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11.1 Functions of several variables

Definition 11.1 (Function of 2 variables). A function of two variables is a rule that
assigns to each pair (z,y) in a set D a unique number f(z,y). The set D is called the
domain of the function, and the corresponding values of f(z,y) constitute the range of

f.

Note: We may write z — f(z,y) where x and y are the independent variable and z is the
dependent variable.

Example 11.1. Given the function f(z,y) = /9 — 22 — 4y?, evaluate f(2,1), f(2t,t?),
and the domain D of f.

Solution:

- f2)=v9-4-4=1
- f26) =0 - (2 —A(1)2) = VO — 4 — 4t

- D:9—2% 4y >0 — 22+ 4y? <9, that is satisfied by the internal points of the
2 2

ellipse % + ﬁ =1

/3/2
N

Operations with functions of 2 variables.

-

- Sum/difference: (f + g)(z,y) = f(z,y) + g(z,y)

- Product: (f-¢g)(z,y) = f(z,y) - g(x,y)
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- Quotient: <§> (x,y) = J;Ez’z;, with g(z,y) # 0

Level curves and surfaces. We define the graph of a function f(x,y) as the collection of
the points (x,y, z) such that z = f(z,y).
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Level curve

When the generic plane z = K intersects the surface z = f(x,y), the result is the two-variable
equation f(x,y) = K, which is called trace or level curve at K. We can plot the level curves
on the x — y plane, obtaining the contour curves.

Example 11.2. If f(x,y) = z we can represent the altitude of the mountains or isotherms.

Yy
z = 1500 m
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Example 11.3. Sketch the level curves of the function f(z,y) =10 — 2? — y* for 2 = 1,
z=4and z =9.

Solution:
-2=1-10—2*—-y*=1— 22 +y*> =9 — Circle with radius equal to 3
-2=6—=10—22—y?=1— 2% + y? = 4 — Circle with radius equal to 2

-2=9—=10—2%>—9y*=1— 22+ y? = 1 — Circle with radius equal to 1

Graph of a function of two variables.

Example 11.4. Graph the function of f(z,y) = 22 + y*.

Solution: To graph it we consider the trace z = k. To have additional information we
can also consider x = A and y = B, with A, B constant (traces along z-axis and y-axis
respectively). Thus, with z = 22 + y? we have:

- 2=k — 2?2+ y? = k — Circle of radius r equal to vk, with k >0

-2=A— A? +y? = 2 — Parabola

- y=B — 2> + B? = z — Parabola




11.1.

Functions of several variables
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11.2 Limits and continuity

Open disk
(boundary exluded)

Open and closed sets in R? and R3.

- Open disk: \/(z —a)2+ (y—b)2<r

- Closed disk: \/(z —a)>2+ (y—b)2>r

Same analogy to open and closed set ]a, b[ and [a, b].

- Open set— A set where the boundary is excluded from the domain

- Closed set— A set where the boundary is included in the domain

Definition 11.2. Given the set S define:

e [Interior point of S: a point P, such that 3 an open set centered in F, contained
entirely within the set S.

e Boundary point Py of S: every open disk centered in P, contains both points of S
and points outside S.

11.2.1 Limit of a function of two variables

The limit statement
lim  f(z,y) =1L

(xvy)%(x()vy())
means that for each given number ¢ > 0, there exists a number § > 0 so that whenever (z,y)
is a point in the domain D of f such that

0 < /(z—x0)+(y — 9)? <9,

then
|f(xay> _L| <e.
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Yof - ---

Example 11.5.

(z,y)—(0,0) r—=y

Solution: Note that, for z 4+ y we have

rr+1)—yly+1)  (e—yle+1) =r+1.
r—y r=y

Thus:

lim z,y)= lim z+1=1.
(w,y)%(O,O)f( 2 (,y)—(0,0)

Note: As in 2D, the limit can be examined from two different directions (left or right). In
3D the limit can be evaluated along any line.
If the limit

lim  f(z,y) =L

(z,y)—(z0,Y0)

is not the same for all approaches (paths) then the limit does not exist.

2xy

Example 11.6. If f(z,y) = ———, show that lim  f(z,y) does not exist by eval-

T 22t Yy (z,)—(0,0)
uating the limit along the z-axis, the y-axis and the line x = y.
Solution:
2z(0
- z-axis— y =0 lim f(z,0)= lim 2(0) =0

(,y)—(0,0) (z,9)—(0,0) 2
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- y-axis— x =0 lim 0,y)=0
Y (z,y)—=(0,0) 0.)
212
-x—ylinexr =y: lim r,r)= lim — =
Y YT w00 faz) (2,9)=(0,0) 22

Therefore, the limit does not exist.

Example 11.7. General approach to show that the limit does not exist.
: zy
lim ——
(2.9)=(0,0) 4 + y?

Solution: We consider the general line passing through (0,0): y = mx

2 3

y A ) r r'mx . mx ! max 0 v
im rmr)= lim ————= lim —— = Ilim = m.
(z,1)—(0,0) (@y)—0,0) 24+ (mx)?  (@y)—00) 2+ 22m?  (2y)—00) 22+ m
But if we consider the parabolic path y = 2? we have
2?22 z? 1
(ny)lg}o,mf (o) )00 T+ (222 ()00 200 2
Depending on the path, we have different limits = the limit does not exist.
Basic formulas and rules of limits in two variables. Suppose lim  f(x,y)=1L

(z,y)—(z0,Y0)

and lim  g(z,y) = M. Then, for any constant a € R, we have
(z,y)—(z0,90)

- Scalar multiple rule: lim  [af](z,y) =al

(2,y)—=(20,30)

- Sum rule: lim [f+gl(x,y) =L+ M

(2,y)—=(20,30)

- Product rule: lim  [fg|](x,y) = LM

(@,y)—=(20,y0)

L
Quotient rule: lim {i} (x,y) = i it M #0

(z,y)—(wo,y0) | g
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Example 11.8. Assuming that these limits exist, evaluate

o lim 2*+ay+y?=37.

(z,y)—(4,3)
li 2
: 2zy o) Y 4
) lim = ¢ 5 5 ==
(wy)—(1,2) 2 + 2 lim 24y 5
(z.y)—(1,2)

11.2.2 Continuity of a function of 2 variables

The function f(z,y) is continuous at the point (xg,yo) if and only if

1. f(xo,yo) is defined;

2. lim  f(z,y) exists;
(2,y)—=(x0,y0)

3. lim  f(z,y) = f(xo0,%):

(w7y)*>(x07y0)

A function is continuous on a set S if it is continuous at each point in S.

1
y—x
Solution: The function is a rational function in x and ¥, so it is not continuous when

the denominator is = 0.
y — 22 = 0 = not continuous along the parabola y = z2.

Example 11.9. Test the continuity of f(z,y) = 5

11.2.3 Limits and continuity for functions with 3 variables

The extension from functions with 2 variables is straightforward (same rules).
- Limit:
im  f(e,y.2) =L

(2,y,2)—(w0,90,20)

means that for each number € > 0, there exists a number § > 0 such that

|f<$,y,2’)—L| <¢
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whenever (z,y, z) is a point of the domain of f such that

0<V(r—20)2+ (y—yo)2+ (2 — 2)2 < 4.

- Continuity: the function is continuous in P(xq, yo, 29) if

1. f(zo,yo, 20) is defined;

2. lim f(z,y, 2) exists;

(z,y,2)—(20,Y0,20)

3. lim f(z,y) = f(0, 0, 20).

(z,y,2)—(20,Y0,20)

3

Va2 4+ y? =2z

2

x
present for the points outside the paraboloid z < — + y_.

2 2

Example 11.10. For what points f(z,y,2) = is continuous?

Solution: The function is continuous if 22 + y? — 22 > 0. Therefore, the continuity is
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11.3 Partial derivatives

The process of differentiating a function of several variables with respect to one of its variables
while keeping the other variables fixed is called partial differentiation and the resulting
derivative is a partial derivative of the function.

Definition 11.3. If z = f(x,y), then the partial derivatives of f with respect to x and
y are the functions f, and f,, respectively, defined by

f($+A$,y)—f<$,y)

felay) = fim, =
Ay) —
folwy) = Algof(x’w Ayy> flz,)

provided the limits exist.

Note: to compute f,(z,y) we can consider y as a constant and vice-verse.

Example 11.11. Given f(z,y) = 2%y + 2%?, find f,, f,.

Solution:

e f,: y as a constant — f, = 322y + 2xy?

e f,: x as a constant — f, = 2% + 227y

Alternative notation for partial derivatives.

_of 0z 0 o
_of 0z 0 -
fy<x7y) - a_y - ay - ay <$,y) =2y = Dy(f)
L : of
The values of f(z,y) derivatives at the point (a,b) are denoted by E = fz(a,b) and
T lab)
0
/ = fy(a,b).

W | (a)
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Example 11.12. Given z = z%sin(3z + ¢?), evaluate it and z, at (1,1).

ox (.0)
Solution:
1.
0z . 3 2 3
™ = 2z sin(3x + y°) + 27 3 cos(3z + y°)
x
0z m s T\ 2 T
] 2 () s 63) -
o7 o 3 sin 3 + 3 Cos 3
2 2 2
= ?ﬂ sin(m) + % cos(m) = —%.
2.
g—; = 2% 3y? cos (3$ + y3)
g—; = 3 cos(4)

Example 11.13. Given the 3 variables function f(x,y,z2) = 2® + 2xy® + y23, we have

fo =21+ 2y%, fy=4$y+z3, f., = 3yz?.

Example 11.14 (Partial derivative of an implicitly defined function). Let z be an im-
plicitly defined function
2z + yz3 =x.
0z
3

Determine 1) 9z and 2)

ox

Solution:
1) We differentiate everything treating y as a constant.
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2 2
(x%2)  O(x )z i x2%. So, we have

0
E le: =
RO T o Ox Ox
0z d(2%)
2 2= =1
rere Ox Ty Ox
0 0
2xz+x28—i+y3228—; =1
0z, , ) 0z 1 —2zz
— 3 =1-2 — =
&c(x +3y27) R PR + 3yz?
2) We treat z as a constant, and we differentiate in the y variable
0z d(2*)
2 3
hd 2
T oy +2z°+y oy
0z 0z
2 3 2
— 3yz — =0
T oy + 27 + oyz oy
0z, o ) 0z 23
— 3 - =
Jy (27 +3y") dy x? + 3yz?

Partial derivative as a slope The line parallel to the xz-plane and tangent to the surface
z = f(z,y) at the point Py(z¢, yo, 20) has slope f.(xo,y0). Likewise, the tangent line to the

surface at Py that is parallel to the yz-plane has slope f,(xo, yo).

Plane y = const, // to zz

Slope of the tangent in Py
along this direction = f, (o, yo)

v

Partial derivatives as rate As the point (z,y) moves from the fixed point Py(zo,yo), the
function f(x,y) changes at a rate given by f,(xo, o) in the direction of the positive z-axis

and by f,(xo, o) in the direction of the positive y-axis.
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Higher order partial derivatives

- Second order partial derivatives

o 0 (of\ B
0

o*f o (of\ B
8_y2 — . (0_1/) - (fy)y - fyy

" Oz
Y

- Mixed second order partial derivatives

0% f 0 [(Of\ _ B
f 0 (of\ ...
ay(?w _a_y (8_35) _(fac)y_fmy

Theorem 11.1 (Equality of mixed partials). If the function f(z,y) has mixed second
order partial derivatives f,, and f,, that are continuous in an open disk containing
(ZL‘(), yO)v then

fxy(xoa yO) = fyx(x()v yO) :

0%f  O*f 0%z
Oxdy’ Oyox’ Ox?

Example 11.15. Given z = f(z,y) = 5x? — 22y + 3y3, determine

Solution:
o (0f B 0 o _
o (of
9y (8$) (102 — 2y)
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Example 11.16. Given f(z,y) = x?ye?, find fays Jyor fozr fooy

Solution:

= (f2)y = (2zye?), = 2ze’ + 2zye? = 2ze’(1 +y).

= (f))z = (2%€¥ + 2°ye), = 2xe¥ + 2zye’ = 2xe’(1+y).

= (fo)e = 2aye?), = 2ye’.

(fo)o)y = ((2zye?)s)y = (2ye?), = 2€¥ + 2ye’ = 2¢"(1 +y).

o~ o~ o~~~

f;txy

Example 11.17 (Partial differential equation: the Heat Equation).

o _ 0T
ot 8x2

Equation for the study of the temperature in a thin rod at position = at time t.

T(x,t) — temperature

T
Verify that T'(x,t) = e " cos <—> satisfies the heat equation.
c

soution
aT((;,t) ol C;: )] ~eon (2)
it [t -2 ) -
S an () = ()
or 62T B

5 =g = —e "cos (%) =c? <_§2 cos (%)) .

Example 11.18. Show that fy,. = fyze = foye for the function f(z,vy,2) = zyz +a?y32*.
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Solution:
Joye = ((fa)y)= = ((yz 4 22y°2"),). = (2 4 62y®2"). = 1 4 24ay?2° .
fyee = ((fy)2)z = ((xz + 3x2y2z4)z)x =(z+ 12x2y223)x =1+ 24xy®23.
foye = -
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11.4 Tangent planes, approximations and differentia-
bility

Tangent planes Suppose S is a surface with equation z = f(z,y). We consider two planes,
v — o (%) and y — yo (*5).

.
i

Yy
>< I

On (*) and (**), the surface S reduces to a line with tangent f; and f; respectively, in the
point Py(xo, yo)-

[
7
[
7

!

<
S
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General equation of a plane passing through Py(xo, yo, 20):

A(x —x0) + By —v0) + C(2 — 29) =0
C(z = 2) = —A(x — x9) — B(y — %)

A B
=gl —w) = F-w).

B
We introduce a = ol and b = e and we obtain

2z — 29 =a(r —x0) + by — yo) -

On the plane (*), the slope of the tangent is the derivative of f along y. In (**) the slope of
the tangent is the derivative along x. Thus we have:

of
ox

b= fy($07y0) = 8_f

a:fa:(x()ayO) = ay

(z0,y0) (z0,y0)

Definition 11.4. Suppose S is a surface with equation z = f(z,y) and Py(xg, yo, 20) be
a point of S at which a tangent plane exists. Then, the tangent plane to S at Fj is:

of
ox

0
(SE — IL'()) + —f
(%0,y0)

z—zy = (v — o) -

(z0,y0)

Example 11.19. Find the tangent plane to z = f(z,y) = tan™! (Q) at the point
T

T
P0(1,\/§,§).
Solution:

of = _ - o=y Of] _=V3_ V3

81, 1+ (%)2 xQQj;I/Q x2+y2 8$ (1,\/5) 1+3 4

of L 1 1w o 1

Oy 14+(Y)’r e P4yt Oylas 4
Therefore we have /3

Y 3 1
= Y %r—1 0 —
2= 3 =1+ - V3)
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11.4.1 Incremental approximations (two variables f)

If f(z,y) and its partial derivaties f, and f, are defined in an open region R containing the
point P(xg,yo) and f, and f, are continuous at P, then

Af - f(xo + AI, Yo + Ay) - f(IanO)
_of of

~ Ax + Ay
Oz (z0,%0) dy (z0,y0)
so that of of
f(wo + Az, yo + Ay) = f(2o,90) + 5= Ar + —— Ay.
ox ( dy
70,Y0) (z0,y0)

Q(zg + A%, yo + Ay)

Example 11.20. An open box has length 3 Ft, width 1 Ft and height 2 Ft. Material
costs $2/Ft? for the sides and $3/Ft? for the bottom. Compute the cost of constructing
the box, and then use increments to estimate the change in cost if the length and the
width are each increased by 3 in, and the height decreased by 4 in.
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Ay .
4
V2
s |
: | o /J
Az
H
| X
Lo
Yy

Solution: The surface area is given by the bottom plus four sides
S=uxy+2xz+2z2y.
Therefore the cost ($3/Ft? for the bottom, $2/Ft? for the sides) is:
C(z,y,2) = 3oy + 2222 + 22y) .
Partial derivative:
C,=3y+4z Cy =3z + 4z C,=4x+4y.

Change of dimensions

3 in

4
=——=020F Ay =025F Ar = —————— = —0.33 Ft.
12 in/Ft 0.25 Ft y=0.25Ft x 0.33 Ft

A _ _
v 12 in/Ft

Thus, the change in the total cost is approximated by

AC = Cy(3,1,2) Az + Cy(3,1,2) Ay + C,(3,1,2) Az =
—(3-14+4-2)025+(3-3+4-2)0.25+ (4-3+4-1)(—0.33) ~ 1.67$.

The total differential For function of one variable we have: dy = f'(x)dx. For two-
variable case, the total differential of the function f(z,y) is:

df = g—idx + g—gdy = fo(x,y)de + fy(x,y)dy.
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For three-variable functions, we have:

Example 11.21. Determine the total differential of

a. f(x,y) = 2?In(3y* — 2z).

b. f(x,y) = 223 + by* — 62.

Solution:

f af —2
—dr + —dy = |2x1 ) o e —— +
a. df = d dy xIn(3y x)+x 37— 21 dx

b. df = 6x2dx + 20y3dy 6dz .

6%y
3y? —2x |

11.4.2 Differentiability

In two-dimension, the increment of f(z) at a point zg is
Af = f(wo+ Ax) — f(xo) = f'(xo) Az + cAx

where ¢ — 0 as Az — 0.
For two-variable functions, the differentiability can be defined as:

Definition 11.5. The function f(z,y) is differentiable at (xg, yo) if the increment of f
can be expressed as

Af = folzo, yo) Az + fy(zo, yo) Ay + 1Az + £2Ay

where 1 — 0 and g5 — 0 as Az — 0 and Ay — 0, respectively. In addition, f(z,y) is
said to be differentiable in the region R if f is differentiable V (z,y) € R.

Theorem 11.2 (Differentiability implies continuity). If f(z,y) is differentiable at (xo, 3o),
it is also continuous there.
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Example 11.22 (A non-differentiable function for which f, and f, exist.). Let

1 ifxr>0andy>0
flz,y) = .
0 otherwise.

Show that the partial derivatives f, and f, exist at the origin, but f is not differentiable
there.

Solution: Since f(0,0) = 0 on all the z-axis and y-axis, we have

f(0+ Az,0) — f(0,0)

1:(0,0) = Alggo Ax =0
£,(0,0) = A Ay =0.

The partial derivatives both exist at the origin. If f(x,y) were differentiable at the origin,
it would have to be continuous there. Thus, we can show that f is not differentiable by
showing that is not continuous at (0,0).

r=y: lim f(z,2)=1
z,x 0,0 . . .
(=)={0.0) not continuous — not differentiable.
x=0 lim f(0,y)=0

; i
(0,9)—(0,0)

Theorem 11.3 (Sufficient condition for differentiability). If f is a function and f, f,
and f, are continuous in a disk D centered in (zg,y0) — f is differentiable at (zo, yo) .



11.5. Chain rules 95

11.5 Chain rules

If the two variables x and y of a function f(z,y) can be both written as a function of a
parameter t, then z = f(z(t),y(t)) and the following theorem can be stated.

Theorem 11.4. Let f(z,y) be a differentiable function of x and y, and let x = z(t) and
y = y(t) be differentiable function of t. Then, z = f(z,y) is a differentiable function of ¢,

and
dz 0z dx 0z @

@t or dt Toy @t

1 d
Example 11.23. Let z = 22 + 9%, with x = ; and y = t2. Compute d—; in two ways:

1) expressing z explicitly in terms of ¢;

2) using the chain rule.
Solution:

1\? dz 2
1 =1 - 4 = 4 = — 2 48
)z (t) +t:>dt t7° + 4t t3+t
d(x 2
2)d_x: (t):_l @:Mzgt
dt dt 12 dt dt

dz 0z dx 0z dy_2 (

1/ 1 2
T g (o vy @) =22 [ — o ) 282 (22) = — 2 a4,
at " or dt oy dt " )+y() t ( )+ @) =5+

d
Example 11.24. Let z = /22 4+ 2xy, where x = cosf and y = sinf. Find d_z in term

of z,y and z.

Solution:
dz 1,, 1 1 Tty
= (P 2y 2+ 2Y) = —— (22 + ) = |
5~ o y)> v =5 HW( V=7 oo
Jz 1,, 1, x
) i e —
y 2( v) x4+ 2y




96 Chapter 11. Partial Differentiation

Therefore, we have

dz  Ozdx Ozdy — w+y ) x —(x 4+ y)sinf + x cos b

—_— = — 4 — e — e —
df Ox dbf 8:[/ db ,/x2—|—2:1;y R /$2+2$y /$2+2$y

Theorem 11.5 (Implicit function theorem). Let F' be defined on a disk containing (a, b)
as an interior point, such that F'(a,b) = 0, and assume F, and F, both continuous on the
disk, with F,(a,b) # 0. Then, there exist an interval I on the real line containing a as an
interior point and a unique function y = y(x) defined on the interval I, such that y(a) = b
and F(z,y(x)) = 0, for every value x on the interval I. Furthermore, the derivative of y

is given by
dy  F,

dr F,’

Example 11.25 (Implicit differentiation using partial derivatives.). If y is a function of
x such that
sin(z +y) + cos(x —y) =y,
dy

find —=.

" dx
Solution: Let F(z,y) = sin(z + y) + cos(z — y) — y so that F(z,y) = 0.
Then

F,(z,y) = cos(z + y) — sin(z — y)
F,(x,y) = cos(x,y) +sin(z —y) — 1.

d FE,
By using the theorem: —di = __Fy
d 5 o .
W _ cos(x + y) — sin(z — y)

dr — cos(z+y) +sin(zr —y)—1°

Extension of the chain rule Now we consider z = F(x,y), where z = z(u,v) and
y = y(u,v) are both functions of independent parameters u and v. Then, using the chain
0z 0z

rule we can find —

ou’ o’
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Theorem 11.6 (Chain rule for two independent parameters). Suppose z = f(z,y) is
differentiable at (z,y) and the partial derivatives of x and y exist at (u,v). Then, the
composite function z = flz(u,v), y(u,v)] is differentiable at (u,v) with

0: 0 0w 0s dy . 0:_0: 0w 9z 0y
ou  Ox Ou Oy Ou ov  Or v Oy v’

Example 11.26. Let 2z = 42 — y?, where # = wv? and y = v?v. Find g_u and %
Solution: 9, 9,

e 4 3_y =2y

g—i =02 g—i = 2uv

% = 3uv % =3

Jz 0z Or 0z Oy

RN
=% L o2 g _ — Suv — = Suv —
= 5 = 5 By + — 9y o = 4(2uv) — 2yu® = 8uv — 2(udv)u® = 8uv — 2u’v.

= 402 4+ (—2y)(3u?v) = 4v? — 2(u?v)(3u?v) = 4v? — 6u’v?.

Example 11.27 (Implicit differentiation with chain rule). Let z = u + f(u*v?), with f

differentiable. Show that uo" — v% = u.
ou v
Solution: Let w = v*v? = 2z = u+ f(w).
0z df ow df 0z df ow df . ,
— =1 =1 2 = =—(2
ou T dw ou - dw( w’) and ov  dw v dw< wv)
0z 0z df df 2 df oo df 5,
Z 0 = |14 L) — v [ (2 = u 4 =220 — L2t = .
= ugs —va [—Fdw(uv)} v{dw(uv) u+dwuv T lU Y =
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11.6 Directional derivatives and the gradient

To determine the slope of a line tangent to a curve at a point Py(zo,yo), with function
z = f(z,y), we need to specify the direction in which we wish to measure. We know that

. 5 0
in ¢-direction — ——; and in the j-direction — —f
ox oy

To consider the generic direction, we consider a unit vector @ = w17 + usj.

z
2= f(z,y)
% (Y
'/ Tangent to the curve
Fy
U

11.6.1 Directional derivative

Let f be a function of two variables, and let © = Uy + uﬁ be a unit vector. The directional
derivative of f at Py(zo,yo) in the direction of @ is given by

h i) —
Dgf(x0,%0) = lim (o + huy, yo + huz) — f(@o, yo)
(2,y)—(0,y0) h

provided the limit exists.

Theorem 11.7 (Directional derivative using partial derivatives). Let f(x,y) be a function
that is differentiable at Py(xo,40). Then, f has a directional derivative in direction u =
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it + uzj' given by:
Daf (o, y0) = fo(xo, yo)ur + fy (20, yo)us .

Example 11.28. Find the directional derivative of the function f(x,y) = 3 — 222 +3?

1. .
at the point P(1,2) in the direction of the unit vector u = 52 - gj.

Solution:
fx = —4x fy = 3y2

Dy f(1,2) :fz(1,2)% —@(1,2)? = —4-1-%—3-(2)2 : \/; = —2-6V3.

Note: The value of the directional derivative can be interpreted as the slope of the line
tangent to the curve with direction .

11.6.2 The gradient

Let f be a differentiable function at (z,y), and let f(z,y) have partial derivatives f,(z,y)
and f,(z,y). Then, the gradient of f denoted by Vf, is a vector given by

V(@) = folmy)i+ fylz,y)).

The value of the gradient at a point Py(z, o) is denoted by

~

Vfo = fx(ajanO)% + fy(20,90)7 -

Example 11.29. Find Vf(z,y) for f(z,y) = 2%y + 3>.

Solution:
fo = 2zy fy =12°+ 3y

Vf(x,y) = 2zyi + (2° + 3y°)5 -

Theorem 11.8 (The gradient formula for directional derivative). If f is a differentiable
function of x and y, then the directional derivative of f at the point Py(xg,yo) in the
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direction of the unit vector « is

Daf(zo,y0) = Vio-u.

Example 11.30. Find the directional derivative of f(z,y), with f(z,y) = In(2? +y?) at
Py(1,—3) in the direction of 7 = 2i — 3].

Solution:
1 1 )
=g h=mr ¥
2.1 -1 3.9 27
Ila_gz = 1,—3 = ——= —
fal ) 1-27 13 Tl ) 1-—27 26
1. 27,
=Vf(l,-3)=——i—=—j
5 2-3] % 37
U = = =

o V419 Vi3 Vi3

_ 1, . N 2 37 7713
Dﬁ 3 - . _- — - 2 2 . _— frd .
f(@wo,yo) = Vo = —56(20 +27)) (m \/ﬁ> 288

Basic properties of the gradient

Constant rule: Ve =0 (for any constant c)

Linearity rule: V(af 4 bg) = aV f + bVg (with a, b constants)

Product rule: V(f-g) = fVg+gVf

Quotient rule: V (£> = M, with g # 0
g g

Power rule: V(f") =nf""'Vf

Maximal property of the gradient. Depending on the direction of the derivative at one
point Py(xg, yo), we obtain different values of the slope of the lines tangent to the curve f in
Py. We now aim to find the largest value of the directional derivative.
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Theorem 11.9. Suppose f is differentiable at the point Py, and Vf|p, = V fo # 0. Then

1) The largest value of the directional derivative Dy f at Py is ||V fo|| and occurs when
the unit vector u points in the direction of V fj.

2) The smallest value of Dy f at Py is —||V fo|| and occurs when @ points in the direction

of —Vfo

Note: This theorem means that the function f increases most rapidly in the direction of the
gradient V fy and decreases most rapidly in the opposite direction.

Example 11.31. Given f(x,y) = ze?* %, find the direction where f shows the most
rapid increase in Fy(2,1).

Solution: We begin with the gradient: Vf = f,i + fy]
fo=e"" a2 (=1) =1 —1), fy=mx-e¥" .2 =2z,
Vf=[e*"1-u)] i + [2ze ] j
Vi =Vf21)=e21-2)i+[2-2-e*?j=—i+4j
The increase is ||V fy|| = 1+ 16 = V17.

The maximum decrease is —V fy =1 — 45 .

Three-variable gradient

V= Fai+ fyi+ Lk Cradient
Dzf=Vfy-u Directional derivative

Example 11.32. Consider the function f(z,y, 2) = xysin(zz) and the point Py(1, -2, 7).
Find:

1) Vfo (the gradient in F).

2) The directional derivative in P, in the direction V = —2i + 3j — 5k .

Solution:
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1) Vf = fai + fy] + foh
fo = ysin(zz) + xycos(zz) - z = ysin(xz) + zyz cos(xz)
fy = xsin(xz)

f. = wycos(zz) - v = 2’y cos(zz2)
Vf = lysin(zz) + zyz cos(xz)] 7 + [wsin(zz)] j + [#%y cos(x2)] k
Vo=Vl om = [=2-sin(r) + (=27) - cos(m)] i + [sin(r)] j + [~2cos(m)] + k = 2m1 + 2k .
2) To find Dy f we need u:

0 —2i+3j-5k 1 ..
u = — f— — . —22+3 _5k .
Wl Vi m  vE J = 3k)
Finally we have
1 —4m — 10
Dof(l,—2,7) =Vfy-t = —(—2-2r — 10) = ————

Normal property of the gradient

Theorem 11.10. Suppose that the function f is differentiable at the point Fy, and that
the gradient at Py satisfies V fy # 0. Then, V f, is orthogonal to the level surface of
f through F,.

Note: The gradient is orthogonal to the tangent vectors at one point.

Tangent plane

f(z,y)
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Example 11.33 (Finding a vector normal to a surface). Find a vector that is normal to
the surface f(z,y,2) = 2% + 22y — yz + 32% = 7 at the point Py(1,1,—1).

Solution: Note that f(x,y,z) represents a level surface. Computing the gradient we
have

Vf=2z+2y)i+ 2z —2)j+ (—y +62)k

Vfo=Vf(1,1,—1) = 4i + 3j — Tk — required normal.

Example 11.34 (Finding a vector normal to a level curve). Find the level curve for ¢ = 1
of the curve f(z,y) = 22 — y? and find a normal vector at the point Py(2,/3).

2

Solution: Level curve: 2% — 2 = 1.

Vf=2xi—2yj
Vio=Vf(2, \/5) = 47 — 2v/3j — required normal.

11.6.3 Tangent planes and normal line to a surface

Suppose S is a surface with the equation F(x,y,z) = C, and let Py(xo, Yo, 20) be a point on
S where F' is differentiable with V f 2 0. Then, the equation of the tangent plane to S at
B is

Fy (%0, Yo, 20)(x — o) + Fy(2o, Yo, 20) (Y — Yo) + F= (20, Yo, 20) (2 — 20) = 0

and the normal line to S at P, is:

x = x9 + Fy(x0, Yo, 20)t
y = yo + F,(x0, yo, 20)t
2 =20 + Fz(x07y07 ZU)t

Example 11.35. Find the tangent plane and the tangent normal line at the point
Py(1,—1,2) on the surface S given by %y + y?z + 2%x = 5.

Solution: We consider F(z,y, z) = 2%y +y*2 + z2x. The problem is to consider the level
surface F'(z,y,z) = 5. We first find the gradient
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VF(z,y,2) = Fyi+ F,j + F.k = 2y + 22)i + (22 + 2y2)7 + (y° + 222)k .

VFy=VF(1,-1,2) = (-2+4i+(1-4)5+(1+4)k=

=2 —3)+ 5k — normal to F = normal to the plane.
The tangent plane is:

2(x —x0) — 3(y — yo) +5(2 — 20) =0
2 —-1)=3(y+1)+5(z—2)=0
20 — 3y +52=15.
The normal line is:
r—1=2t
y+1=-3t
z—2=>5t.
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11.7 Extrema of functions of two variables

Absolute extrema. The function f(x,y) is said to have an absolute maximum at (xq, yo)
if f(zo,y0) > f(z,y), V(z,y) in the domain D of f. Similarly, f has an absolute minimum
at (zo,v0) if f(xo,y0) < f(z,y) for all (z,y) in D. The absolute maxima and minima are
called absolute extrema.

Relative extrema. Let f be a function defined on a region containing (xq, yo). Then,

- f(wo,yo) is a relative maximum if f(x,y) < f(zo,y0) V (z,y) € an open disk containing
(20, %0);

- f(xo,yo) is a relative minimum if f(x,y) > f(xo,y0) V (z,y) € an open disk containing
(2o, Yo)-

Theorem 11.11 (Partial derivatives criteria for relative extrema). If f has a relative
extremum (maximum or minimum) and partial derivatives f, and f, both exist at (xo, yo),
then

fe(To, o) = fy (w0, 90) = 0.

11.7.1 Critical points

Definition 11.6. A critical point of a function f defined on an open set D is a point
(z0,90) in D where either one of the following is true

1) fx($07y0> = fy(ﬂCo,yo) = 0;

2) At least one of f,(zo,y0) or fy(xo,yo) does not exist.

Example 11.36 (Distinguish critical point). Discuss the nature of the critical point (0, 0)
for the quadric surfaces

a)z =1 +y° b)z+at+y? =1 c)z =1y —a2”.
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Solution:

a)z=k—a*+y* =k
Ellipse if £ > 0

0, 0) is a minimum for f(z =z = 22442 z
(0, Y Y
fe =22
fyZQy
T

Minimum Y
z

b)z=k—=a*+y*=1—k
Ellipseif 1l —k>0— k<1

x
c 3 y
(0,0) is a maximum Maximum
for 2 = fz,y) =1 — 2% — ¢
fz — _QI
fy =2y
z
¢) z =k — y* — x? = k — Hyperbole
xT — — Q.I
f =0in (Oa O) 4 g Y
fy =2y Maximum along x

Minimum along y
— (0,0) is a critical point

Saddle point: a critical point where every open disk contains both points such that
f(xo,90) < fla,y) and f(zo,y0) > f(2,y).

Theorem 11.12 (Second partial test). Let f(z,y) have a critical point at Py(zo, o) and
assume f has continuous second-order partial derivatives in a disk centered at (xg, yo)-
The discriminant of f is the expression

D = fzzfyy - zZy'
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Then:
1) A relative maximum occurs at Py if D(xg,y0) > 0 and f,.(zo,%) < 0 (or,
equivalently, D(zo,yo) > 0 and fy,(z0,70) < 0).

2) A relative minimum occurs at Fy if D(zg,y0) > 0 and f..(zo,%) > 0 (or
fyy(xmyO) > 0)

3) A saddle point occurs at Py if D(zo,yo) < 0.

4) If D(xg,yo) = 0, the test is inconclusive. Further analysis needed.

Note: The discriminant formula can be remembered by considering the determinant of the
matrix

fz:c f:vy

D =
fﬂcy fyy

Example 11.37. Find all relative extrema and saddle points of: f(z,y) = 222 + 2xy +
y? —2x — 2y + 5.

Solution:
fo=4x 4+ 2y —2 fy=2x+2y—2.

We want f, = f, = 0.
dr +2y—2=0
20 +2y—2=0.

Subtracting the second equation to the first we obtain

20 =0 x=0 z=0
— —
20 +2y—2=0 2y=2 y=1.

The critical point is P(0,1). Since we have f,, =4, f,, = 2 and f,y = 2, we compute

D= forfp—[2 =4-2-2"=4>0.

Ty

Since f;, > 0 we conclude that we have a minimum at P(0, 1).
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11

Example 11.38. Find the critical points of f(z,y) = 82 — 24xy + y* and classify each
point.

Solution:

— g + 2 fy =241 +3y* =0
Ty ) y Y

—24y = —242° y = a2
=
—24x +3y* =0 —24x +3y* =0.

Substituting y in the second equation we have

fo = 242° — 24y { fo =242 — 24y =0

—24r +32* =0 — 3x(-8+2°)=0

r=0 V 22—-8=0
23 =8

r=2.

Therefore, we have P;(0,0) and P5(2,4). Computing the second derivatives we have

f:tx = 48£ fyy — 6y fmy - _24

= D = 487 - 6y — (—24)* = 2887y — 576
P(0,0) - D(0,0) = =576 < 0 — Saddle point at (0,0).

Py(2,4) = D(2,4) =288 -8 — 576 = 1728 > 0
frz(2,4) =48-2=96 >0 — Relative minimum at (2,4).

7.2 Absolute extrema of continuous functions

Theorem 11.13 (Extreme value for a function of two variables). A function of two
variables f(z,y) attains both an absolute maximum and an absolute minimum on any
closed, bounded set S where it is continuous.

Procedure to find the absolute extrema: Given a continuous functions f(z,y) on a
closed, bounded set S:

Step 1: Find all the critical points of f in S.
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Step 2: Find all the points on the boundary of S where an absolute extrema can occur (e.g.
boundary points, critical points, endpoints).

Step 3: Compute the value of f(xg,yo) for each of the points (x¢,yo) found in Step 1 and Step
2.

Step 4: The absolute maximum of f on S is the largest of the values computed in Step 3, and
the absolute minimum is the smallest of the computed values.

Example 11.39. Find the absolute extrema of the function f(z,y) = ¢* %" over the
disk 22 + 9% < 1.

Solution:
Step 1:
fl, — 6952—312 29 612—y2 2r =0 r=0
2,2 2 o = P(0,0) is a critical point
o=y e =0 (w=0
Step 2:

Examine the values of the function on the boundary: 22 + 32 =1 = ¢?>=1— 22

f(x,y) _ exz—yQ _ ex2—(1—x2) _ €2$2—1.

Consider now the single-valued function F'(x) :

1
>+ =1
F(z)=e*"1 Fl(z) = 4z, /\ .
N

We considered the interval: —1 < z < 1.

Fliz)=0 — e Mzg=0 = z=0.
y=1-22 — 3y*=1 = y==I1.

Endpoint of the interval =z =+1 = y=0.
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Points: (—1,0), (1,0), (0,—1), (0,1).

Points to check  f(xq,yo) = e %

(0,0) e’ =1

(0,1) et Minimum
(0,-1) e ! Minimum
(1,0) e! Maximum

(—1,0) et Maximum.
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11.8 Lagrange multipliers

Many applied problems of two variables have to be optimized subject to a restriction to a
constraint on the variables.

Theorem 11.14 (Lagrange’s theorem). Assume that f and g have first partial derivatives
and that f has an extremum at Py(zo, yo) when restricted to the smooth constraint curve
g(z,y) = c. It Vg(xo,y0) # 0, there is a number [ such that

Vf(fo, yo) = ZVQ(%, yo) .

Constrained optimization problems (method of Lagrange multipliers) Suppose
f and g satisfy the hypotheses of Lagrange’s theorem, and that f(z,y) has an extremum
subject to the constraint g(x,y) = ¢. To find the extreme value, proceed as follows:

Step 1: Simultaneously solve the following three equations for z, y and [
fx(x7y):lgx(x7y)7 fy(x7y>:lgy<‘ray>7 g(xvy)zc

Step 2: Evaluate f at all points found in Step 1 and all the points of the boundary of the
constraint. The extremum we seek must be among these values.

Example 11.40 (Optimization with Lagrange multipliers). Given that the smallest and
the largest values of f(x,y) =1 — 2 — y? subject to the constraint z +y = 1 with z > 0,
y > 0 exists, use the method of the Lagrange multipliers to find these extrema.

Solution: Constraint: x +y =1 = gz, y)=x+y (c=1).

fm: —2x fy:_2y gx(xay) =1 gy(x7y) =1
Then, the system is:
—2x=1-(1) l=—2x l=—2x
—2y=1-(1) = —2y =2z T=y
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Consider now the equation:

glxy=oc+y—-1 — y=—-ax+1.

Py
\ Endpoints (z > 0; y > 0):
>

P P(0,1) — f(0,1)=0.
Py(1,0) —  f(1,0)=0.

We have a minimum at P;(0,1) and P(1,0) — f(P) = f(P) =0.
1
5.

11 11
We have a maximum atP<— >—>f<§,5 —

2’9

AN

e N o, )

Example 11.41 (Hottest and coldest points on a plate). A container in R? has the shape
of the cube given by 0 <z <1,0<y <1, 0 <z < 1. A plate is placed in the cube in
such a way that it occupies that portion of the plane x + vy + 2z = 1 that lies inside the
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cubical container. The container is heated so that the temperature is
T(x,y,z) =4 —22° —y* — 2°.

Find the hottest and the coldest points of the plane.

Solution:
Yy
B
g(r,y,2) =x+y+2
T, =—4x gr =1
. T, = -2y gy =1
A TZ:_2Z gZ:
C
z
{ ( 4
T = —— l:__
4
Mz =1-(1) z 15
—2z = (1) Z—_£ yzz 7575 5,7
r+yt+z=1 ! l2 g
______ :1 Z = —
\ 4 2 2 5)

Edge AC: x+2=1,y=0.

T(1—2,0,2)=4—2(1—2)2—22=4—-2—-222+42— 22 =2—-322 + 4z, 0<z<1.

2 1 2
T.=—-624+4=0 = Zig = POintPl(g,o,g
Do the same for AB, BC'. Then evaluate P, P;, P», P; and (1,0,0), (0,1,0), (0,0,1).

Theorem 11.15 (Rate of change of the extreme value). Suppose E is an extreme value
(maximum or minimum) of f subject to the constraint g(x,y) = c¢. Then, the Lagrange
multiplier [ is the rate of change of F with respect to ¢. That is, | = dE/dC.
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Example 11.42. If x thousand dollars is spent on labor, and y thousand dollars is spent
on equipment, it is estimated that the output of a certain factory will be

Q(x,y) = 502*°y*°  units.

If $ 150000 is available, how should this capital be allocated between labor and equipment
to generate the largest possible output? How does the maximum output change if the
money available is increased by $ 10007

Solution: z,y are in thousand — 1z + y = 150, that is the constraint.

= g,y =x+vy.

Qm :20x—3/5y3/5 Gy = 1
Q, =30:%/5y 2/ =1,

Lagrange multipliers:

203525 = 1. (1)
3000y 2P =1 (1) — 1=20a"50
rz+y =150

30x2/5y_2/5 _ 2090_3/53;3/5
30 20

1
_ — 1 = —_
20"Y T 307

20
r+y=150 = oyty=150

5 3
Q=150 = y=150-2 =090
3Y y 5

r =150 —y = 60.
Maximum output Q(60,90) = 50 - (60)%/5 - (90)3/° = ... =

The maximum output is obtained when $ 60000 is allocated in labor and $ 90000 is
allocated in equipment. Moreover | = 20 - z73/% . 43/> a2 25.51 units = rate of change of

the maximum with the respect of ¢ = 150000 $.

Lagrange multipliers with two parameters. The Lagrange Multipliers theorem can
also be applied in situations where more than one constraint equations are applied.
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Constraints:

9(950; Yo, Zo) = (1,

h(o, Yo, 20) = c2,
where (g, Yo, 20) is the desired extremum. Then
V f(xo, Yo, 20) = I Vg(0, Y0, 20) + 1 h (0, Yo, 20) -
Now, we aim to find I, i, xg, Yo, 20 (see the last example).

Example 11.43 (Ex 7, HW 11.7-11.8). Find the point of the plane z = 4z + 4y + 3
closest to the origin.

Solution: Distance point (z,y, 2) origin =v/22 + y? + 22.
Distance squared = 22 + y? + 22.
Constraint: z =4z +4y+3 = 4dor+4y+z=3.

f=a?4+y*+ 22, g=4r+4y — z.
fe =2z g =4
fy:2y gy:4
f. =22 g.=—1
=2l
20 = 4l ol
2y = 4l V= .
_ = —=]
22——l “ 2

1 33 9
160+ =1 = — iy - _Z
6l + 3 - 5 3 =

Tt YT T




