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Vectors in Plane and Space
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In this Chapter, we are going to introduce the following concepts:

• Vectors in R2

• Vectors in R3

• The dot product

• The cross product

• Lines in R3

• Planes in R3

• Quadric surfaces
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9.1 Vectors in R2

Vector: a directed line segment; an arrow with an initial point and a terminal point. A

vector is defined uniquely by its magnitude and direction.
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Vector operations.

• Vector addition. Given two vectors u and v, their vector addition u+ v is defined by

placing the tail of v at the head of u. The resulting vector goes from the tail of u to

the head of v. This is known as the triangle rule.

u

v

u+ v

O

• Scalar multiplication. The operation of scalar multiplication involves a scalar c ∈ R
and a vector u. The result cu is a vector with the same direction as u if c > 0, the

opposite direction if c < 0, and is the zero vector if c = 0. Its length is ∥c∥ times the

length of u.

Vector components and magnitude. Any vector v̄ in the plane can be represented by

its components along the x and y axes. We write this as

v̄ = ⟨vx, vy⟩ ,
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where vx and vy are the scalar projections of the vector in the horizontal and vertical di-

rections, respectively. This means that v̄ can be interpreted as the sum of two orthogonal

vectors: one in the direction of the x-axis and one in the direction of the y-axis.

The magnitude (or length) of the vector v̄ is defined as

∥v̄∥ =
√
v2x + v2y .

This value represents the distance from the origin to the point (vx, vy) in the plane, and

quantifies how long or strong the vector is, regardless of its direction.

Vector between two points. Given two points P (x1, y1) and Q(x2, y2) in the plane, the

vector from P to Q, denoted by PQ, is given by the difference of their coordinates:

PQ = ⟨x2 − x1, y2 − y1⟩.

This vector represents the displacement from point P to point Q, and can be interpreted as

a directed arrow starting at P and ending at Q.

We also have:

∥PQ∥ =
√
(x2 − x1)2 + (y2 − y1)2

x

y

PQ

P (x1, y1)

Q(x2, y2)

x1 x2

y1

y2

Remark 9.1. All the vector operations can be performed on the components.

E.g. Sum: ⟨2, 3⟩+ ⟨4, 5⟩ = ⟨6, 8⟩
Scalar product: 3⟨2, 3⟩ = ⟨6, 9⟩
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Properties of the vector operations. Vector operations follow well-defined algebraic

properties that ensure consistency and structure. Given three vectors u, v, and w, and

scalars a and b, the following properties hold:

• Commutativity of addition: u+ v = v + u.

• Associativity of addition: (u+ v) + w = u+ (v + w).

• Scalar distributivity over vector addition: a(u+ v) = au+ av.

• Vector distributivity over scalar addition: (a+ b)u = au+ bu.

Standard representation of vectors in the plane. In two-dimensional space, any vector

can be expressed as a linear combination of two fundamental unit vectors:

ı̂ = ⟨1, 0⟩ and ȷ̂ = ⟨0, 1⟩.

The vector ı̂ points in the direction of the positive x-axis, while ȷ̂ points in the direction of

the positive y-axis. These unit vectors form the basis of the Cartesian coordinate system,

and any vector

v = ⟨vx, vy⟩ ,
can be written as

v = vxı̂+ vy ȷ̂ .

x

y

ı̂

ȷ̂

Example 9.1. A body is subject to two different forces: F 1 = −2 ı̂+2 ȷ̂; the second force

F 2 has the direction of the vector u = −3 ı̂ − 4 ȷ̂ and magnitude 10. Find the resulting

force on the body.

Solution. First, compute the norm of the direction vector:

∥u∥ =
√

(−3)2 + (−4)2 =
√
9 + 16 =

√
25 = 5.
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Then, the unit vector in the direction of u is:

û =
u

∥u∥
= −3

5
ı̂− 4

5
ȷ̂.

Now we compute the force F 2 of magnitude 10 in the direction of û:

F 2 = 10 · û = −6 ı̂− 8 ȷ̂.

The resulting force is the sum of F 1 and F 2:

F res = F 1 + F 2 = (−2 ı̂+ 2 ȷ̂) + (−6 ı̂− 8 ȷ̂) = −8 ı̂− 6 ȷ̂.
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9.2 Vectors in R3

Plotting a point in R3. A point in space, such as A(2, 3, 4), can be located by traveling

along each axis:

• x = 2 units out of the page,

• y = 3 units to the right,

• and z = 4 units upward.

We illustrate this using components and dotted lines in the figure below.

x

y

z

x = 2
y = 3

z = 4
A(2, 3, 4)

Representing the plane z = const. The plane z = c consists of all points in space whose

height is fixed at z = c. It is parallel to the xy-plane and can be visualized as a horizontal

sheet:

x

y

z

z = c
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Vectors in R3. All the basic vector operations and properties defined in the plane R2

naturally extend to three-dimensional space R3. In this setting, vectors are represented using

the three unit vectors ı̂, ȷ̂, and k̂, corresponding respectively to the x-, y-, and z-axes. In

particular:
ı̂ = ⟨1, 0, 0⟩
ȷ̂ = ⟨0, 1, 0⟩
k̂ = ⟨0, 0, 1⟩

Any vector v̄ in R3 can be written as

v̄ = ⟨vx, vy, vz⟩ = vxı̂+ vy ȷ̂+ vzk̂ .

Given two points P1(x1, y1, z1) and P2(x2, y2, z2) in space, the vector from P1 to P2 is

P1P2 = ⟨x2 − x1, y2 − y1, z2 − z1⟩ = (x2 − x1)̂ı+ (y2 − y1)ȷ̂+ (z2 − z1)k̂ . (9.1)

This vector represents the displacement from P1 to P2 in three-dimensional space.

Example 9.2. Given the vectors

u = ⟨−1, 1, 2⟩, v = ⟨0, 2,−3⟩, w = ⟨5,−1, 0⟩,

find the vector q such that

2u− v + 5q = 3w.

Solution: First, compute 2u:

2u = 2 · ⟨−1, 1, 2⟩ = ⟨−2, 2, 4⟩.

Then compute 2u− v:

⟨−2, 2, 4⟩ − ⟨0, 2,−3⟩ = ⟨−2− 0, 2− 2, 4− (−3)⟩ = ⟨−2, 0, 7⟩.

Now compute 3w:

3 · ⟨5,−1, 0⟩ = ⟨15,−3, 0⟩.
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Now solve for 5q:

5q = 3w − (2u− v) = ⟨15,−3, 0⟩ − ⟨−2, 0, 7⟩ = ⟨17,−3,−7⟩.

Divide by 5:

q =
1

5
· ⟨17,−3,−7⟩ =

〈
17

5
,−3

5
,−7

5

〉
.

Sphere and Cylinder. In three-dimensional space, several important surfaces can be

defined.

A sphere of radius r centered at a point (x0, y0, z0) is the set of all points (x, y, z) such

that:

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r2. (9.2)

Example 9.3. Find the center and the radius of the sphere

x2 + y2 + z2 = 3x+ 3y + 3z.

Solution. Bring all terms to the left and complete the square in each variable:

x2 − 3x+ y2 − 3y + z2 − 3z = 0.



9.2. Vectors in R3 9

Complete the square:

x2 − 3x = (x− 3
2
)2 −

(
3
2

)2
,

y2 − 3y = (y − 3
2
)2 −

(
3
2

)2
,

z2 − 3z = (z − 3
2
)2 −

(
3
2

)2
.

Summing,

(x− 3
2
)2 + (y − 3

2
)2 + (z − 3

2
)2 − 3

(
3
2

)2
= 0.

Hence,

(x− 3
2
)2 + (y − 3

2
)2 + (z − 3

2
)2 = 3

(
3
2

)2
=

27

4
.

This is the standard sphere form (see (9.2)):

(x− x0)
2 + (y − x0)

2 + (z − z0)
2 = r2

with center

C =
(
3
2
, 3

2
, 3

2

)
and radius

r =
√

27
4
= 3

√
3

2
.

A cylinder of radius r aligned along the z-axis and centered at (x0, y0) in the xy-plane

is the set of all points satisfying:

(x− x0)
2 + (y − y0)

2 = r2,

independently of the z-coordinate.

y

z

x
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9.3 The Dot Product

Definition 9.1. Given two vectors v = ⟨v1, v2, v3⟩ and u = ⟨u1, u2, u3⟩, their dot product
(also called scalar product or inner product) is defined as

v · u = v1u1 + v2u2 + v3u3.

The result is a scalar (a number, not a vector).

Example 9.4. Let v = ⟨1, 2,−1⟩ and u = ⟨3, 0, 5⟩. Then:

v · u = 1 · 3 + 2 · 0 + (−1) · 5 = 3 + 0− 5 = −2.

Properties of the Dot Product.

• Magnitude squared: The square of the magnitude of a vector is equal to the dot

product of the vector with itself:

|v|2 = v · v = v21 + v22 + v23.

• Commutativity:

v · u = u · v.

• Distributivity over addition:

v · (u+w) = v · u+ v ·w.

• Scalar multiplication:

(av) · u = a(v · u).

More generally:

(av + bw) · u = a(v · u) + b(w · u).

Theorem 9.1. Let θ be the angle between the nonzero vectors v and w, then:

cos θ =
v · w

∥v∥ ∥w∥
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Remark 9.2. Note that it is easy to show that

v · w = ∥v∥ ∥w∥ cos θ ,

that is also called geometrical formula for the dot product.

Example 9.5 (Finding the angle between two sides of a triangle in 3D). Given the

triangle with vertices

A(1, 1, 8), B(4,−3, 4), C(−3, 1, 5),

find the angle θ between the sides BA and BC.

Solution. Considering equation (9.1), we compute the vectors:

BA = A−B =

 1− 4

1− (−3)

8− 4

 =

−3

4

4

 , BC = C −B =

 −3− 4

1− (−3)

5− 4

 =

−7

4

1

 .

The dot product is:

BA ·BC = (−3)(−7) + (4)(4) + (4)(1) = 21 + 16 + 4 = 41.

The magnitudes are:

|BA| =
√

(−3)2 + 42 + 42 =
√
9 + 16 + 16 =

√
41,

|BC| =
√

(−7)2 + 42 + 12 =
√
49 + 16 + 1 =

√
66.

Then,

cos θ =
BA ·BC

|BA||BC|
=

41√
41
√
66

=
41√
2706

.

Finally,

θ = cos−1

(
41√
2706

)
≈ cos−1(0.7885) ≈ 37.8◦.
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x
y

z

A(1, 1, 8)

B(4,−3, 4)

C(−3, 1, 5)

Theorem 9.2. Nonzero vectors u and v are orthogonal iif (if and only if) u · v = 0.

Proof. Since the statement presents an ”iif”, we need to prove both the implications of the

theorem (direct and inverse):

1. If u and v are orthogonal ⇒ θ = π
2
⇒ u · v = ∥u∥ ∥v∥ cos θ = 0;

2. If u · v = 0 ⇒ ∥u∥ ∥v∥ cos θ = 0 ⇒ cos θ = 0 ⇒ θ = π
2
.

Direction Cosines. Given a vector v = ⟨vx, vy, vz⟩ ∈ R3, the direction cosines of v are

the cosines of the angles that v makes with the positive x-, y-, and z-axes. Denoting these

angles by α, β, γ respectively, we define:

cosα =
vx
∥v∥

, cos β =
vy
∥v∥

, cos γ =
vz
∥v∥

, (9.3)

where ∥v∥ =
√
v2x + v2y + v2z is the Euclidean norm of the vector.
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x

y

z

vx vy

vz

v
γγ

αα ββ

These three direction cosines fully describe the orientation of v in space, and they satisfy

the identity:

cos2 α + cos2 β + cos2 γ = 1.

Remark 9.3. In two-dimensional geometry, a vector v =

[
vx
vy

]
forms an angle θ with the

x-axis such that

tan θ =
vy
vx

,

which is the slope of the line in Cartesian coordinates. The direction cosines generalize this

concept to three dimensions, where slope is no longer a single number but rather a triple of

cosines measuring the vector’s alignment with each axis.

x

y

v

θ
vx

vy

2D: cos θ =
vx
∥v∥

Example 9.6. Find the direction cosines and the angles that the vector v = (3, 4, 12)

makes with the coordinate axes.

Solution. We first compute the magnitude of v.

∥v∥ =
√
32 + 42 + 122 =

√
9 + 16 + 144 =

√
169 = 13
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Then, following (9.3), we have

cosα =
vx
∥v∥

=
3

13

cos β =
vy
∥v∥

=
4

13

cos γ =
vz
∥v∥

=
12

13

Note that

cos2 α + cos2 β + cos2 γ =
9

169
+

16

169
+

144

169
= 1

Lastly, the angles are:

α = cos−1

(
3

13

)
≈ 76.6◦, β = cos−1

(
4

13

)
≈ 72.5◦, γ = cos−1

(
12

13

)
≈ 21.8◦

Projection of a Vector in the Direction of Another. Given two nonzero vectors v

and w in Rn, we define the scalar projection of v in the direction of w as

compw v =
v · w
∥w∥

,

which represents the signed length of the projection of v onto the line defined by w.

The vector projection of v in the direction of w is the vector

projw v =

(
v · w
∥w∥2

)
w,

which lies on the line spanned by w and has magnitude equal to the scalar projection. If the

angle between v and w is acute, the scalar projection is positive; if the angle is obtuse, the

scalar projection is negative.
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x

y

z
v

w

projw v

Example 9.7. Let v = (2,−1, 4) and w = (1, 2, 2). Find compw and projw v

We first compute the dot product:

v · w = 2 · 1 + (−1) · 2 + 4 · 2 = 2− 2 + 8 = 8.

Then, compute the magnitude of w:

∥w∥ =
√
12 + 22 + 22 =

√
1 + 4 + 4 =

√
9 = 3.

Compute the scalar projection:

compw v =
8

3
.

Lastly, we can compute the vector projection:

projw v =

(
8

9

)
⟨1, 2, 2⟩ =

〈
8

9
,
16

9
,
16

9

〉
.

Thus, the scalar projection is
8

3
and the vector projection is

〈
8

9
,
16

9
,
16

9

〉
.
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9.4 The Cross Product

Definition 9.2 (Cross Product). Given two vectors u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩
in R3, their cross product u× v is defined using the determinant of a 3× 3 matrix:

u× v =

∣∣∣∣∣∣∣
ı̂ ȷ̂ k̂

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣ = (−1)1+1ı̂

∣∣∣∣u2 u3

v2 v3

∣∣∣∣+ (−1)1+2ȷ̂

∣∣∣∣u1 u3

v1 v3

∣∣∣∣+ (−1)1+3k̂

∣∣∣∣u1 u2

v1 v2

∣∣∣∣
= ı̂

∣∣∣∣u2 u3

v2 v3

∣∣∣∣− ȷ̂

∣∣∣∣u1 u3

v1 v3

∣∣∣∣+ k̂

∣∣∣∣u1 u2

v1 v2

∣∣∣∣
Thus, we have:

u× v = (u2v3 − u3v2) ı̂− (u1v3 − u3v1) ȷ̂+ (u1v2 − u2v1) k̂

Geometric Interpretation of the Cross Product Let u, v ∈ R3 be two non-parallel

vectors. The cross product u × v is a vector in R3 defined to be orthogonal to both u and

v. Its orientation is given by the right-hand rule: if the fingers of the right hand curl from

u toward v, then the thumb points in the direction of u × v. Geometrically, this vector

represents the normal to the plane spanned by u and v, and its magnitude equals the area

of the parallelogram constructed on u and v as adjacent sides.

x

y

z

u

vu× v

Definition 9.3 (Magnitude of the Cross Product). Let θ ∈ [0, π] be the angle between

two vectors u and v in R3. The magnitude of their cross product is given by the formula:

∥u× v∥ = ∥u∥ ∥v∥ sin θ.
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This expression confirms that the magnitude is maximal when u and v are orthogonal

(θ = π
2
), and vanishes when they are parallel (θ = 0 or π). Consequently, the cross

product also serves as a test of orthogonality and coplanarity.

Remark 9.4. The magnitude ∥u × v∥ also represents the area of the parallelogram

determined by u and v when placed tail to tail in space.

u

v

h = ∥v∥ sin θ

θ

Properties of the Cross Product. Let u, v, w ∈ R3 and let a, b ∈ R be scalars. Then:

• Scalar distributivity: (au)× v = a(u× v) = u× (av).

• Vector distributivity: u× (v + w) = u× v + u× w.

• Anticommutativity: u× v = −(v × u).

• Lagrange’s identity: ∥u× v∥2 = ∥u∥2∥v∥2 − (u · v)2.

• BAC–CAB formula: For the triple cross product, we have:

a× (b× c) = (a · c)b− (a · b)c.

Example 9.8. Find a nonzero vector orthogonal to v = −2ı̂+ 3ȷ̂− 7k̂ and w = 5ı̂+ 9k̂.

Use the cross product.

Solution. We can find a vector orthogonal to both v and w by computing their cross
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product:

v × w =

∣∣∣∣∣∣∣
ı̂ ȷ̂ k̂

−2 3 −7

5 0 9

∣∣∣∣∣∣∣
= ı̂

∣∣∣∣3 −7

0 9

∣∣∣∣− ȷ̂

∣∣∣∣−2 −7

5 9

∣∣∣∣+ k̂

∣∣∣∣−2 3

5 0

∣∣∣∣
= ı̂(3 · 9− (−7) · 0)− ȷ̂((−2) · 9− (−7) · 5) + k̂((−2) · 0− 3 · 5)
= ı̂(27)− ȷ̂(−18 + 35) + k̂(−15) = 27ı̂− 17ȷ̂− 15k̂

Therefore, a nonzero vector orthogonal to both v and w is

v × w = 27ı̂− 17ȷ̂− 15k̂.

Definition 9.4 (Scalar Triple Product). Given three vectors u, v, w ∈ R3, the scalar

triple product is defined as:

u · (v × w).

Algebraically, it is equal to the determinant of the 3× 3 matrix whose rows (or columns)

are the components of the vectors:

u · (v × w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
Remark 9.5. Geometrically, the absolute value of the scalar triple product gives the volume

of the parallelepiped determined by the three vectors. If the scalar triple product is zero,

then the three vectors lie in the same plane, and the volume is zero.

u

v

w
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Example 9.9. Find the volume of the parallelepiped determined by the vectors

u = (2, 0, 1), v = (0, 3, 0), w = (1, 0, 4).

Solution. The volume is given by the absolute value of the scalar triple product:

V = |u · (v × w)| .

We first compute the cross product:

v × w =

∣∣∣∣∣∣
i j k

0 3 0

1 0 4

∣∣∣∣∣∣ = i(3 · 4− 0 · 0)− j(0 · 4− 0 · 1) + k(0 · 0− 3 · 1) = 12 i+ 0 j− 3k.

So,

v × w = (12, 0,−3).

Now take the dot product with u:

u · (v × w) = (2, 0, 1) · (12, 0,−3) = 2 · 12 + 0 · 0 + 1 · (−3) = 24− 3 = 21.

V = 21 .



20 Chapter 9. Vectors in Plane and Space

9.5 Lines in R3

In R⊭, a line is represented using the slope m, defined as the change in y-component divided

by the change in x-component: m = ∆y
∆x

.

We reformulate the definition of m, and we say that a line has the same direction of the

vector

v = âi+ bĵ

a

b

In 3D, we say that a line has the same direction of

v = Aî+Bĵ + Ck̂

where A,B,C are called direction numbers.

Definition 9.5 (Parametric Form of a Line in R3). A line L in three-dimensional space

can be described by:

• a point Q = (x0, y0, z0) through which the line passes, and

• a direction vector v = Aî+Bĵ + Ck̂.

A generic point P = (x, y, z) lies on the line L if and only if the vector PQ is parallel to

v, that is:

PQ = t v, for some t ∈ R.

Since, considering the equation of the vector between two points (9.1):

PQ = (x− x0)̂i+ (y − y0)ĵ + (z − z0)k̂,
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then, we have:

PQ = t v

(x− x0)̂i+ (y − y0)ĵ + (z − z0)k̂ = t(Aî+Bĵ + Ck̂)

we put each component (along î, ĵ, k̂) equal to each other, obtaining:
x− x0 = tA

y − y0 = tB

z − z0 = tC

where t ∈ R.

and we obtain the parametric equations of the line:
x = x0 + tA

y = y0 + tB

z = z0 + tC

where t ∈ R. (9.4)

Example 9.10 (Parametric Equation of a Line in R3). Find the parametric equations of

the line that passes through the point P (3, 1, 4) and has direction vector v = ⟨−1, 1,−2⟩.
Also, find the point where this line intersects the xy-plane.

Solution. The parametric form of a line in R3, passing through a point (x0, y0, z0)

and with direction vector v = ⟨A,B,C⟩, has been introduced in (9.4). Substituting

(x0, y0, z0) = (3, 1, 4) and ⟨A,B,C⟩ = ⟨−1, 1,−2⟩, we get:
x = 3− t

y = 1 + t

z = 4− 2t

t ∈ R

Intersection with the xy-Plane.

The xy-plane corresponds to z = 0. We solve:

4− 2t = 0 ⇒ t = 2
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Substitute t = 2 into the equations for x and y:

x = 3− 2 = 1

y = 1 + 2 = 3

Therefore, the intersection point is (1, 3, 0).

x

y

z

P (3, 1, 4) v

(1, 3, 0)

Remark 9.6. In the three-dimensional Cartesian coordinate system, the coordinate planes

are defined as follows:

• The xy-plane is the plane where the z-coordinate is zero. It contains all points of the

form (x, y, 0).

• The yz-plane is the plane where the x-coordinate is zero. It contains all points of the

form (0, y, z).

• The xz-plane is the plane where the y-coordinate is zero. It contains all points of the

form (x, 0, z).

Each coordinate plane divides the space into two half-spaces and serves as a reference for

measuring coordinates in the 3D space.
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x

y

z

xy-plane

yz-plane
xz-plane

Symmetric form of a line in R3.

Definition 9.6. Consider the parametric equations of a line as in (9.4):

x = x0 + At, y = y0 +Bt, z = z0 + Ct,

where t ∈ R is a parameter, (x0, y0, z0) is a fixed point on the line, and v = (A,B,C) is

the direction vector. Solving each equation for t, we get

t =
x− x0

A
=

y − y0
B

=
z − z0
C

,

which is the symmetric form of the line (assuming A,B,C ̸= 0).

Equivalently, the line can be expressed in vector form as

r(t) = r0 + tv,

where r0 = ⟨x0, y0, z0⟩. Note that sometimes Webwork will ask the final answer in this form.

Example 9.11. Find the parametric and symmetric equations of the line passing through

the points

P1 = (1, 2, 3) and P2 = (4, 0,−1).

Solution: The direction vector is

v = P2 − P1 = (4− 1, 0− 2, −1− 3) = (3,−2,−4).
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Using P1 = (1, 2, 3) as a point on the line, the parametric equations are:

x = 1 + 3t, y = 2− 2t, z = 3− 4t, t ∈ R.

To write the symmetric form, solve each for t:

t =
x− 1

3
=

y − 2

−2
=

z − 3

−4
.

Therefore, the symmetric equations of the line are

x− 1

3
=

y − 2

−2
=

z − 3

−4
.

Example 9.12. Problem: Consider the following two lines in R3:

Line 1:

x = 1 + t, y = 2, z = −1 + 2t

Line 2:

x = 3, y = s, z = 5− s

Determine whether the lines are parallel, intersecting, or skew.

Solution: We start by identifying direction vectors for the lines:

• Line 1 has direction vector v1 = ⟨1, 0, 2⟩

• Line 2 has direction vector v2 = ⟨0, 1,−1⟩

Since the direction vectors are not scalar multiples of each other (same direction vector),

the lines are not parallel. In particular, to verify if two vectors are one scalar multiple of

the other, we can find, if it exists, a number k such that

v1 = kv2 ⇒ ⟨1, 0, 2⟩ = k⟨0, 1,−1⟩ ⇒ ⟨1, 0, 2⟩ = ⟨0, k,−k⟩
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That means, find k such that 
1 = 0

0 = k

2 = −k ,

that is clearly not possible.

Now, to check if they intersect, we try to find values of t and s such that the coordinates

of the two lines match.

Line 1:

x = 1 + t, y = 2, z = −1 + 2t

Line 2:

x = 3, y = s, z = 5− s

So we solve the system generated by putting each component of each line equal to

each other (if they are all equal, that has to be an intersection point; if the system is not

possible, then the two lines cannot intersect):
1 + t = 3

2 = s

1− 2t = 5− s

The system has a unique solution t = 2, s = 2. Important: this system is a system of

three equation in two unknowns. Make sure to verify that the solution fits all the three

equations!

Thus, both lines yield the point:

(x, y, z) = (3, 2, 3)

You can obtain this point by plugging t in the first line and s in the second line. So the

lines intersect at the point (3, 2, 3).

9.5.1 Parametric Equations

Let f1(t), f2(t), f3(t) be continuous functions of t on an interval I. Then, the equations

x = f1(t), y = f2(t), z = f3(t)
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are called parametric equations with parameter t. As t varies over the parameter set I,

the point

(x, y, z) = (f1(t), f2(t), f3(t))

traces a parametric curve in R3.

Remark 9.7. If z = f3(t) = 0, the parametric curve lies in R2. Also, the parameter t is not

necessarily time.

Remark 9.8. The equation of a line written in parametric form is a specific example of a

parametric equation. More generally, the concept of a parametric equation is quite broad,

allowing one to define arbitrary parametrizations for x, y, and z, not necessarily representing

a line.

Example 9.13 (Sketching a parametric curve). Sketch the path of the curve defined by

x = t2 − 9, y =
1

3
t, for − 3 ≤ t ≤ 2.

Solution. We consider different values of t and we find the corresponding points of the

curve:

Table of values

t x = t2 − 9 y = 1
3
t

-3 0 -1

-2 -5 -2
3

-1 -8 -1
3

0 -9 0

1 -8 1
3

2 -5 2
3

x

y

−9, 0
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Example 9.14. Eliminate the parameter from the parametric equations:

x = t2 − 9, y =
1

3
t

Solution. Solve y = 1
3
t ⇒ t = 3y, then substitute into x:

x = (3y)2 − 9 = 9y2 − 9

So the Cartesian equation of the curve is:

x = 9y2 − 9

This is a parabola opening to the right, traced as t increases from −3 to 2.

Example 9.15 (Describing a spiraling path). Describe the path of the curve described

by the parametric equations:

x = e−t cos t, y = e−t sin t, for t ≥ 0

Solution. We cannot find a simple relation between x and y without the parameter t,

but we can still understand the behavior by plotting points for different values of t:

t x y

0 1.00 0.00
π
4

0.32 0.32
π
2

0.00 0.21
3π
4

-0.31 0.00

π -0.31 0.00
3π
2

0.00 -0.05

2π 0.00 0.00

x

y

t = 0

t = π
2

t = π

t = 3π
2
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The equation describes a spiral that converges to the origin as t → ∞. We can verify:

x2 + y2 = e−2t(cos2 t+ sin2 t) = e−2t

As t → ∞, we have x2 + y2 → 0, so the distance from the origin decreases.

Curve Parametrization Given a function y = g(x), we can construct a parametric rep-

resentation of the curve.

Example 9.16. Let y = 9x. One possible parametrization is:

x = t, y = 9t

Alternatively, we could write x = t
3
, which implies y = 3t.

In general, any function y = f(x) can be written parametrically as:

x = t, y = f(t)

Parametrization in Polar Coordinates We can also describe curves using polar coor-

dinates. Recall:

x = r cos θ, y = r sin θ

Example 9.17. Let x2 + y2 = 9, a circle of radius 3. Then a natural parametrization is:

x = 3 cos θ, y = 3 sin θ, θ ∈ [0, 2π]

This is a parametrization using the polar angle θ.

Remark 9.9. A single curve can have infinitely many parametrizations. Choosing one often

depends on the application: animation, physics, geometry, etc.

Example 9.18. Find an explicit relation between x and y by eliminating the parameter

t:

x(t) = 2 sin(t) + 12, y(t) = cos2(t)
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Solution We begin by recalling the Pythagorean identity:

sin2(t) + cos2(t) = 1 ⇒ sin2(t) = 1− cos2(t)

From the second equation, we write:

y = cos2(t) ⇒ sin2(t) = 1− y

Now consider the first equation:

x = 2 sin(t) + 12 ⇒ sin(t) =
x− 12

2

We square both sides:

sin2(t) =

(
x− 12

2

)2

=
(x− 12)2

4

Equating with the previous expression for sin2(t):

1− y =
(x− 12)2

4

Solving for y, we obtain the relation:

y = 1− (x− 12)2

4

This is the explicit relation between x and y, describing a downward-opening parabola.
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9.6 Planes in R3

In three-dimensional space, a plane is a flat, two-dimensional surface that extends infinitely.

Geometrically, a plane can be uniquely defined by a point lying on the plane and a direction

perpendicular to the plane, i.e., a normal vector.

Let v = ⟨vx, vy, vz⟩ be a vector perpendicular to the plane, and let P (x0, y0, z0) be a

point on the plane. Then, for any point Q(x, y, z) lying on the plane, the vector PQ =

⟨x−x0, y− y0, z− z0⟩ must be perpendicular to the normal vector v (by definition of normal

vector itself). Considering Theorem 9.2, this implies that their dot product is zero.

Definition 9.7. The equation of a plane in R3 that passes through a point P (x0, y0, z0)

and is perpendicular to the vector v = ⟨vx, vy, vz⟩ is given by the condition:

v · PQ = 0

which expands to:

vx(x− x0) + vy(y − y0) + vz(z − z0) = 0

This is the general form of the equation of a plane in three-dimensional space.

Starting from the general equation of a plane:

vx(x− x0) + vy(y − y0) + vz(z − z0) = 0

we can distribute each term:

vxx− vxx0 + vyy − vyy0 + vzz − vzz0 = 0

Grouping the variable terms and the constants:

vxx+ vyy + vzz = vxx0 + vyy0 + vzz0

Let us denote the constant on the right-hand side as:

D = vxx0 + vyy0 + vzz0

Thus, the standard form of the plane is:

vxx+ vyy + vzz = D
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Example 9.19. Given the equation of the plane

2x− 3y + 6z = 5,

find:

(a) A unit vector perpendicular to the plane.

(b) The equation of the line that passes through the point P (1,−2, 0) and is perpen-

dicular to the plane.

(c) The intersection point between the line and the plane.

Solution.

(a) The normal vector to the plane is given directly by the coefficients of x, y, and z in

the plane equation:

v = ⟨2,−3, 6⟩.

To obtain the unit vector, we normalize it:

∥v∥ =
√

22 + (−3)2 + 62 =
√
4 + 9 + 36 =

√
49 = 7,

so the unit vector perpendicular to the plane is:

u =

〈
2

7
, −3

7
,
6

7

〉
.

(b) We now want the equation of the line that:

• passes through the point P (1,−2, 0),

• and has direction vector v = ⟨2,−3, 6⟩.

Using the parametric form of a line:
x(t) = 1 + 2t

y(t) = −2− 3t

z(t) = 0 + 6t
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(c) To find the intersection point, substitute the parametric equations of the line into the

equation of the plane:

2x− 3y + 6z = 5 ⇒ 2(1 + 2t)− 3(−2− 3t) + 6(6t) = 5.

Simplifying:

2 + 4t+ 6 + 9t+ 36t = 5 ⇒ 8 + 49t = 5 ⇒ 49t = −3 ⇒ t = − 3

49
.

Now substitute back to find the intersection point:

x = 1 + 2t = 1− 6

49
=

43

49
, y = −2− 3t = −2 +

9

49
= −89

49
, z = 6t = −18

49
.

So the point of intersection is: (
43

49
, −89

49
, −18

49

)

Example 9.20. Find the equation of the plane that passes through the three points:

A(1, 2, 3), B(4, 0,−1), C(−2, 1, 5).

Solution. We start by finding two vectors that lie on the plane (any couple of vectors

between the given points are good):

AB = ⟨4− 1, 0− 2, −1− 3⟩ = ⟨3,−2,−4⟩,
AC = ⟨−2− 1, 1− 2, 5− 3⟩ = ⟨−3,−1, 2⟩.

The normal vector to the plane is given by the following cross product:

n = AB × AC.

Using the determinant formula:

n =

∣∣∣∣∣∣∣
î ĵ k̂

3 −2 −4

−3 −1 2

∣∣∣∣∣∣∣ = î((−2)(2)−(−4)(−1))−ĵ((3)(2)−(−4)(−3))+k̂((3)(−1)−(−2)(−3))
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= î(−4− 4)− ĵ(6− 12) + k̂(−3− 6) = î(−8)− ĵ(−6) + k̂(−9) = ⟨−8, 6,−9⟩.

So the normal vector is:

n = ⟨−8, 6,−9⟩.

Now we use point A(1, 2, 3) and the normal vector to write the plane equation:

−8(x− 1) + 6(y − 2)− 9(z − 3) = 0.

Expanding:

−8x+ 8 + 6y − 12− 9z + 27 = 0 ⇒ −8x+ 6y − 9z + 23 = 0.

Multiplying by −1 for standard convention:

8x− 6y + 9z = 23 .

This is the equation of the plane through points A, B, and C.

Example 9.21. Find the equation of the line that passes through the point P (−1, 2, 3)

and is parallel to the line of intersection of the planes

Π1 : 3x− 2y + z = 4 and Π2 : x+ 2y + 3z = 5.

Solution. To find the direction of the line of intersection of two planes, we compute the

cross product of their normal vectors.

The normal vector to Π1 is n1 = ⟨3,−2, 1⟩, and to Π2 is n2 = ⟨1, 2, 3⟩.
Their cross product is:

d = n1×n2 =

∣∣∣∣∣∣∣
î ĵ k̂

3 −2 1

1 2 3

∣∣∣∣∣∣∣ = î((−2)(3)− (1)(2))− ĵ((3)(3)− (1)(1))+ k̂((3)(2)− (−2)(1))

= î(−6− 2)− ĵ(9− 1) + k̂(6 + 2) = ⟨−8,−8, 8⟩.

We can simplify this direction vector diving by 8 (the rescaled vector will maintain the

direction):

d = ⟨−1,−1, 1⟩.
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Now we use the point P (−1, 2, 3) and this direction to write the parametric equations

of the line:
x = −1− t

y = 2− t

z = 3 + t

or in vector form: r(t) = ⟨−1, 2, 3⟩+ t⟨−1,−1, 1⟩

Example 9.22. Find the equation of the plane that contains the following two lines,

given in symmetric form:

ℓ1 :
x− 1

2
=

y + 3

−1
=

z

4
, ℓ2 :

x+ 2

1
=

y − 1

2
=

z + 3

−2

Solution. We first extract a point and a direction vector from each line.

• From ℓ1:

Point P1 = (1,−3, 0), Direction v1 = ⟨2,−1, 4⟩

• From ℓ2:

Point P2 = (−2, 1,−3), Direction v2 = ⟨1, 2,−2⟩

The plane must contain both P1 and P2, and be parallel to both direction vectors v1 and

v2. To find the normal vector to the plane, we take the cross product:

n = v1 × v2 =

∣∣∣∣∣∣∣
î ĵ k̂

2 −1 4

1 2 −2

∣∣∣∣∣∣∣ = î((−1)(−2)− (4)(2))− ĵ((2)(−2)− (4)(1)) + k̂((2)(2)− (−1)(1))

= î(2− 8)− ĵ(−4− 4) + k̂(4 + 1) = ⟨−6, 8, 5⟩

So the normal vector is n = ⟨−6, 8, 5⟩.
We now use the point P1 = (1,−3, 0) to write the equation of the plane:

−6(x− 1) + 8(y + 3) + 5(z − 0) = 0

Expanding:

−6x+ 6 + 8y + 24 + 5z = 0 ⇒ −6x+ 8y + 5z + 30 = 0
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−6x+ 8y + 5z + 30 = 0

This is the equation of the plane containing both lines ℓ1 and ℓ2.

9.6.1 Distances in R3

Distance from a Point to a Plane

Definition 9.8. Given a plane in space with equation

ax+ by + cz + d = 0,

and a point P (x0, y0, z0) not lying on the plane, the distance from the point to the plane

is defined as the length of the perpendicular segment from the point to the plane. This

distance can be computed using the following formula:

Distance =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
. (9.5)

The distance formula is derived by projecting the vector from any point on the plane to the

point P onto the normal vector n = ⟨a, b, c⟩ of the plane. The numerator gives the signed

magnitude of this projection, and the denominator normalizes it by the length of the normal

vector.

Example 9.23. Find the equation of the sphere with center C(−3, 1, 5) and tangent to

the plane 6x− 2y + 3z = 9.

Solution. Since the sphere is tangent to the plane, the **distance** from the center of

the sphere to the plane equals the radius r of the sphere.

Recall the formula (9.5) for the distance from a point (x0, y0, z0) to the plane ax +

by + cz + d = 0:

Distance =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
.

First, rewrite the plane equation in standard form:

6x− 2y + 3z − 9 = 0,

so a = 6, b = −2, c = 3, d = −9, and (x0, y0, z0) = (−3, 1, 5).
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Compute the numerator:

|6(−3)− 2(1) + 3(5)− 9| = | − 18− 2 + 15− 9| = | − 14| = 14.

Compute the denominator:√
62 + (−2)2 + 32 =

√
36 + 4 + 9 =

√
49 = 7.

So the radius is:

r =
14

7
= 2.

Now write the equation of the sphere centered at (−3, 1, 5) with radius 2:

(x+ 3)2 + (y − 1)2 + (z − 5)2 = 4.

Distance from a Point to a Line Given a point P0 = (x0, y0, z0) and a line L in space,

we often want to compute the shortest distance from the point to the line. Geometrically,

this corresponds to the length of the segment that goes from P0 and is orthogonal to the line

L . This is summarized in the following definition:

Definition 9.9. Let L be a line passing through a point P1 = (x1, y1, z1) and directed

by a vector v = ⟨vx, vy, vz⟩. The distance d from a point P0 = (x0, y0, z0) to the line L is

given by:

d =

∥∥v × P0P1

∥∥
∥v∥

,

where P0P1 is the vector from P1 to P0, and × denotes the cross product.

To compute this, one follows these steps:

• Construct the vector P0P1 = ⟨x0 − x1, y0 − y1, z0 − z1⟩ (note: P1 can be any point of

the line).

• Compute the cross product v × P0P1.

• Take the norm (length) of that cross product vector.

• Divide by the norm of v.

This formula measures how “far off” the point is from the direction of the line by projecting

it orthogonally.
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Example 9.24. Find the distance from the point P0 = (2,−1, 4) to the line L given by

the parametric equations:

x = 1 + 2t, y = t, z = −1 + 2t.

Solution. The line L has direction vector v = ⟨2, 1, 2⟩. A point on the line can be found

by taking t = 0, which gives:

P1 = (1, 0,−1).

We construct the vector from P1 to P0:

P1P0 = ⟨2− 1, −1− 0, 4− (−1)⟩ = ⟨1,−1, 5⟩.

Compute the cross product:

v × P1P0 =

∣∣∣∣∣∣
i j k

2 1 2

1 −1 5

∣∣∣∣∣∣ = i(1 · 5− 2 · (−1))− j(2 · 5− 2 · 1) + k(2 · (−1)− 1 · 1)

= i(5 + 2)− j(10− 2) + k(−2− 1) = ⟨7,−8,−3⟩.

Now take the norm of the cross product:∥∥v × P1P0

∥∥ =
√

72 + (−8)2 + (−3)2 =
√
49 + 64 + 9 =

√
122.

And the norm of v:

∥v∥ =
√
22 + 12 + 22 =

√
9 = 3.

Thus, the distance from the point to the line is:

d =

√
122

3
.
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9.7 Quadric Surfaces

Catalog of Quadric Surfaces

In general, a quadric surface has an equation of the form:

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0,

where A,B,C,D,E, F,G,H, I, J are constants.

Using rotations and translations, all these equations can be rewritten in simplified form

as either:

z = Mx2 +Ny2 or Pz +Qy +Rz = S

where M,N,P,Q,R, S are constants.

We obtain the following classic quadric surfaces:

Elliptic Cone.

z2 =
x2

a2
+

y2

b2

Traces: to visualize a 3D quadric surface, we often examine its traces, which are the curves

formed by intersecting the surface with planes like z =const. These cross-sectional views

help reconstruct the full 3D shape.

• In the plane z = 0:
x2

a2
+

y2

b2
= 0

Since both x2

a2
≥ 0 and y2

b2
≥ 0, the only solution is:

x = 0, y = 0 ⇒ a point (the vertex)

• For z = k ̸= 0:
x2

a2
+

y2

b2
= k2 ⇒ Ellipses for any k value.

Thus, horizontal cuts (z = k) yield ellipses, while the intersection at z = 0 is just a single

point.

If a = b:

z2 =
x2 + y2

a2
⇒ x2 + y2

z2
= a2

the quadric is called circular cone.
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y

x

z
z =cost.

Hyperboloid of One Sheet

x2

a2
+

y2

b2
− z2

c2
= 1

Traces:

• In the plane z = 0:

x2

a2
+

y2

b2
= 1 ⇒ Ellipse

• For z = k:

x2

a2
+

y2

b2
= 1 +

k2

c2
⇒ Ellipse for any k value, since 1 +

k2

c2
is always positive.

yx

z

z =cost.
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Hyperboloid of Two Sheets
x2

a2
+

y2

b2
− z2

c2
= −1

Traces:

• In the plane z = 0:

x2

a2
+

y2

b2
= −1 ⇒ No points (empty)

• For z = k:
x2

a2
+

y2

b2
=

k2

c2
− 1 > 0 ⇒ Ellipses

In this case, it is an ellipse iif

k2

c2
− 1 > 0 ⇒ k2 > c2 ⇒ Ellipse if |k| > c

.

y
x

z

z =cost.

Ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1

Traces.

• In the plane z = 0
x2

a2
+

y2

b2
= 1 ⇒ Ellipse
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• For z = k:
x2

a2
+

y2

b2
= 1− k2

c2

In this case, it is an ellipse iif

1− z2

c2
> 0 ⇒ z2 < c2 ⇒ Ellipse if |k| < c

.

If a = b = c, then the ellipsoid is a sphere:

x2 + y2 + z2 = r2

z

xx
yy

Elliptic Paraboloid

z =
x2

a2
+

y2

b2

Traces:

• For z = c > 0:
x2

a2
+

y2

b2
= c ⇒ Ellipses forc > 0

• For y = k:

z =
x2

a2
+

k2

b2
⇒ Parabolas

• For x = h:

z =
h2

a2
+

y2

b2
⇒ Parabolas
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yx

z

z =cost.

Hyperbolic Paraboloid

z =
y2

b2
− x2

a2

Traces:

• For z = 0:
y2

b2
− x2

a2
= 0 ⇒ Two lines y = ±x

• For z = k:
y2

b2
− x2

a2
= k ⇒ Hyperbolas

y
x

z

Example 9.25. Recognize the following quadric surface using the trace technique:

9x2 + 4y2 − z2 = 36
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Find the type of surface and sketch the shape of the traces in the three coordinate planes.

Solution. First, we put the equation in the forms that we have seen previously, by

dividing by 36 (in order to normalize the right-hand-side):

x2

4
+

y2

9
− z2

36
= 1

Then, we analyze the traces for different values of z:

• Trace in the xy-plane (z = 0):

x2

4
+

y2

9
= 1 ⇒ Ellipse.

• Trace in the for a constant z plane (z = k):

x2

4
+

y2

9
− k2

36
= 1 ⇒ x2

4
+

y2

9
=

k2

36
+ 1

Ellipse if
k2

36
+ 1 > 0 ⇒ Ellipse ∀k ∈ R .

Optionally, we can also consider the intersection of the quadric with the other coordinate

planes:

• Trace in the yz-plane (x = 0):
y2

9
− z2

36
= 1

This is a hyperbola opening along the y-axis.

• Trace in the xz-plane (y = 0):
x2

4
− z2

36
= 1

This is a hyperbola opening along the x-axis.

By sketching the given curves, it is easy to see that the quadric is a Hyperboloid of

One Sheet.
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Example 9.26. Recognize the following quadric surface using the trace technique:

z = 2x2 + 2y2 + 4

Find the type of surface and sketch the shape of the traces in the three coordinate planes.

Solution. The given curve has z as a symmetry axis. Thus, we consider the traces of

the surface when cut by z = constant planes.

• z = 0 gives:

2x2 + 2y2 = −4

which is impossible.

• z = k gives:

k = 2x2 + 2y2 + 4 ⇒ 2x2 + 2y2 = k − 4

which is an ellipse (or better, a circle), when

k − 4 > 0 ⇒ k > 4 .

The figure represented is a paraboloid. In fact, if we consider the traces for x and y =

constant, we obtain:

• x = k: z = 2y2 + 4 + 2k2︸ ︷︷ ︸
const.

it is a parabola under certain conditions for k.

• y = k: z = 2x2 + 4 + 2k2︸ ︷︷ ︸
const.

it is a parabola under certain conditions for k.

Remark 9.10. In the examples presented, the quadric surfaces are expressed with the z-axis

as the axis of symmetry. However, the same classification and interpretation of traces apply

to analogous surfaces with symmetry about the x-axis or y-axis. In those cases, the role of

the variables in the equation changes accordingly: typically, the position of the minus sign

(or the variable associated with it) shifts to reflect the new orientation. This adjustment

does not alter the overall nature of the surface. An exception is the ellipsoid, which remains

unchanged under cyclic permutations of x, y, and z, due to its full rotational symmetry.

Example 9.27 (Changing the Axis of Symmetry). Let us illustrate how the axis of

symmetry can be changed by permuting the variables in the standard form of a quadric

surface.
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• Paraboloid along the y-axis:

y =
x2

a2
+

z2

b2

This is a paraboloid that opens along the y-axis. The cross-sections for y = k are

ellipses in the xz-plane, and the traces in planes parallel to yz or xy are parabolas.

• Hyperboloid of one sheet along the x-axis:

x2

a2
− y2

b2
− z2

c2
= 1

This is a hyperboloid of one sheet with its central axis along the x-axis. The cross-

sections perpendicular to x (i.e., in the yz-plane) are hyperbolas, while traces for

x = k are ellipses.

These examples confirm that quadric surfaces can be oriented along any axis by relabeling

the variables in their standard forms.
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This chapter introduces the main concepts related to vector functions. It is organized as

follows:

• Introduction to vector functions: definition and basic properties.

• Differentiation and integration of vector functions: fundamental rules and ap-

plications.

• Unit tangent, principal unit normal, and curvature: geometric tools for analyz-

ing the behavior of vector functions.
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10.1 Introduction to Vector Functions

A curve in R
3 is the set of all ordered triples

(x(t), y(t), z(t)) = (f1(t), f2(t), f3(t))

depending on the real variable t, satisfying the parametric equations:

x = f1(t), y = f2(t), z = f3(t).

Definition 10.1 (Vector Valued Function). A vector function F of a real variable t on a

domain D assigns to each t ∈ D a unique vector F (t). The set of all vectors of the form

r = F (t), for t ∈ D, is the graph of F .

F (t) = 〈f1(t), f2(t), f3(t)〉

F (t) = f1(t) i+ f2(t) j+ f3(t)k

where f1(t), f2(t), f3(t) are real-valued functions of the real variable t, defined on the

domain D. These are called the components of F .

So, we can write:

F (t) = 〈f1(t), f2(t), f3(t)〉

Example 10.1. Consider

F (t) = 〈3− t, 2t, 3t− 4〉 ∀t

This represents the equation of a line defined in R
3‘:

x = 3− t y = 2t z = 3t− 4

That represents the line (in parametric form):







x− 3 = −t

y = 2t

z + 4 = 3t

Thus: v =< −1, 2, 3 > P0(3, 0,−4)
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Example 10.2. Sketch the graph of the function

F (t) = (2 sin t)̂ı− (2 cos t)̂+ (3t)k̂

Solution. 





x = 2 sin(t)

y = −2 cos(t)

z = 3t

If we consider the first two components squared:

(2 sin(t)
︸ ︷︷ ︸

x

)2 + (−2 cos(t)
︸ ︷︷ ︸

y

)2 = 4(sin2(t) + cos( t)) = 4 ⇒ x2 + y2 = 4

In the x-y plane the graph of the vector function represents a circle. In the z-direction,

it grows linearly (z = 3t).

y

x

z

Example 10.3. Find the vector function F (t) whose graph is the intersection of the

hemisphere z =
√

4− x2 − y2 and the parabolic cylinder y = x2

Solution. Put x = t, then the equation of the parabolic cylinder gives y = t2. Plugging

everything in the equation of the hemisphere we obtain

z =
√

4− t2 − (t2)2 =
√
4− t2 − t4 .
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Thus, 





x = t

y = t2

z =
√
4− t2 − t4

F (t) =< t, t2,
√
4− t2 − t4 >

Operations of Vector Functions. Given the vector functions F (t), G(t), and the scalar

function f(t), we can define the following operations between vector functions:

(F +G)(t) = F (t) +G(t)

(F −G)(t) = F (t)−G(t)

(f · F )(t) = f(t)F (t)

(F ×G)(t) = F (t)×G(t)

(F ·G)(t) = F (t) ·G(t)

Note: the result of the last operation is a scalar function.

Remark 10.1. If the domain of F is D1 and of G is D2, these operations are defined on

D1 ∩D2.

Example 10.4. Let

F (t) = t̂ı+ t2̂− (t3 + 1)k̂, G(t) = 6t̂ı+ t3̂− 5tk̂.

Find:

1. etF (t) + tG(t)

2. (F ×G)(t)

3. (F ·G)(t)

Solution:

1.

etF (t) + tG(t) = (ett+ 6t2)̂ı+ (ett2 + t4)̂+ (−et(t3 + 1)− 5t2)k̂
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2.

F (t)×G(t) =

∣
∣
∣
∣
∣
∣
∣

ı̂ ̂ k̂

t t2 −(t3 + 1)

6t t3 −5t

∣
∣
∣
∣
∣
∣
∣

.

Expanding:

= ı̂ (t2(−5t)− (−(t3 + 1))t3)− ̂ (t(−5t)− (−(t3 + 1))(6t)) + k̂ (t · t3 − t2(6t)).

= ı̂ (−5t3 + (t3 + 1)t3)− ̂ (−5t2 + 6t(t3 + 1)) + k̂ (t4 − 6t3).

= ı̂(t6 − 4t3)− ̂(t2 + 6t) + k̂(t4 − 6t3).

3.

F (t) ·G(t) = (t)(6t) + (t2)(t3) + (−(t3 + 1))(−5t).

= 6t2 + t5 + 5t4 + 5t.

Limits of a vector function. Given a vector function

F (t) = f1(t) i+ f2(t) j+ f3(t)k,

we say that the limit limt→t0 F (t) exists if and only if each of the scalar limits limt→t0 f1(t),

limt→t0 f2(t) and limt→t0 f3(t) exist. In such a case,

lim
t→t0

F (t) =

(

lim
t→t0

f1(t)

)

i+

(

lim
t→t0

f2(t)

)

j+

(

lim
t→t0

f3(t)

)

k.

Example 10.5. Consider F (t) = (2t) i+ (t2) j+ (3)k. Then

lim
t→1

F (t) = (2) i+ (1) j+ (3)k.

Example 10.6. Consider F (t) = sin t
t

i+ (t+ 1) j+ (t2)k. Then

lim
t→0

F (t) = (1) i+ (1) j+ (0)k,

since limt→0
sin t
t

= 1.
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Properties. The operations on limits of vector functions follow the same rules as scalar

limits. In particular, if limt→t0 F (t) and limt→t0 G(t) both exist, then:

lim
t→t0

(
F (t) +G(t)

)
= lim

t→t0
F (t) + lim

t→t0
G(t),

lim
t→t0

(
c F (t)

)
= c · lim

t→t0
F (t),

for any scalar c ∈ R. Moreover, the following hold:

lim
t→t0

(
F (t) ·G(t)

)
=

(

lim
t→t0

F (t)

)

·
(

lim
t→t0

G(t)

)

,

lim
t→t0

(
F (t)×G(t)

)
=

(

lim
t→t0

F (t)

)

×
(

lim
t→t0

G(t)

)

.

Example 10.7. Let F (t) = (t) i+ (1) j+ (0)k and G(t) = (2) i+ (t) j+ (1)k. Then

F (t) ·G(t) = 2t+ t+ 0 = 3t,

so

lim
t→1

(
F (t) ·G(t)

)
= 3.

On the other hand,

lim
t→1

F (t) = (1) i+ (1) j+ (0)k, lim
t→1

G(t) = (2) i+ (1) j+ (1)k,

and their dot product is

(1)(2) + (1)(1) + (0)(1) = 3.

Thus we confirm

lim
t→1

(
F (t) ·G(t)

)
=

(

lim
t→1

F (t)
)

·
(

lim
t→1

G(t)
)

.

Example 10.8. Let F (t) = (t) i+ (0) j+ (1)k and G(t) = (1) i+ (t) j+ (0)k. Then

F (t)×G(t) =

∣
∣
∣
∣
∣
∣

i j k

t 0 1

1 t 0

∣
∣
∣
∣
∣
∣

= (−t) i+ (1) j+ (t2)k.

Hence

lim
t→1

(
F (t)×G(t)

)
= (−1) i+ (1) j+ (1)k.
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On the other hand,

lim
t→1

F (t) = (1) i+ (0) j+ (1)k, lim
t→1

G(t) = (1) i+ (1) j+ (0)k,

and their cross product is

∣
∣
∣
∣
∣
∣

i j k

1 0 1

1 1 0

∣
∣
∣
∣
∣
∣

= (−1) i+ (1) j+ (1)k.

Thus we confirm

lim
t→1

(
F (t)×G(t)

)
=

(

lim
t→1

F (t)
)

×
(

lim
t→1

G(t)
)

.

Continuity of a vector function.

Definition 10.2 (Continuity of a vector function). A vector function

F (t) = f1(t) i+ f2(t) j+ f3(t)k

is said to be continuous at t0 if

lim
t→t0

F (t) = F (t0).

Equivalently, F (t) is continuous at t0 if and only if each component function f1(t), f2(t),

and f3(t) is continuous at t0.

Example 10.9. Given

F (t) = sin t i+
1

1− t
j+ ln(t)k,

determine where F is continuous.

Solution. A vector function is continuous where all its components are continuous.

• sin t is continuous for all t ∈ R.

•

1

1− t
is continuous for t 6= 1.

• ln(t) is continuous for t > 0.
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Intersecting these domains gives t > 0 and t 6= 1. Hence

F (t) is continuous on (0, 1) ∪ (1,∞).
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10.2 Differentiation and Integration of Vector Func-

tions

10.2.1 Vector Derivatives.

Definition 10.3. Derivative of a Vector Function The difference quotient of a vector

function F is given by

∆F = F (t+∆t)− F (t),
∆F

∆t
.

The derivative of F at t is defined as

F
′

(t) = lim
∆t→0

∆F

∆t
= lim

∆t→0

F (t+∆t)− F (t)

∆t
,

whenever this limit exists.

In short notation, we write

F
′

(t) =
d

dt
F (t).

We say that F is differentiable at t0 if F
′

(t) exists at t0.

Theorem 10.1 (Derivative of a Vector Function). The vector function

F (t) = f1(t) i+ f2(t) j+ f3(t)k

is differentiable whenever the component functions f1, f2, f3 are each differentiable, and

in this case

F
′

(t) = f ′

1(t) i+ f ′

2(t) j+ f ′

3(t)k.

Proof.

F
′

(t) = lim
∆t→0

F (t+∆t)− F (t)

∆t
.

= lim
∆t→0

(
f1(t+∆t)− f1(t)

)
i+

(
f2(t+∆t)− f2(t)

)
j+

(
f3(t+∆t)− f3(t)

)
k

∆t
.
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Which gives

F
′

(t) =







lim
∆t→0

f1(t+∆t)− f1(t)

∆t
︸ ︷︷ ︸

f ′

1
(t)







i+







lim
∆t→0

f2(t+∆t)− f2(t)

∆t
︸ ︷︷ ︸

f ′

2
(t)







j+

+







lim
∆t→0

f3(t+∆t)− f3(t)

∆t
︸ ︷︷ ︸

f ′

3
(t)







k = f ′

1(t) i+ f ′

2(t) j+ f ′

3(t)k.

Geometric interpretation of the vector derivative. Let r(t) denote the position vector

of a point moving along a space curve C. The derivative

r′(t) = lim
∆t→0

r(t+∆t)− r(t)

∆t

is a tangent vector to C at the point r(t).

For a general vector function F (t) the derivative gives the instantaneous rate of change of

each component, and when F is a position vector it becomes the geometric tangent described

above.

x

y

r(t)
r(t+∆t)

r(t+
∆t)− r(t)

r′(t)
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Definition 10.4. Suppose that F (t) is differentiable at t0, and that F
′

(t0) 6= 0. Then,

F
′

(t0) is a tangent vector to the graph of F (t) at t = t0, and points in the direction

determined by increasing t.

Example 10.10. Given the vector function

F (t) = e2t i+ (t2 − t) j + ln(t) k,

we want to find a tangent vector to the curve at t = 1, and the tangent line at that point.

Solution.

1. Compute the derivative. The derivative F
′

(t) gives a tangent vector to the curve:

F
′

(t) =
d

dt

(
e2t

)
i+

d

dt
(t2 − t) j +

d

dt
(ln(t)) k.

Compute each component:

d

dt
e2t = 2e2t,

d

dt
(t2 − t) = 2t− 1,

d

dt
ln(t) =

1

t
.

Thus,

F
′

(t) = 2e2t i+ (2t− 1) j +
1

t
k.

2. Evaluate at t = 1

F
′

(1) = 2e2 i+ 1 j + 1 k.

This is the tangent vector at t = 1.

To find now the tangent line, we need to find the line with direction vector

F
′

(1) = 2e2 i+ 1 j + 1 k =< 2e2, 1, 1 > .

and that passes through the point P pointed by F (1).

F (1) = e2 i+ 0 j + 0 k = e2 i ⇒ P (e2, 0, 0) .
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Thus, the tangent line is (using parameter r, since t has been used for F )







x− e2 = 2e2r

y = t

z = t

Definition 10.5. A smooth curve in R
n is a vector function

F (t) =
(
F1(t), F2(t), . . . , Fn(t)

)
,

defined on an interval I ⊂ R, such that:

1. Each component function Fi(t) is continuously differentiable on I.

2. The derivative F
′

(t) 6= 0 for all t ∈ I. That is, the curve has no stationary points.

Intuitively, a smooth curve has a well-defined tangent vector at every point, and no

“corners” or cusps.

Higher Order Derivatives.

Definition 10.6 (Higer Order Derivatives). Let

F (t) = 〈f1(t), f2(t), f3(t)〉

be a vector function with component functions that are sufficiently differentiable. The

higher-order derivatives of F (t) are defined as:

F
′′

(t) =
d2F

dt2
= 〈f ′′

1 (t), f
′′

2 (t), f
′′

3 (t)〉, F
′′′

(t) =
d3F

dt3
= 〈f ′′′

1 (t), f ′′′

2 (t), f ′′′

3 (t)〉,

and in general,

F
(n)

(t) =
dnF

dtn
= 〈f (n)

1 (t), f
(n)
2 (t), f

(n)
3 (t)〉.

These vectors represent the rate of change of the previous derivative. For example, F
′′

(t)

is the acceleration vector if F
′

(t) is the velocity vector of a particle moving along the

curve.
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Example 10.11. Consider the vector function

F (t) = 〈t3, sin(t), et〉.

1. Compute the first derivative (velocity)

F
′

(t) = 〈3t2, cos(t), et〉.

2. Compute the second derivative (acceleration)

F
′′

(t) = 〈6t,− sin(t), et〉.

3. Compute the third derivative

F
′′′

(t) = 〈6,− cos(t), et〉.

Properties of Vector Function Differentiation.

Theorem 10.2 (Rules for differentiating vector functions). Let the vector functions F

and G be differentiable at t, and let the scalar function h be differentiable at t. Then

αF + βG, hF , F ·G, and F ×G are also differentiable at t, and the following rules hold:

1. Linearity rule: (αF + βG)′(t) = αF
′

(t) + βG
′

(t)

2. Scalar multiple rule: (hF )′(t) = h′(t)F (t) + h(t)F
′

(t)

3. Dot product rule: (F ·G)′(t) = F
′

(t) ·G(t) + F (t) ·G′

(t)

4. Cross product rule: (F ×G)′(t) = F
′

(t)×G(t) + F (t)×G
′

(t)

Proof of the linearity rule. Consider the difference quotient of the linear combination αF +

βG:
∆(αF + βG)

∆t
=

α∆F + β∆G

∆t
= α

∆F

∆t
+ β

∆G

∆t
.

Taking the limit as ∆t → 0, we get

(αF + βG)′(t) = α lim
∆t→0

∆F

∆t
+ β lim

∆t→0

∆G

∆t
= αF

′

(t) + βG
′

(t).
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Example 10.12. Let

F (t) = 〈t, t2, t3〉, G(t) = 〈sin t, cos t, et〉, h(t) = t2.

Compute the derivatives using the rules from Theorem.

1. Sum of vectors:

(F+G)′(t) = F
′

(t)+G
′

(t) = 〈1, 2t, 3t2〉+〈cos t,− sin t, et〉 = 〈1+cos t, 2t−sin t, 3t2+et〉

2. Scalar multiple:

(hF )′(t) = h′(t)F (t) + h(t)F
′

(t) = 2t〈t, t2, t3〉+ t2〈1, 2t, 3t2〉 = 〈3t2, 4t3, 5t4〉

3. Dot product:

(F ·G)′(t) = F
′ ·G+F ·G′

= 〈1, 2t, 3t2〉 · 〈sin t, cos t, et〉+ 〈t, t2, t3〉 · 〈cos t,− sin t, et〉

= sin t+2t cos t+3t2et+t cos t−t2 sin t+t3et = (sin t−t2 sin t)+3t cos t+4t2et+t3et

Theorem 10.3 (Orthogonality of a function of constant length and its derivative). Let

F (t) be a differentiable vector function of constant length. Then F (t) is orthogonal to its

derivative F
′

(t).

Proof. Since F (t) has constant length, we have

‖F (t)‖ = constant ⇒ ‖F (t)‖2 = F (t) · F (t) = constant2.

Differentiating both sides with respect to t gives

d

dt

[
F (t) · F (t)

]
=

d

dt

(
constant2

)
= 0.

Using the product rule for the dot product, we get

F
′

(t) · F (t) + F (t) · F ′

(t) = 2F (t) · F ′

(t) = 0 ⇒ F (t) and F
′

(t) are orthogonal.

(To prove this theorem, we used the important Theorem 9.2).
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Example 10.13 (Spatial Application.). Suppose

R(t) = 〈x(t), y(t), z(t)〉

is a 3D vector function whose length lies entirely on the sphere

x2 + y2 + z2 = r2 (constant length).

Let P0 correspond to t = t0. Then R(t0) is the radius connecting the center to P0, and

thus R
′

(t0) is tangent to the sphere at P0.

10.2.2 Integrals of Vector Functions

Let F (t) = 〈f1(t), f2(t), f3(t)〉 be a vector function defined on an interval I ⊂ R. The definite

integral of F (t) from t = a to t = b is defined component-wise as

∫ b

a

F (t) dt =

〈∫ b

a

f1(t) dt,

∫ b

a

f2(t) dt,

∫ b

a

f3(t) dt

〉

.

Similarly, the indefinite integral (antiderivative) is

∫

F (t) dt =

〈∫

f1(t) dt,

∫

f2(t) dt,

∫

f3(t) dt

〉

+ C,

where C is a constant vector of integration.

Properties Some useful properties of vector function integrals include:

• Linearity: For scalar constants α, β and vector functions F ,G,
∫

(
αF (t) + βG(t)

)
dt = α

∫

F (t) dt+ β

∫

G(t) dt.

• Fundamental Theorem of Calculus: If F (t) is continuous on [a, b] and R(t) is an

antiderivative of F (t), then

∫ b

a

F (t) dt = R(b)−R(a).
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Example 10.14. Consider the vector function

F (t) = 〈2t, cos t, et〉.

Indefinite integral. The indefinite integral of F (t) is computed component-wise:

∫

F (t) dt =

〈∫

2t dt,

∫

cos t dt,

∫

et dt

〉

+ C,

where C = 〈C1, C2, C3〉 is a constant vector. Evaluating each component, we get

∫

F (t) dt = 〈t2, sin t, et〉+ C.

Definite integral. To compute the definite integral from t = 0 to t = 1:

∫ 1

0

F (t) dt =

〈∫ 1

0

2t dt,

∫ 1

0

cos t dt,

∫ 1

0

et dt

〉

= 〈1, sin 1, e− 1〉.

10.2.3 Modeling the motion of an object in R
3

Let an object move in three-dimensional space and let its position vector at time t be

R(t) = x(t) i+ y(t) j + z(t) k,

where x(t), y(t), and z(t) are the coordinates of the object in the standard Cartesian axes.

Velocity. The velocity vector V (t) of the object is defined as the derivative of the position

vector with respect to time:

V (t) =
dR

dt
=

dx

dt
i+

dy

dt
j +

dz

dt
k.

Acceleration. The acceleration vector A(t) is the derivative of the velocity vector with

respect to time:

A(t) =
dV

dt
=

d2x

dt2
i+

d2y

dt2
j +

d2z

dt2
k.
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Speed. The speed v(t) of the object is the magnitude of the velocity vector:

v(t) = ‖V (t)‖ =

√
(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

.

Trajectory. The trajectory of the object is the curve in R
3 traced by the tip of the position

vector R(t) as t varies. In other words, it is the set
{
(x(t), y(t), z(t)) ∈ R

3 | t ∈ I
}
,

where I is the time interval during which the motion occurs.

Example 10.15. Consider a particle whose position vector is

R(t) = 〈cos t, sin t, t3〉.

Find the velocity, acceleration, and speed of the object. Also, find the direction of the

motion for t = 2s.

Solution. The velocity vector is the derivative of the position:

V (t) =
dR

dt
= 〈− sin t, cos t, 3t2〉.

The acceleration vector is the derivative of the velocity:

A(t) =
dV

dt
= 〈− cos t, − sin t, 6t〉.

The speed is the magnitude of the velocity:

v(t) = ‖V (t)‖ =
√

(− sin t)2 + (cos t)2 + (3t2)2 =
√
1 + 9t4.

Direction of motion at t = 2 s: The direction of motion is given by the velocity vector at

t = 2.

V (2) = 〈− sin 2, cos 2, 12〉,

Example 10.16 (Position of a particle given its velocity). The velocity of a particle is

V (t) = et i+ t2 j + cos(2t) k, with R(0) = 2 i+ 1 j − 1 k.

Find the position of the particle.
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Solution. Since V (t) = dR(t)
dt

, then

R(t) =

∫

V (t) dt+ C

where C = 〈C1, C2, C3〉. So we have:

∫

V (t) dt =

〈∫

etdt,

∫

t2dt,

∫

cos(2t)dt

〉

=

〈

et,
t3

3
, 1

2
sin(2t)

〉

+ C . (10.1)

Determining the constants with the initial condition. Imposing R(0) = 〈2, 1,−1〉 in

(10.1):

R(0) =
〈
e0 + C1, 0 + C2,

1
2
sin 0 + C3

〉
= 〈1 + C1, C2, C3〉 = 〈2, 1,−1〉.

Thus, 





1 + C1 = 2

C2 = 1

C3 = −1

⇒ C1 = 1, C2 = 1, C3 = −1

Concluding, the position of the particle is

R(t) =

〈

et + 1,
t3

3
+ 1,

1

2
sin(2t)− 1

〉
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10.4 Unit Tangent, unit principal normal and curva-

ture

In the study of curves defined by a vector function of a real parameter, the notions of unit

tangent, principal unit normal, and curvature are fundamental in understanding the geometry

of the motion. These vectors describe how the trajectory evolves and how it bends at each

point.

10.4.1 Unit Tangent and unit principal normal

Definition 10.7. Given a differentiable vector function R(t) that describes a motion in

space, the unit tangent vector is defined as

T (t) =
R

′

(t)

‖R′

(t)‖
,

which points in the direction of motion. The principal unit normal vector is then defined

as

N(t) =
T

′

(t)

‖T ′

(t)‖
,

which points in the direction of the instantaneous change of the tangent.

Example 10.17. Consider the curve defined by

R(t) = 〈3 sin(t), 4t, 3 cos(t)〉.

Find its unit tangent and principal unit normal vectors.

Solution. First, we compute the derivative

R
′

(t) = 〈3 cos(t), 4, −3 sin(t)〉,

with norm

‖R′

(t)‖ =
√

(3 cos(t))2 + 42 + (−3 sin(t))2 =
√

9 cos2(t) + 16 + 9 sin2(t) = 5.
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Hence, the unit tangent is

T (t) =
〈
3
5
cos(t), 4

5
, −3

5
sin(t)

〉
.

Next, we compute

T
′

(t) =
〈
−3

5
sin(t), 0, −3

5
cos(t)

〉
,

with norm

‖T ′

(t)‖ =
3

5

√

sin2(t) + cos2(t) = 3
5
.

Thus, the unit normal vector is

N(t) = 〈− sin(t), 0, − cos(t)〉 .

10.4.2 Arc length as a parameter.

When a curve is described by a parameter t, the distance traveled along the curve between

two points can be computed using the arc length. This provides a natural reparametrization

of the curve in terms of the distance traveled rather than the parameter t.

Definition 10.8. In the plane, consider a curve given by the parametric representation

R(t) = x(t) i+ y(t) j, a ≤ t ≤ b.

The arc length of the curve from t = a to t = b is defined as

s =

∫ b

a

√
(
dx

dt

)2

+

(
dy

dt

)2

dt.

This definition extends naturally to three dimensions.

Definition 10.9. For a space curve represented by

R(t) = x(t) i+ y(t) j + z(t) k, a ≤ t ≤ b,

the arc length of the curve from t = a to t = b is given by

s =

∫ b

a

√
(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.
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Equivalently, using the derivative of the vector function, we can write

s =

∫ b

a

∥
∥
∥R

′

(t)
∥
∥
∥ dt. (10.2)

Definition 10.10. The arc length function associated with a vector function R(t) is

defined as

s(t) =

∫ t

t0

∥
∥
∥R

′

(u)
∥
∥
∥ du,

where t0 is the initial parameter value. This function measures the distance traveled along

the curve from t0 up to t.

Example 10.18 (Arc length between two given values of t). Consider the curve described

by

R(t) = 〈2t, 3 sin(t), 5− 3 cos(t)〉, t ∈ [0, 2].

Solution. The derivative is

R
′

(t) = 〈2, 3 cos(t), 3 sin(t)〉,

so that ∥
∥
∥R

′

(t)
∥
∥
∥ =

√

4 + 9 cos2(t) + 9 sin2(t) =
√
4 + 9 =

√
13.

The arc length from t = 0 to t = 2 is therefore

s =

∫ 2

0

√
13 dt = 2

√
13 .

Example 10.19 (Arc length for a generic t). Let

R(t) = 〈cos(t), sin(t), t〉.

Find the arc length function for t0 = 0.

Solution. We have

R
′

(t) = 〈− sin(t), cos(t), 1〉,
so that ∥

∥
∥R

′

(t)
∥
∥
∥ =

√

(− sin(t))2 + (cos(t))2 + 12 =
√
2.
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Hence, the arc length from t = 0 to a generic time t is

s(t) =

∫ t

0

√
2 du =

√
2 t.

Theorem 10.4 (Speed as derivative of the arc length). Let R(t) be a smooth vector

function that describes a motion in space, and let s(t) denote the arc length defined in

(10.2). Then, the derivative of s(t) with respect to t equals the speed of the motion:

ds

dt
=

∥
∥
∥R

′

(t)
∥
∥
∥ .

Theorem 10.5 (Formulas for T and N in terms of the arc length s). Let R(s) be a

smooth curve parametrized by the arc length s. Then:

• The unit tangent vector is given by

T (s) =
dR

ds
.

• The principal unit normal vector is obtained by differentiating the unit tangent and

normalizing:

N(s) =
dT/ds

∥
∥dT/ds

∥
∥
=

dT/ds

k
.

where k =
∥
∥dT/ds

∥
∥.

10.4.3 The curvature

The curvature is used to represent how the tangent vector changes when the arc length

changes.
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No change: always the same tangent The tangent vector changes as a function of s

Definition 10.11 (Curvature). Suppose the smooth curve C is the graph of the vector

function R(s) parametrized in terms of the arc length s. Then the curvature of C is the

function

κ(s) =

∥
∥
∥
∥

dT

ds

∥
∥
∥
∥
,

where T (s) is the unit tangent vector.

Remark 10.2. In terms of the variable t, the curvature can be expressed as

κ(t) =

∥
∥
∥T

′

(t)
∥
∥
∥

∥
∥
∥R

′

(t)
∥
∥
∥

.

Example 10.20. Show that the circle with radius r,

R(t) = 〈r cos t, r sin t〉, r > 0,

has curvature κ = 1
r
.

Solution.

R
′

(t) = 〈−r sin t, r cos t〉,
R

′′

(t) = 〈−r cos t, −r sin t〉.
The unit tangent vector is

T (t) =
R

′

(t)

‖R′

(t)‖
=

〈−r sin t, r cos t〉√
r2 sin2 t+ r2 cos2 t

= 〈− cos t, sin t〉.

Thus,

T
′

(t) = 〈sin t, cos t〉, ‖T ′

(t)‖ = 1,
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and

‖R′

(t)‖ = r.

Therefore,

κ =
‖T ′

(t)‖
‖R′

(t)‖
=

1

r
.

Theorem 10.6 (The Cross Product Derivative Formula for Curvature). Suppose the

curve C is the graph of the vector function R(t). Then the curvature is given by

κ =
‖R′

(t)×R
′′

(t)‖
‖R′

(t)‖3
.

Example 10.21. Compute the curvature of the helix

R(t) = 〈a cos t, a sin t, bt〉.

Solution.

R
′

(t) = 〈−a sin t, a cos t, b〉, R
′′

(t) = 〈−a cos t, −a sin t, 0〉.

Cross product:

R
′

(t)×R
′′

(t) =

∣
∣
∣
∣
∣
∣

i j k

−a sin t a cos t b

−a cos t −a sin t 0

∣
∣
∣
∣
∣
∣

= 〈ab sin t, −ab cos t, a2〉.

Magnitudes:

∥
∥R

′

(t)×R
′′

(t)
∥
∥ =

√

a2b2(sin2 t+ cos2 t) + a4 = a
√
a2 + b2,

∥
∥R

′

(t)
∥
∥ =

√

a2(sin2 t+ cos2 t) + b2 =
√
a2 + b2.
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Therefore, by the cross–product formula for curvature,

κ(t) =

∥
∥R

′

(t)×R
′′

(t)
∥
∥

∥
∥R

′

(t)
∥
∥
3 =

a
√
a2 + b2

(a2 + b2)3/2
=

a

a2 + b2

which is constant (independent of t).

Theorem 10.7 (Curvature of a Planar Curve). Let the curve be given in Cartesian form

by

y = f(x),

where f has continuous second derivative. The curvature κ of the curve at a point

(x, f(x)) is

κ(x) =
|f ′′(x)|

(
1 + (f ′(x))2

)3/2
.


