.

Solution:
∂z

∂x
= 4

∂z

∂y
= −2y

∂x

∂u
= v2

∂x

∂v
= 2uv

∂y

∂u
= 3u2v

∂y

∂v
= u3

⇒ ∂z

∂u
=

∂z

∂x
· ∂x
∂u

+
∂z

∂y
· ∂y
∂u

= 4v2 + (−2y)(3u2v) = 4v2 − 2(u3v)(3u2v) = 4v2 − 6u5v2 .

⇒ ∂z

∂v
=

∂z

∂x
· ∂x
∂v

+
∂z

∂y
· ∂y
∂v

= 4(2uv)− 2yu3 = 8uv − 2(u3v)u3 = 8uv − 2u6v .

Example 11.27 (Implicit differentiation with chain rule). Let z = u + f(u2v2), with f

differentiable. Show that u
∂z

∂u
− v

∂z

∂v
= u.

Solution: Let w = u2v2 ⇒ z = u+ f(w).

∂z

∂u
= 1 +

df

dw

∂w

∂u
= 1 +

df

dw
(2uv2) and

∂z

∂v
=

df

dw

∂w

∂v
=

df

dw
(2u2v)

⇒ u
∂z

∂u
− v

∂z

∂v
= u

[

1 +
df

dw
(2uv2)

]

− v

[

df

dw
(2u2v)

]

= u+
df

dw
2u2v2 − df

dw
2u2v2 = u .
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11.6 Directional derivatives and the gradient

To determine the slope of a line tangent to a curve at a point P0(x0, y0), with function

z = f(x, y), we need to specify the direction in which we wish to measure. We know that

in î-direction → ∂f

∂x
; and in the ĵ-direction → ∂f

∂y
.

To consider the generic direction, we consider a unit vector ū = u1î+ u2ĵ.

y

z

x

P0

ū

z = f(x, y)

Tangent to the curve

11.6.1 Directional derivative

Let f be a function of two variables, and let ū = u1î+u2ĵ be a unit vector. The directional

derivative of f at P0(x0, y0) in the direction of ū is given by

Dūf(x0, y0) = lim
(x,y)→(x0,y0)

f(x0 + hu1, y0 + hu2)− f(x0, y0)

h

provided the limit exists.

Theorem 11.7 (Directional derivative using partial derivatives). Let f(x, y) be a function

that is differentiable at P0(x0, y0). Then, f has a directional derivative in direction ū =
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u1î+ u2ĵ given by:

Dūf(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2 .

Example 11.28. Find the directional derivative of the function f(x, y) = 3 − 2x2 + y3

at the point P (1, 2) in the direction of the unit vector ū =
1

2
î−

√
3

2
ĵ.

Solution:

fx = −4x fy = 3y2

Dūf(1, 2) = fx(1, 2)
1

2
− fy(1, 2)

√
3

2
= −4 · 1 · 1

2
− 3 · (2)2 ·

√
3

2
= −2− 6

√
3 .

Note: The value of the directional derivative can be interpreted as the slope of the line

tangent to the curve with direction ū.

11.6.2 The gradient

Let f be a differentiable function at (x, y), and let f(x, y) have partial derivatives fx(x, y)

and fy(x, y). Then, the gradient of f denoted by ∇f , is a vector given by

∇f(x, y) = fx(x, y)̂i+ fy(x, y)ĵ .

The value of the gradient at a point P0(x0, y0) is denoted by

∇f0 = fx(x0, y0)̂i+ fy(x0, y0)ĵ .

Example 11.29. Find ∇f(x, y) for f(x, y) = x2y + y3.

Solution:

fx = 2xy fy = x2 + 3y2

∇f(x, y) = 2xyî+ (x2 + 3y2)ĵ .

Theorem 11.8 (The gradient formula for directional derivative). If f is a differentiable

function of x and y, then the directional derivative of f at the point P0(x0, y0) in the
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direction of the unit vector ū is

Dūf(x0, y0) = ∇f0 · ū .

Example 11.30. Find the directional derivative of f(x, y), with f(x, y) = ln(x2 + y3) at

P0(1,−3) in the direction of v̄ = 2̂i− 3ĵ.

Solution:

fx =
1

x2 + y3
· 2x fy =

1

x2 + y3
· 3y2

fx(1,−3) =
2 · 1
1− 27

=
−1

13
fy(1,−3) =

3 · 9
1− 27

= −27

26

∇f0 = ∇f(1,−3) = − 1

13
î− 27

26
ĵ

ū =
v̄

||v̄|| =
2̂i− 3ĵ√
4 + 9

=
2̂i√
13

− 3ĵ√
13

Dūf(x0, y0) = ∇f0 · ū = − 1

26
(2̂i+ 27ĵ) ·

(

2̂i√
13

− 3ĵ√
13

)

=
77
√
13

288
.

Basic properties of the gradient

- Constant rule: ∇c = 0̄ (for any constant c)

- Linearity rule: ∇(af + bg) = a∇f + b∇g (with a, b constants)

- Product rule: ∇(f · g) = f∇g + g∇f

- Quotient rule: ∇
(

f

g

)

=
f ′g − fg′

g2
, with g 6= 0

- Power rule: ∇(fn) = nfn−1∇f

Maximal property of the gradient. Depending on the direction of the derivative at one

point P0(x0, y0), we obtain different values of the slope of the lines tangent to the curve f in

P0. We now aim to find the largest value of the directional derivative.
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Theorem 11.9. Suppose f is differentiable at the point P0, and ∇f |P0
= ∇f0 6= 0. Then

1) The largest value of the directional derivative Dūf at P0 is ||∇f0|| and occurs when

the unit vector ū points in the direction of ∇f0.

2) The smallest value ofDūf at P0 is−||∇f0|| and occurs when ū points in the direction

of −∇f0.

Note: This theorem means that the function f increases most rapidly in the direction of the

gradient ∇f0 and decreases most rapidly in the opposite direction.

Example 11.31. Given f(x, y) = xe2y−x, find the direction where f shows the most

rapid increase in P0(2, 1).

Solution: We begin with the gradient: ∇f = fxî+ fy ĵ.

fx = e2y−x + x · e2y−x · (−1) = e2y−x(1− x) , fy = x · e2y−x · 2 = 2xe2y−x .

∇f =
[

e2y−x(1− x)
]

î+
[

2xe2y−x
]

ĵ

∇f0 = ∇f(2, 1) = e2−2(1− 2)̂i+
[

2 · 2 · e2−2
]

ĵ = −î+ 4ĵ

The increase is ||∇f0|| =
√
1 + 16 =

√
17 .

The maximum decrease is −∇f0 = î− 4ĵ .

Three-variable gradient

∇f = fxî+ fy ĵ + fzk̂ Gradient

Dūf = ∇f0 · ū Directional derivative

Example 11.32. Consider the function f(x, y, z) = xy sin(xz) and the point P0(1,−2, π).

Find:

1) ∇f0 (the gradient in P0).

2) The directional derivative in P0 in the direction ∇ = −2̂i+ 3ĵ − 5k̂ .

Solution:
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Example 11.33 (Finding a vector normal to a surface). Find a vector that is normal to

the surface f(x, y, z) = x2 + 2xy − yz + 3z2 = 7 at the point P0(1, 1,−1).

Solution: Note that f(x, y, z) represents a level surface. Computing the gradient we

have

∇f = (2x+ 2y)̂i+ (2x− z)ĵ + (−y + 6z)k̂

∇f0 = ∇f(1, 1,−1) = 4̂i+ 3ĵ − 7k̂ → required normal.

Example 11.34 (Finding a vector normal to a level curve). Find the level curve for c = 1

of the curve f(x, y) = x2 − y2 and find a normal vector at the point P0(2,
√
3) .

Solution: Level curve: x2 − y2 = 1.

∇f = 2xî− 2yĵ

∇f0 = ∇f(2,
√
3) = 4̂i− 2

√
3ĵ → required normal.

11.6.3 Tangent planes and normal line to a surface

Suppose S is a surface with the equation F (x, y, z) = C, and let P0(x0, y0, z0) be a point on

S where F is differentiable with ∇f 6= 0. Then, the equation of the tangent plane to S at

P0 is

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

and the normal line to S at P0 is:











x = x0 + Fx(x0, y0, z0)t

y = y0 + Fy(x0, y0, z0)t

z = z0 + Fz(x0, y0, z0)t .

Example 11.35. Find the tangent plane and the tangent normal line at the point

P0(1,−1, 2) on the surface S given by x2y + y2z + z2x = 5.

Solution: We consider F (x, y, z) = x2y+ y2z+ z2x. The problem is to consider the level

surface F (x, y, z) = 5. We first find the gradient
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∇F (x, y, z) = Fxî+ Fy ĵ + Fzk̂ = (2xy + z2)̂i+ (x2 + 2yz)ĵ + (y2 + 2xz)k̂ .

∇F0 = ∇F0(1,−1, 2) = (−2 + 4)̂i+ (1− 4)ĵ + (1 + 4)k̂ =

= 2̂i− 3ĵ + 5k̂ → normal to F ⇒ normal to the plane.

The tangent plane is:

2(x− x0)− 3(y − y0) + 5(z − z0) = 0

2(x− 1)− 3(y + 1) + 5(z − 2) = 0

2x− 3y + 5z = 15 .

The normal line is:










x− 1 = 2t

y + 1 = −3t

z − 2 = 5t .
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11.7 Extrema of functions of two variables

Absolute extrema. The function f(x, y) is said to have an absolute maximum at (x0, y0)

if f(x0, y0) ≥ f(x, y), ∀ (x, y) in the domain D of f . Similarly, f has an absolute minimum

at (x0, y0) if f(x0, y0) ≤ f(x, y) for all (x, y) in D. The absolute maxima and minima are

called absolute extrema.

Relative extrema. Let f be a function defined on a region containing (x0, y0). Then,

- f(x0, y0) is a relative maximum if f(x, y) ≤ f(x0, y0) ∀ (x, y) ∈ an open disk containing

(x0, y0);

- f(x0, y0) is a relative minimum if f(x, y) ≥ f(x0, y0) ∀ (x, y) ∈ an open disk containing

(x0, y0).

Theorem 11.11 (Partial derivatives criteria for relative extrema). If f has a relative

extremum (maximum or minimum) and partial derivatives fx and fy both exist at (x0, y0),

then

fx(x0, y0) = fy(x0, y0) = 0 .

11.7.1 Critical points

Definition 11.6. A critical point of a function f defined on an open set D is a point

(x0, y0) in D where either one of the following is true

1) fx(x0, y0) = fy(x0, y0) = 0;

2) At least one of fx(x0, y0) or fy(x0, y0) does not exist.

Example 11.36 (Distinguish critical point). Discuss the nature of the critical point (0, 0)

for the quadric surfaces

a) z = x2 + y2 b) z + x2 + y2 = 1 c) z = y2 − x2 .
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Then:

1) A relative maximum occurs at P0 if D(x0, y0) > 0 and fxx(x0, y0) < 0 (or,

equivalently, D(x0, y0) > 0 and fyy(x0, y0) < 0).

2) A relative minimum occurs at P0 if D(x0, y0) > 0 and fxx(x0, y0) > 0 (or

fyy(x0, y0) > 0).

3) A saddle point occurs at P0 if D(x0, y0) < 0.

4) If D(x0, y0) = 0, the test is inconclusive. Further analysis needed.

Note: The discriminant formula can be remembered by considering the determinant of the

matrix

D =

∣

∣

∣

∣

fxx fxy
fxy fyy

∣

∣

∣

∣

.

Example 11.37. Find all relative extrema and saddle points of: f(x, y) = 2x2 + 2xy +

y2 − 2x− 2y + 5.

Solution:

fx = 4x+ 2y − 2 fy = 2x+ 2y − 2 .

We want fx = fy = 0.
{

4x+ 2y − 2 = 0

2x+ 2y − 2 = 0 .

Subtracting the second equation to the first we obtain

{

2x = 0

2x+ 2y − 2 = 0
→

{

x = 0

2y = 2
→

{

x = 0

y = 1 .

The critical point is P (0, 1). Since we have fxx = 4, fyy = 2 and fxy = 2, we compute

D = fxxfyy − f 2
xy = 4 · 2− 22 = 4 > 0 .

Since fxx > 0 we conclude that we have a minimum at P (0, 1).



108 Chapter 11. Partial Differentiation

Example 11.38. Find the critical points of f(x, y) = 8x3 − 24xy + y3 and classify each

point.

Solution:
fx = 24x2 − 24y

fy = −24x+ 3y2
⇒

{

fx = 24x2 − 24y = 0

fy = −24x+ 3y2 = 0
{

−24y = −24x2

−24x+ 3y2 = 0
⇒

{

y = x2

− 24x+ 3y2 = 0 .

Substituting y in the second equation we have

−24x+ 3x4 = 0 → 3x(−8 + x3) = 0

x = 0 ∨ x3 − 8 = 0

x3 = 8

x = 2 .

Therefore, we have P1(0, 0) and P2(2, 4) . Computing the second derivatives we have

fxx = 48x fyy = 6y fxy = −24

⇒ D = 48x · 6y − (−24)2 = 288xy − 576

P1(0, 0) → D(0, 0) = −576 < 0 → Saddle point at (0, 0) .

P2(2, 4) → D(2, 4) = 288 · 8− 576 = 1728 > 0

fxx(2, 4) = 48 · 2 = 96 > 0 → Relative minimum at (2, 4) .

11.7.2 Absolute extrema of continuous functions

Theorem 11.13 (Extreme value for a function of two variables). A function of two

variables f(x, y) attains both an absolute maximum and an absolute minimum on any

closed, bounded set S where it is continuous.

Procedure to find the absolute extrema: Given a continuous functions f(x, y) on a

closed, bounded set S:

Step 1: Find all the critical points of f in S.
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Step 2: Find all the points on the boundary of S where an absolute extrema can occur (e.g.

boundary points, critical points, endpoints).

Step 3: Compute the value of f(x0, y0) for each of the points (x0, y0) found in Step 1 and Step

2.

Step 4: The absolute maximum of f on S is the largest of the values computed in Step 3, and

the absolute minimum is the smallest of the computed values.

Example 11.39. Find the absolute extrema of the function f(x, y) = ex
2−y2 over the

disk x2 + y2 ≤ 1.

Solution:

Step 1:

fx = ex
2−y2 · 2x

fy = ex
2−y2 · (−2y)

{

ex
2−y2 · 2x = 0

ex
2−y2 · (−2y) = 0

{

x = 0

y = 0
⇒ P (0, 0) is a critical point

Step 2:

Examine the values of the function on the boundary: x2 + y2 = 1 ⇒ y2 = 1− x2

f(x, y) = ex
2−y2 = ex

2−(1−x2) = e2x
2−1 .

Consider now the single-valued function F (x) :

F (x) = e2x
2−1, F ′(x) = e2x

2−14x .

We considered the interval: −1 ≤ x ≤ 1.

x

y

1−1

1

−1

x2 + y2 = 1

F ′(x) = 0 → e2x
2−14x = 0 ⇒ x = 0 .

y2 = 1− x2 → y2 = 1 ⇒ y = ±1 .

Endpoint of the interval ⇒ x = ±1 ⇒ y = 0 .
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Points: (−1, 0), (1, 0), (0,−1), (0, 1).

Points to check f(x0, y0) = ex
2

0
−y2

0

(0, 0) e0 = 1

(0, 1) e−1 Minimum

(0,−1) e−1 Minimum

(1, 0) e1 Maximum

(−1, 0) e1 Maximum.
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11.8 Lagrange multipliers

Many applied problems of two variables have to be optimized subject to a restriction to a

constraint on the variables.

Theorem 11.14 (Lagrange’s theorem). Assume that f and g have first partial derivatives

and that f has an extremum at P0(x0, y0) when restricted to the smooth constraint curve

g(x, y) = c. If ∇g(x0, y0) 6= 0, there is a number l such that

∇f(x0, y0) = l∇g(x0, y0) .

Constrained optimization problems (method of Lagrange multipliers) Suppose

f and g satisfy the hypotheses of Lagrange’s theorem, and that f(x, y) has an extremum

subject to the constraint g(x, y) = c. To find the extreme value, proceed as follows:

Step 1: Simultaneously solve the following three equations for x, y and l

fx(x, y) = l gx(x, y) , fy(x, y) = l gy(x, y) , g(x, y) = c .

Step 2: Evaluate f at all points found in Step 1 and all the points of the boundary of the

constraint. The extremum we seek must be among these values.

Example 11.40 (Optimization with Lagrange multipliers). Given that the smallest and

the largest values of f(x, y) = 1− x2 − y2 subject to the constraint x+ y = 1 with x ≥ 0,

y ≥ 0 exists, use the method of the Lagrange multipliers to find these extrema.

Solution: Constraint: x+ y = 1 ⇒ g(x, y) = x+ y (c = 1) .

fx = −2x fy = −2y gx(x, y) = 1 gy(x, y) = 1 .

Then, the system is:











−2x = l · (1)
−2y = l · (1)
x+ y = 1

⇒











l = −2x

−2y = −2x

x+ y = 1











l = −2x

x = y

2x = 1 .
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cubical container. The container is heated so that the temperature is

T (x, y, z) = 4− 2x2 − y2 − z2 .

Find the hottest and the coldest points of the plane.

Solution:

x

y

z

A

B

C

g(x, y, z) = x+ y + z

Tx = −4x gx = 1

Ty = −2y gy = 1

Tz = −2z gz = 1























−4x = l · (1)
−2y = l · (1)
−2z = l · (1)

x+ y + z = 1











































x = − l

4

y = − l

2

z = − l

2

− l

4
− l

2
− l

2
= 1











































l = −4

5

x =
1

5

y =
2

5

z =
2

5

→ P

(

1

5
,
2

5
,
2

5

)

→ f

(

1

5
,
2

5
,
2

5

)

=
9

5
.

Edge AC: x+ z = 1, y = 0.

T (1− z, 0, z) = 4− 2(1− z)2 − z2 = 4− 2− 2z2 +4z− z2 = 2− 3z2 +4z, 0 ≤ z ≤ 1 .

Tz = −6z + 4 = 0 ⇒ z =
2

3
⇒ Point P1

(

1

3
, 0,

2

3

)

.

Do the same for AB, BC. Then evaluate P , P1, P2, P3 and (1, 0, 0), (0, 1, 0), (0, 0, 1).

Theorem 11.15 (Rate of change of the extreme value). Suppose E is an extreme value

(maximum or minimum) of f subject to the constraint g(x, y) = c. Then, the Lagrange

multiplier l is the rate of change of E with respect to c. That is, l = dE/dC.
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Example 11.42. If x thousand dollars is spent on labor, and y thousand dollars is spent

on equipment, it is estimated that the output of a certain factory will be

Q(x, y) = 50x2/5y3/5 units.

If $ 150000 is available, how should this capital be allocated between labor and equipment

to generate the largest possible output? How does the maximum output change if the

money available is increased by $ 1000?

Solution: x, y are in thousand → x+ y = 150, that is the constraint.

⇒ g(x, y) = x+ y .

Qx =20x−3/5y3/5 gx = 1

Qy =30x2/5y−2/5 gy = 1 .

Lagrange multipliers:











20x−3/5y3/5 = l · (1)
30x2/5y−2/5 = l · (1)

x+ y = 150

→ l = 20x−3/5y3/5

30x2/5y−2/5 = 20x−3/5y3/5

30

20
xy−1 = 1 ⇒ x =

20

30
y

x+ y = 150 ⇒ 20

30
y + y = 150

5

3
y = 150 ⇒ y = 150 · 3

5
= 90

x = 150− y = 60 .

Maximum output Q(60, 90) = 50 · (60)2/5 · (90)3/5 = · · · =
The maximum output is obtained when $ 60000 is allocated in labor and $ 90000 is

allocated in equipment. Moreover l = 20 · x−3/5 · y3/5 ≈ 25.51 units ⇒ rate of change of

the maximum with the respect of c = 150000 $.

Lagrange multipliers with two parameters. The Lagrange Multipliers theorem can

also be applied in situations where more than one constraint equations are applied.
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Constraints:

g(x0, y0, z0) = c1 ,

h(x0, y0, z0) = c2 ,

where (x0, y0, z0) is the desired extremum. Then

∇f(x0, y0, z0) = l∇g(x0, y0, z0) + µh(x0, y0, z0) .

Now, we aim to find l, µ, x0, y0, z0 (see the last example).

Example 11.43 (Ex 7, HW 11.7-11.8). Find the point of the plane z = 4x + 4y + 3

closest to the origin.

Solution: Distance point (x, y, z) origin =
√

x2 + y2 + z2.

Distance squared = x2 + y2 + z2.

Constraint: z = 4x+ 4y + 3 ⇒ 4x+ 4y + z = 3.

f = x2 + y2 + z2 , g = 4x+ 4y − z .

fx = 2x gx = 4

fy = 2y gy = 4

fz = 2z gz = −1























2x = 4l

2y = 4l

2z = −l

4x+ 4y − z = 3

x = 2l

y = 2l

z = −1

2
l

4 · 2l + 4 · 2l + 1

2
l = −3

16l +
1

2
l = −3 → 33

2
l = −3 → l = − 2

11
.

x = − 4

11
, y = − 4

11
, z =

1

11
.


