
Note on an Additive Characterization
of Quadratic Residues Modulo p

Chris Monico, Michele Elia

Draft of January 27, 2006

Abstract

It is shown that an even partition A∪B of the set R = {1, 2, . . . , p− 1} of positive
residues modulo an odd prime p is the partition into quadratic residues and quadratic
non-residues if and only if the elements of A and B satisfy certain additive properties,
thus providing a purely additive characterization of the set of quadratic residues.

1 Additive properties of quadratic residues

An integer a which is not a multiple of a prime p is called a quadratic residue modulo p if
the quadratic equation x2 = a mod p has a solution. If it has no solution then a is called a
quadratic non-residue modulo p. The set R = {1, 2, · · · , p−1} of non-zero residues modulo p
is evenly partitioned by the quadratic residue character into two sets, A and B, of quadratic
residues and quadratic non-residues, respectively. The property of being a quadratic residue
or a quadratic non-residue is inherently a multiplicative property, by its definition in terms
of field product operations. The paper shows that the set of quadratic residues modulo p can
also be characterized strictly in terms of field addition operations. Specifically, it determines
the number of ways in which an element c of R can be written as a sum of two elements from
A or two elements from B. The answer depends only on whether c is itself an element of A
or B. We then show that this property completely determines the sets A and B, providing
a purely additive characterization of the set of quadratic residues.

Let p be an odd prime, and let QR and QNR stand for quadratic residue and quadratic
non-residue, respectively, in the prime field Fp of p elements. Two generating polynomials
for the sets of QR and QNR are defined as

rp(x) =
∑

1≤j<p

(j | p)=1

xj, qp(x) =
∑

1≤j<p

(j | p)=−1

xj.

The canonical representatives of rp(x)2 and qp(x)2 modulo 〈xp − 1〉 in Fp[x] are denoted by

rp(x)2 ≡ a0 + a1x + · · ·+ ap−1x
p−1 (mod 〈xp − 1〉)

qp(x)2 ≡ b0 + b1x + · · ·+ bp−1x
p−1 (mod 〈xp − 1〉)



where aj, bj are non-negative integers smaller than p. It is observed that aj [or bj] is precisely
the number of ways in which j can be written as a sum of two quadratic residues [or non-
residues]. Thus, aj, bj can be considered as elements of the set {0, 1, 2, · · · , p−1} of canonical
representatives of Z/pZ.

Lemma 1.1 Let p be an odd prime and ai, bi as defined above. Then for i, j ∈ R, the
following hold:

1. bj − aj = (j | p).

2. If (i | p) = (j | p), then ai = aj and bi = bj.

Proof: Observe first that rp(x) + qp(x) = x + x2 + · · · + xp−1 = xp−1
x−1

− 1. Since there are
precisely (p− 1)/2 quadratic residues and the same number of non-residues, it follows that
rp(1) − qp(1) = 0, whence (x − 1)|(rp(x) − qp(x)), that is rp(x) − qp(x) = (x − 1)fp(x). It
follows that modulo 〈xp − 1〉 we have

rp(x)2 − qp(x)2 = (x− 1)fp(x)

[
xp − 1

x− 1
− 1

]
= fp(x)(xp − 1)− (x− 1)fp(x)

≡ (1− x)fp(x)

≡ qp(x)− rp(x) (mod 〈xp − 1〉) .

Thus, rp(x)2 + rp(x) ≡ qp(x)2 + qp(x) (mod 〈xp − 1〉) , which proves part 1.
Suppose now that i, j ∈ {1, 2, . . . , p−1} are both quadratic residues modulo p. Then there

exist quadratic residues α, β ∈ Z/pZ so that iα ≡ j (mod p) , i ≡ jβ (mod p) . If x, y are
quadratic residues with i ≡ x + y (mod p) , it follows that j ≡ xα + yα (mod p) and xα, yα
are also quadratic residues. Similarly, if x, y are quadratic residues with j ≡ x + y (mod p) ,
it follows that i ≡ xβ + yβ (mod p) , and xβ, yβ are quadratic residues. Thus, if i, j are
both quadratic residues, we have the equality ai = aj. By similar arguments, we obtain
ai = aj for (i | p) = (j | p). It then follows from the first part of the lemma that bi = bj for
(i | p) = (j | p).

Let α1, α−1 denote the common value of the ai with (i | p) = 1,−1, respectively. Simi-
larly, define β1, β−1 to be the common values of the bi for (i | p) = 1,−1, respectively. Our
immediate goal is to explicitly determine these quantities. It follows from simply counting
the number of sums of quadratic [non-]residues that

α1 + α−1 = β1 + β−1 =

{
p−3
2

, if p ≡ 1 (mod 4)
p−1
2

, if p ≡ 3 (mod 4)
. (1.1)

The different cases above result from the fact that, if p ≡ 1 (mod 4) , then 0 can be written
as a sum of quadratic residues in exactly p−1 ways, whereas if p ≡ 3 (mod 4) , then 0 cannot
be written as any sum of two quadratic non-residues.
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Theorem 1.2 Let p be an odd prime and set

dp =

{
p−1
4

, if p ≡ 1 (mod 4)
p+1
4

, if p ≡ 3 (mod 4)
. (1.2)

Then every quadratic residue [non-residue] can be written as a sum of two quadratic residues
[non-residues] in exactly dp−1 ways. Every quadratic residue [non-residue] can be written as
a sum of two quadratic non-residues [residues] in exactly dp ways. Moreover, every non-zero
residue can be written as a sum of a QR and a QNR in exactly p− 1− 2dp ways.

Proof: As above, let α1, β1 denote respectively the number of ways in which a quadratic
residue can be written as a sum of two quadratic residues or non-residues. Let α−1, β−1

denote respectively the number of ways in which a quadratic non-residue can be written as
a sum of two quadratic residues or non-residues. It is necessary to show that dp = α−1 = β1

and dp − 1 = α1 = β−1. Notice that there is a bijection between sums of quadratic residues
equaling a quadratic residue and sums of non-residues equaling a non-residue (induced by
multiplication by a non-residue) whence α1 = β−1. Combining this with the result from
Lemma 1.1 that β1 − α1 = 1, we have β1 − β−1 = 1. The results then follow by applying
Equation 1.1.
The equation x1 +x2 = a in Fp has p−2 solutions with neither x1 nor x2 equal 0. Therefore,
the number of solutions with x1 a QR, and x2 a QNR, or vice-versa, is p − 2 − (2dp − 1).

2 The converse

The goal of this section is to show that the additive properties given in Section 1 completely
characterize the quadratic residues. Let dp be defined as in Equation (1.2), and, for the
remainder of this section, suppose A and B form an even partition of Fp \ {0} such that

1. Every element of A [ B ] can be written as a sum of two elements from A [B] in exactly
dp − 1 ways.

2. Every element of A [B] can be written as a sum of two elements from B [A] in exactly
dp ways.

Define two polynomials in Fp[x],

a(x) =
∑
a∈A

xa, b(x) =
∑
b∈B

xb.

It follows from the assumptions on the sets A and B that

a(x)2 ≡ (dp − 1)a(x) + dpb(x) + cp

≡ dp(x + x2 + · · ·+ xp−1)− a(x) + cp (mod 〈xp − 1〉) ,
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where cp is the number of ways in which zero can be written as a sum of two elements of
A. Evaluation at x = 1 shows that cp = p−1

2
if p ≡ 1 (mod 4) and cp = 0 if p ≡ 3 (mod 4) .

Thus,
a(x)2 + a(x) ≡ dp

(
(x− 1)p−1 − 1

)
+ cp (mod 〈xp − 1〉) (2.3)

Similarly, we find that

b(x)2 + b(x) ≡ dp

(
(x− 1)p−1 − 1

)
+ cp (mod 〈xp − 1〉) (2.4)

We will use the following Hensel-like lemma to show that {a(x), b(x)} = {rp(x), qp(x)}.

Lemma 2.1 Let p be an odd prime, and Rk := Fp[x]/〈(x − 1)k〉 for k ≥ 1. Then each
invertible element of Rk has at most two distinct square roots.

Proof: We proceed by induction on k. The base case is obvious since R1
∼= Fp. Suppose now

that the result holds for all 1 ≤ k ≤ N . Further suppose that a, b, c, g ∈ Fp[x] are invertible
modulo 〈(x− 1)N+1〉 and

a2 + 〈(x− 1)N+1〉 = b2 + 〈(x− 1)N+1〉 = c2 + 〈(x− 1)N+1〉 = g + 〈(x− 1)N+1〉.

By canonical projection onto RN , it follows that a2 + 〈(x − 1)N〉 = b2 + 〈(x − 1)N〉 =
c2 + 〈(x − 1)N〉 = g + 〈(x − 1)N〉, so that two of these must be equal by the induction
hypothesis, say a + 〈(x− 1)N〉 = b + 〈(x− 1)N〉. It follows that a = b + (x− 1)Nf for some
f ∈ Fp[x]. Thus,

b2 + 〈(x− 1)N+1〉 = a2 + 〈(x− 1)N+1〉
= (b + (x− 1)Nf)2 + 〈(x− 1)N+1〉
= b2 + 2(x− 1)Nbf + (x− 1)2Nf 2 + 〈(x− 1)N+1〉
= b2 + 2(x− 1)Nbf + 〈(x− 1)N+1〉.

So 2(x−1)Nbf ∈ 〈(x−1)N+1〉, but since 2b is invertible modulo 〈(x−1)N+1〉, it follows that
(x− 1) | f , so that a + 〈(x− 1)N+1〉 = b + 〈(x− 1)N+1〉.

Theorem 2.2 Let p be an odd prime and let dp be defined as in Equation (1.2). Suppose
A ⊂ F∗p and B = F∗p \A. Then A is precisely the set of quadratic residues of Fp if and only if

1. |A| = (p− 1)/2,

2. 1 ∈ A,

3. Every element of A can be written as a sum of two elements from A in exactly dp − 1
ways.

4. Every element of B can be written as a sum of two elements from A in exactly dp ways.
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Proof: As in Equation 2.3, it follows from the hypotheses that

a(x)2 + a(x) ≡ dp

(
(x− 1)p−1 − 1

)
+ cp (mod 〈xp − 1〉) ,

where

cp =

{
p−1
2

, if p ≡ 1 (mod 4)
0, if p ≡ 3 (mod 4) .

It is an immediate corollary of Lemma 2.1 that a quadratic equation in Rk[y] with invertible
coefficients has at most two solutions (this follows from a completing-the-square argument).
In particular, the equation y2+y−dp ((x− 1)p−1 − 1)−cp = 0 has coefficients invertible in Rp

so that it has at most two distinct solutions in Rp = Fp[x]/〈(x−1)p〉 = Fp[x]/〈xp−1〉. From
the proof of 1.1, we have that rp(x) and qp(x) are two distinct solutions, so that a(x) = rp(x)
or a(x) = qp(x). But since 1 ∈ A and A, B are disjoint by assumption, it must be the case
that a(x) = rp(x).

2.1 A second proof

In this section, we present an alternate derivation and proof of the results in the first two
sections. Let R and Q be the subsets of Fp consisting of QRs and QNRs, respectively. Let
(j | p) denote the Legendre symbol. The characteristic functions of R and Q are

r(0) = 0 and r(j) =
1 + (j | p)

2
, j ∈ Zp

q(0) = 0 and q(j) =
1− (j | p)

2
, j ∈ Zp ,

respectively, and their generating functions are
rp(x) =

p−1∑
j=1

1 + (j | p)

2
xj =

1

2
(zp(x) + g(x)− 1)

qp(x) =

p−1∑
j=1

1− (j | p)

2
xj =

1

2
(zp(x)− g(x)− 1)

(2.5)

where zp(x) =
∑p−1

j=0 xj is the generating function of the characteristic function of Fp, and

g(x) =
∑p−1

i=0 (i | p)xi is a Gaussian-like sum.

The conclusions of Section 1, can be rewritten in terms of generating polynomials rp(x) and
qp(x) as follows

rp(x)2 + rp(x) =
p− (−1 | p)

4
(zp(x) + (−1 | p)) mod xp − 1

rp(x) + qp(x) = zp(x)− 1 .

(2.6)

Conversely, rp(x) and qp(x) are the only polynomials with 0, 1 coefficients that satisfy equa-
tion (2.6). To prove this using a different argument from that given in the previous section,
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let A and B be two subsets forming an even partition of Fp\{0}, as above. Let the generating
polynomials of their characteristic functions satisfy the conditions a(x)2 + a(x) =

p− (−1 | p)

4
(zp(x) + (−1 | p)) mod xp − 1

a(x) + b(x) = zp(x)− 1 .
(2.7)

Therefore A(m) = a(ζm
p ) satisfies the equation A(m)2 + A(m) = p(−1 | p)−1

4
, ∀m 6= 0, and

A(0) = (p−1)
2

, thus

A(m) = −1

2
±

√
(−1 | p)p

2
∀m 6= 0 ,

where the only uncertainty lies in the sign. Hence any A(m) is in the quadratic field
Q(

√
(−1 | p)p), which is a subfield of the cyclotomic field Q(ζp) [6, Exer. 1,p.17]. Since

the numerical value of the so-called Gauss sum g(ζm
p ) is (m | p)g(ζp) = ±

√
(−1 | p)p ∀m 6= 0,

[3, Equation (5),p.7], (where the uncertainty of the sign is due to the choice of the primitive
root ζp, as Davenport pointed out in [3, p.13]), it follows that

A(m) = −1

2
± 1

2
(m | p)g(ζp) , m 6= 0.

The degree of Q(ζp) over Q is p − 1, [6, Theorem 2.5, p.11], and an integral basis is
{1, ζp, ζ

2
p , . . . , ζ

p−2
p }, thus the representation A(m) =

∑
j∈R ζj

p is unique except for a choice
of the primitive root ζp. This uniqueness of representation in a given integral basis of every
element of an algebraic number field, implies that the only partition of Fp, whose generating
function satisfies (2.7), is Fp = R∪Q.

�

3 Conclusions

For completeness, we compute the number of solutions to

n ≡ a + b (mod p) , (ab | p) = −1, for p 6 |n

which is simply obtained by observing that n = a+b has p solutions in total and dp +(dp−1)
solutions with (ab | p) = 0. Additionally, there are two solutions with (ab | p) = 0, so that
the number of solutions with (ab | p) = −1 is given by

p− (2dp − 1)− 2 = p− 2dp − 1 =
p− 2 + (−1 | p)

2
.

It is finally remarked that Theorem 1.2 is obtained using elementary techniques, while the
proofs of the converse in Section 2 require some tools from commutative algebra and/or
algebraic number theory. It is an open problem to find a more direct proof that these
additive properties characterize the quadratic residues.
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