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Abstract

It is shown that an even partition AU B of the set R = {1,2,...,p— 1} of positive
residues modulo an odd prime p is the partition into quadratic residues and quadratic
non-residues if and only if the elements of A and B satisfy certain additive properties,
thus providing a purely additive characterization of the set of quadratic residues.

1 Additive properties of quadratic residues

An integer a which is not a multiple of a prime p is called a quadratic residue modulo p if
the quadratic equation 22 = @ mod p has a solution. If it has no solution then a is called a
quadratic non-residue modulo p. The set R = {1,2,--- , p—1} of non-zero residues modulo p
is evenly partitioned by the quadratic residue character into two sets, A and B, of quadratic
residues and quadratic non-residues, respectively. The property of being a quadratic residue
or a quadratic non-residue is inherently a multiplicative property, by its definition in terms
of field product operations. The paper shows that the set of quadratic residues modulo p can
also be characterized strictly in terms of field addition operations. Specifically, it determines
the number of ways in which an element ¢ of R can be written as a sum of two elements from
A or two elements from B. The answer depends only on whether ¢ is itself an element of A
or B. We then show that this property completely determines the sets A and B, providing
a purely additive characterization of the set of quadratic residues.

Let p be an odd prime, and let QR and QNR stand for quadratic residue and quadratic
non-residue, respectively, in the prime field F, of p elements. Two generating polynomials
for the sets of QR and QNR are defined as

rp(x) = Z 7, ¢p(z) = Z .
1<j<p 1<ji<p
(lp)=1 (lp)=-1
The canonical representatives of 7,(z)? and ¢,(z)? modulo (#? — 1) in F,[x] are denoted by
rp(2)? = ag+ax+---+ a2’ (mod (xP — 1))

gp(x)? = bo+biz+--+by2P7" (mod (xP — 1))



where a;, b; are non-negative integers smaller than p. It is observed that a; [or b;] is precisely
the number of ways in which j can be written as a sum of two quadratic residues [or non-
residues|. Thus, a;, b; can be considered as elements of the set {0,1,2,--- ,p—1} of canonical
representatives of Z/pZ.

Lemma 1.1 Let p be an odd prime and a;,b; as defined above. Then for i,j € R, the
following hold:

1. by —a; = (jlp).
2. If (i|p) = (j | p), then a; = a; and b; = b;.

Proof: Observe first that 7,(z) + g,(z) = v + 2% + -+ + 2?71 = =L — 1. Since there are

z—1
precisely (p — 1)/2 quadratic residues and the same number of non-residues, it follows that

(1) = gp(1) = 0, whence (z — 1)|(ry(z) — gp()), that is rp(z) — gp(x) = (# = 1) fp(x). It
follows that modulo (zP — 1) we have

(@)’ — gp(x)® = (z—1)f(x) ["Zp__ll _ 1]

fp(x) (@ = 1) = (z — 1) f(z)
(1—2)fp(2)
gp(x) — rp(z) (mod (x” —1)).

Thus, ry(z)* + ry(z) = ¢,(2)* + gp(x) (mod (xP — 1)), which proves part 1.

Suppose now that i, 5 € {1,2,...,p—1} are both quadratic residues modulo p. Then there
exist quadratic residues «, f € Z/pZ so that i« = j (mod p), i = j (mod p). If x,y are
quadratic residues with i = z 4+ y (mod p), it follows that j = za+ ya (mod p) and za, ya
are also quadratic residues. Similarly, if x,y are quadratic residues with j = z 4y (mod p),
it follows that ¢ = 20 + yf (mod p), and x3,yl are quadratic residues. Thus, if i,j are
both quadratic residues, we have the equality a; = a;. By similar arguments, we obtain
a; = a; for (i|p) = (j|p). It then follows from the first part of the lemma that b; = b, for

(ilp)=(jlp) O

Let oy, a_; denote the common value of the a; with (i|p) = 1, —1, respectively. Simi-
larly, define 3, 5_1 to be the common values of the b; for (i |p) = 1, —1, respectively. Our
immediate goal is to explicitly determine these quantities. It follows from simply counting
the number of sums of quadratic [non-]residues that

S

=3 if p=1 (mod 4) (1.1)
1 if p=3 (mod4) - '
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S
T

041—1-04—1:514‘5—1:{

The different cases above result from the fact that, if p =1 (mod 4), then 0 can be written
as a sum of quadratic residues in exactly p—1 ways, whereas if p = 3 (mod 4) , then 0 cannot
be written as any sum of two quadratic non-residues.



Theorem 1.2 Let p be an odd prime and set

-]

Then every quadratic residue [non-residue] can be written as a sum of two quadratic residues
[non-residues] in exactly d,—1 ways. Every quadratic residue [non-residue] can be written as
a sum of two quadratic non-residues [residues] in exactly d,, ways. Moreover, every non-zero
residue can be written as a sum of a QR and a QNR in exactly p — 1 — 2d,, ways.

S

- ,if p=1 (mod 4)

,if p=3 (mod 4) (1.2)

S
o |
[

Proof: As above, let aq,3; denote respectively the number of ways in which a quadratic
residue can be written as a sum of two quadratic residues or non-residues. Let a_q,3_4
denote respectively the number of ways in which a quadratic non-residue can be written as
a sum of two quadratic residues or non-residues. It is necessary to show that d, = a_; = 3
and d, — 1 = a; = _;. Notice that there is a bijection between sums of quadratic residues
equaling a quadratic residue and sums of non-residues equaling a non-residue (induced by
multiplication by a non-residue) whence ay = [_;. Combining this with the result from
Lemma 1.1 that §; — a1 = 1, we have 3; — f_; = 1. The results then follow by applying
Equation 1.1.
The equation x; + 22 = a in F), has p — 2 solutions with neither x; nor x5 equal 0. Therefore,
the number of solutions with x; a QR, and 23 a QNR, or vice-versa, is p — 2 — (2d, — 1).
O

2 The converse

The goal of this section is to show that the additive properties given in Section 1 completely
characterize the quadratic residues. Let d, be defined as in Equation (1.2), and, for the
remainder of this section, suppose A and B form an even partition of F, \ {0} such that

1. Every element of A [ B | can be written as a sum of two elements from A [B] in exactly
d, — 1 ways.

2. Every element of A [B] can be written as a sum of two elements from B [A] in exactly
d, ways.

Define two polynomials in [F,[z],
a(x) = Zx“, b(x) = Zmb.
acA beB

It follows from the assumptions on the sets A and B that

a(z)”

(dp — Da(x) + dpb(z) + ¢
dp(:c—l—x2+---+:cp_l) —a(r)+¢, (mod (x*—1)),



where ¢, is the number of ways in which zero can be written as a sum of two elements of
A. Evaluation at x = 1 shows that ¢, = &% if p=1 (mod 4) and ¢, = 0if p=3 (mod 4).
Thus,

a(z)’ +a(z)=d, (z—1)""'=1)+¢, (mod (x"—1)) (2.3)

Similarly, we find that
b(x)* +bz)=d, (x—1)P"'=1)+¢, (mod (x> —1)) (2.4)
We will use the following Hensel-like lemma to show that {a(z),b(z)} = {r,(x), ¢,(z)}.

Lemma 2.1 Let p be an odd prime, and Ry := Fplx]/((x — 1)¥) for k > 1. Then each
inwvertible element of Ry has at most two distinct square roots.

Proof: We proceed by induction on k. The base case is obvious since Ry = F,,. Suppose now
that the result holds for all 1 <k < N. Further suppose that a,b, ¢, g € F,[z] are invertible
modulo {(z — 1)¥*1) and

o+ ((z = D" =0+ (- )" =+ {(z = D) = g+ (2 = D).

By canonical projection onto Ry, it follows that a® + ((z — 1)V) = b? + ((x — D)) =
A+ {((x = 1)) = g+ ((x — 1)V), so that two of these must be equal by the induction
hypothesis, say a + ((z — 1)V) = b+ ((x — 1)V). Tt follows that a = b+ (z — 1)V f for some
f € F,[z]. Thus,

0+ ((z— DY) =+ ((x — DV
= (b+ (=Y +((x -V
= + 2(3;- — 1)Nbf + ($ N 1>2Nf2 + <(QE _ 1)N+1>
= 0+ 2z — D)Vbf + ((x — 1)V,
So 2(z — 1)NMbf € ((x —1)NF1), but since 2b is invertible modulo ((x — 1)N*1) it follows that
(x —1)| f, so that a + ((z — D)V = b+ ((x — 1)V F1). -

Theorem 2.2 Let p be an odd prime and let d, be defined as in Equation (1.2). Suppose
A CT; and B =T\ A. Then A is precisely the set of quadratic residues of F, if and only if

1Al =(p—1)/2,
2. 1€ A,

3. Every element of A can be written as a sum of two elements from A in exactly d, — 1
ways.

4. Bvery element of B can be written as a sum of two elements from A in exactly d, ways.



Proof: As in Equation 2.3, it follows from the hypotheses that
a(z)’ +a(z)=d, (z—1)""'=1)+¢, (mod (x*—1)),

where

R if p=1 (mod 4)
= 0, if p=3 (mod 4).

It is an immediate corollary of Lemma 2.1 that a quadratic equation in Ry[y] with invertible
coefficients has at most two solutions (this follows from a completing-the-square argument).
In particular, the equation y*+y—d, ((z — 1)*~" — 1)—¢, = 0 has coefficients invertible in R,
so that it has at most two distinct solutions in R, = F,[z]/((x — 1)?) = F,[z]/(z* —1). From
the proof of 1.1, we have that r,(x) and g,(x) are two distinct solutions, so that a(z) = r,(x)
or a(zr) = gy(x). But since 1 € A and A, B are disjoint by assumption, it must be the case
that a(z) = r,(z). O

2.1 A second proof

In this section, we present an alternate derivation and proof of the results in the first two
sections. Let R and Q be the subsets of F,, consisting of QRs and QNRs, respectively. Let
(7| p) denote the Legendre symbol. The characteristic functions of R and Q are

1+ (j[p)

r(0) =0 and r(j) = 5 ., JEZ,
, 1—-(lp :
g0 =0 and g =Y jeg
respectively, and their generating functions are
p—1
1+(lp) ; 1
() = 3 = () + gla) 1)
i), )
gp(z) = Tﬂ 5 (zp(2) — g(z) — 1)
j=1
where z,(z) = 5’ o 27 is the generating function of the characteristic function of F,, and
g(x) = 3P0 (i | p)a’ is a Gaussian-like sum.

The conclusions of Section 1, can be rewritten in terms of generating polynomials r,(z) and
¢p(x) as follows

p—(=1fp
@l e = P G (1) mod w1
(2.6)
rp(2) +gp(x) = zp(x) -1 .
Conversely, 7,(z) and g,(x) are the only polynomials with 0,1 coefficients that satisfy equa-
tion (2.6). To prove this using a different argument from that given in the previous section,
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let A and B be two subsets forming an even partition of F,\{0}, as above. Let the generating
polynomials of their characteristic functions satisfy the conditions

a@ptaw) = PCUP )y (1p) mod -1
a(z) +b(z) = z(x)—1 .

(2.7)

Therefore A(m) = a(()") satisfies the equation A(m)* + A(m) = 1% , Vm # 0, and
A(0) = @, thus
2 2

where the only uncertainty lies in the sign. Hence any A(m) is in the quadratic field
Q(v/(—1|p)p), which is a subfield of the cyclotomic field Q((,) [6, Exer. 1,p.17]. Since
the numerical value of the so-called Gauss sum g((;") is (m|p)g(¢,) = £/ (=1 |p)p Vm # 0,
[3, Equation (5),p.7], (where the uncertainty of the sign is due to the choice of the primitive
root (,, as Davenport pointed out in [3, p.13]), it follows that

Ym #0

Alm) = —5 % 2(m|p)g(G) .m0

2
The degree of Q((,) over Q is p — 1, [6, Theorem 2.5, p.11], and an integral basis is
{1,6, ¢, .., 77}, thus the representation A(m) = dier ¢J is unique except for a choice
of the primitive root (,. This uniqueness of representation in a given integral basis of every
element of an algebraic number field, implies that the only partition of I, whose generating
function satisfies (2.7), is F, = R U Q.

O

3 Conclusions

For completeness, we compute the number of solutions to
n=a+b(modp), (ablp)=-1, forp In

which is simply obtained by observing that n = a+0b has p solutions in total and d, + (d, — 1)
solutions with (ab|p) = 0. Additionally, there are two solutions with (ab|p) = 0, so that
the number of solutions with (ab|p) = —1 is given by

p—2+(-1lp)

p—2d,—1)—2=p—2d,— 1= i )

It is finally remarked that Theorem 1.2 is obtained using elementary techniques, while the
proofs of the converse in Section 2 require some tools from commutative algebra and/or
algebraic number theory. It is an open problem to find a more direct proof that these
additive properties characterize the quadratic residues.
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