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ABSTRACT

Super-resolution estimates a higher resolution image given a set of lower resolution

images with negligible scene differences between them. There are two key techniques

developed for performing the super-resolution that is discussed in this paper. First,

we develop an accurate alignment algorithm for the low-resolution images that takes

into account any horizontal, vertical, and rotational shifts between the set of sample

images. Second, a technique for approximating a higher resolution image by using

sub-pixel level basis functions is developed.
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CHAPTER I

INTRODUCTION

1.1 What is Image Processing?

Image processing is the processing of information for which the input signal is an

image; however, the output is not necessarily an image. Standard tools of image pro-

cessing treat the image as a 2-dimensional signal and apply standard signal processing

techniques. Signal processing is the analysis, interpretation and manipulation of any

time-varying function such as radar, sound, images, and many more. Signal process-

ing for digital signals may involve error detection, error correction, compression, and

information extraction.

In image processing, it is usually assumed that there is an underlying image model

for which a mathematical model is used to create an image [14, 18, 23]. By implement-

ing multiple image models, a more accurate representation of the individual regions

of an image can be determined. With different image models, the complete image

can be obtained by a finite number of local image models [14].

1.2 The Basics of an Image

An image is a function f(x, y) whose domain is a subset of R2, where f represents

the brightness or intensity of the image at (x, y) [6]. If the image is multicolor, then

f is vector-valued where each component of the vector indicates the brightness in the

corresponding color band [6]. A true image f̂(x, y) has an intensity level at all points,

while a digital image is a discrete version of the true image and has intensity at pixel

[i, j] equal to:

f [i, j] =

∫∫
[i,i+1]×[j,j+1]

f(x, y)dA. (1.1)

1
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Therefore, the representation of a 2-dimensional array of a digital image would look

like this: 
f [0, 0] . . . f [0, N − 1]

...
. . .

...

f [M − 1, 0] . . . f [M − 1, N − 1]

 (1.2)

where M and N are integers. By abuse of terminology, the reference to an image in

this paper will refer to a digital image when no confusion arises.

A physical object is represented as an element in the array known as a pixel.

In an image, a pixel measures the intensity of three colors where the most common

application is red, blue, green.

1.3 Main Image Feature Classes

In image processing, there exists a mathematical model through which the image

can be classified [14]. An image is a finite number of local image features that model

a complete image and are usually summarized under three regions that are usually

associated with three main image features: Smooth Regions, Edges, and Textures

[14].

1.3.1 Smooth Region

Smooth regions comprise the largest portion of most images. The simplest model

for this region is to assign a random variable with low variances to model the intensity

level locally [13].

1.3.2 Edge

Edges represent the abrupt transitions between smooth regions and constitute the

smallest region of most images. While they consist of smallest area in an image, they

have the most information in an image [14]. A simple model for edges is to assign a

random variable with high variance to the gray level value [14], however, this simple

model may lead to uncertainty with textured regions [16].

2
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1.3.3 Texture

Textures have a noise-like appearance even thought they are distinct from noise

since there is a pattern within them and their self-similarities [14]. The simplest way

to model texture is to use independent and identically distributed random variables

[14] but this does not take any relationships among the pixels into account [24]. A

generalization of this method is the implementation of Gauss Markov Random Field

[24] and Gibbs random field which model these local relationship properties [14].

1.4 RGB Channel

RGB is a three-channel representation of color images in terms of Red, Green,

and Blue channels. The industry standard for an RGB image is 24-bits. This allows

8-bits per channel with a gray level value between 0 and 255. RGB Channels are the

most common way of storing color information [13]. By combining the three colors

in various ways, it is possible to reproduce the other colors.

When the RGB channels are separated, which is achieved by setting two of the

three channels to 0 (i.e. (r,0,0) is red separation and r is equal to the intensity value

of red at that pixel), it can be easily seen how the different intensity level values

of red, green, and blue make up the different colors that are seen. For example, a

strong intensity level value of all three colors makes up white, while a brownish color

is composed of strong red and green intensity level values but very little blue intensity

level value.

1.5 Super-Resolution

A limit in image resolution due to physical restrictions occurs in many applica-

tions. The images produced by some devices such as charge-coupled devices (CCD)

cameras are under-sampled if their detector array is not sufficiently dense [11]. When

taking a picture of the night sky with a CCD camera, the image of the star should

form on the focal plane, hopefully as a point. However, it is known that the intensity

is proportional to the square of the Fourier transform of the exit pupil of the camera

3
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[10]. Therefore, a second and weaker-intensity nearby star might be missed because

the higher-intensity star masks it. The purpose of super-resolution is to create one

or more high-resolution images from a set of low-resolution images. Super-resolution

has the goal of minimizing the effects of finite aperture size and discreteness and is

used in the recovery of missing information [10]. The goal is to combine the informa-

tion in a set of low-resolution images in order to obtain a high-resolution image that

contains more information then any of the low-resolution images. To do this, certain

assumptions must be made:

1. There are negligible changes between the set of low-resolution images in the

region of interest.

2. The images are offset by either position and/or rotation.

3. The image sizes are sufficiently large for the extrapolation.

4. The signal-to-noise (SNR) ratio is sufficiently high to extrapolate meaningful

results at higher frequencies.

To do this super-resolution, the relative offset of the low-resolution images must

be determined. By using a Discrete Fourier Transform (DFT), the sample images

will be decomposed into magnitude and phase components [10]. This will allow two

images to be roughly aligned angularly. Then by minimizing the distance between two

sample images with an appropriate metric, a finer alignment between the horizontal,

vertical, and angle is determined.

After alignment, we locally approximate the true image by using sub-pixel level

basis functions. With enough images, an over determined system of equations will oc-

cur. Since there will be error due to noise in the sample image and error in alignment,

a total least squares approach is used to determine the approximation by basis func-

tions. Once the true image is approximated, a point-spread function is estimated and

used to remove the blurring that will be present. These are well-known techniques

[5, 19] and will be applied directly to the super-resolution image.

4
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CHAPTER II

FIND THE RELATIVE OFFSET OF THE SAMPLES

The goal of this chapter is fixing a reference image and aligning other images

against it. The images are assumed to be offset by

f1(x, y) = f2(x cos(θ0) + y sin(θ0) + ∆x,−x sin(θ0) + y cos(θ0) + ∆y), (2.1)

where ∆x,∆y are the horizontal and vertical offsets between the two images, and θ0

is the rotational offset of the two images. By using the frequency domain, the images

are roughly angularly aligned. After the coarse angle alignment is done, the images

will be aligned more accurately by a method similar to steepest descent.

2.1 Fourier Transform

Every L2 function on a compact subset of R has a Fourier series expansion [13]. A

Fourier Transform allows the decomposition of signals into basis signals of sinusoidal.

Since an image is finite, the Fourier Domain makes an ideal place to work in to find

the relative offset of the low-resolution images.

2.1.1 Continuous Fourier Transform

It is assumed that the true image f is L2 square integrable therefore a two-

dimensional Fourier Transform could be used to find the relative offset of sample

images. The Fourier Transform is given by

F (u) =

∫ ∞
−∞

f(x)e−2πiuxdx, (2.2)

and its inverse transform by

f(x) =

∫ ∞
−∞

F (u)e2πiuxdu. (2.3)

(2.2) and (2.3) make up the Fourier Transform Pair of f . These pairings allows a

function to be recovered from its transform. The Fourier Transform Pair for a two

5
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variable, L2 function are given by

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πi(ux+vy)dxdy, (2.4)

and its inverse transform by

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πi(ux+vy)dudv. (2.5)

2.1.2 Discrete Fourier Transform

Since a digital image is not given as a function on a compact subset of R2, but

as a finite collection of pixels, Discrete Fourier Transform (DFT) is more applicable

then the Fourier Transform given above. A one-dimensional DFT pair is given by

F (u) =
1

N

N−1∑
x=0

f(x)e−2πiux/N , (2.6)

and its inverse transform by

f(x) =
N−1∑
u=0

F (u)e2πiux/N . (2.7)

Extending the one-dimensional DFT and its inverse to a two-dimensional DFT is

given by

F (u, v) =
1

NM

N−1∑
x=0

M−1∑
y=0

f(x, y)e−2πi(ux/N+vy/M), (2.8)

and the inverse DFT by,

f(x, y) =
N−1∑
u=0

M−1∑
v=0

F (u, v)e2πi(ux/N+vy/M). (2.9)

A DFT is computationally expensive procedure to implement, so multiple one-

dimensional Fast Fourier Transforms (FFT) are used to compute the DFTs. Well

established techniques have been developed for computing one-dimensional FFT such

as the successive doubling method [13, 20].

If x is held constant, then the sum over y is a one-dimensional DFT. If y is held

constant, then the sum over x is a one-dimensional DFT. By splitting (2.8) up as

F (u, v) =
1

NM

N−1∑
x=0

e−2πiux/N

M−1∑
y=0

f(x, y)e−2πivy/M (2.10)

6
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it will be possile to implement multiple one-dimensional FFTs on a two-dimensional

DFT. So, a two-dimensional DFT is computed by performing a one-dimensional FFT

over each column, then computing a one-dimensional FFT over each row on the

resulting values.

An important property of the Discrete Transform Pair is that the DFT and its

inverse always exists [13]. The magnitude of a DFT is given by

|F (u, v)| =
∣∣Re2F (u, v) + Im2F (u, v)

∣∣1/2 =

√
F (u, v)F (u, v), (2.11)

and the phase spectrum is given by

φ(u, v) = tan−1

[
ImF (u, v)

ReF (u, v)

]
. (2.12)

Since the components of a DFT are complex quantities, the magnitude (2.11) is used

since it contains the most information about the spatial domain image.

When computing the DFT, by making use of the shifting theorem [13, 20], each

component of the low-resolution images is multiplied by (−1)x+y. This multiplica-

tion, (2.13), centers the zero-frequency of the low-resolution image in the frequency

domain at the point

(
M

2
,
N

2

)
[13] and will allow for the multiple low-resolution im-

age magnitudes to be easily aligned in the frequency domain. That is, if F [·] denotes

the DFT then

F
[
f(x, y) (−1)x+y

]
= F (u−M/2, v −N/2) . (2.13)

2.2 Magnitude and Phase

Using the low-resolution image as seen in Figure 2.1(a), a DFT will be computed

and the magnitude and phase components shown separately. The MATLAB code

used to calculate both the magnitude and phase can be found in the appendix. As

seen in Figure 2.1(b), the magnitude appears black except at the center where the

zero-frequency is. A logarithmic transformation, (2.14), is applied in order to see the

magnitude [13]. The constant, c, is chosen by (2.15) to ensure that the maximum

value that each pixel intensity will take is 255. The variable r is the maximum

7
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(a) Original Image (b) Magnitude

(c) Log Transformation (d) Phase Spectrum

Figure 2.1: Magnitude and Phase

magnitude value of the DFT.

S = c ln(1 + |r|) (2.14)

c =
255

ln (1 + |r|)
Examining Figure 2.1(c), distinct vertical and horizontal lines appear correspond-

ing to some dominant vertical and horizontal features in the original image. If the

image is rotated 45◦ as in Figure 2.2(a), the vertical and horizontal lines of the loga-

rithmic transformation as seen in Figure 2.1(c) also rotate 45◦ also as seen in Figure

2.2(b). This distinctive relationship between the rotation of the image and the rota-

tion in the magnitude will allow multiple low-resolution images to be aligned.

When examining the phase spectrum image of 2.1(d) with that of Figure 2.3(b)

which is a 45◦ of the image in Figure 2.1(a), the same distinct vertical and horizontal

lines appear in both phase spectrums. Since the phase does not yield a large amount

of new information about the image [10], the alignment of the multiple low-resolution

images will occur with the magnitude of the DFT.

8
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(a) 45◦ Rotation (b) Magnitude of Rotation

Figure 2.2: Rotation

(a) Phase Spectrum (b) Phase Spectrum with 45◦ Rotation

Figure 2.3: Phase Spectrum Comparisons

2.3 Coarse Angle Alignment

Using the DFT magnitude components of two images, |F1 (u, v)| and |F2 (u, v)|,

coarse angular alignment between the two images can be found. If the images have

rotational angel difference similar to Figure 2.4(a) and Figure 2.4(b) or even a small

rotational difference similar to Figure 2.4(a) and Figure 2.4(c), then a coarse angle

approximation will be required. The coarse angle approximation will align the mag-

nitudes of the two images in such a way so that the rotational difference between

them is similar to that of Figure 2.4(a) and Figure 2.4(d).

By using (2.1) and letting G1(r, θ) represent the polar DFT magnitude of f1(x, y)

and G2(r, θ) represent the polar DFT magnitude of f2(x, y), then the two magnitudes

have the following relationship [2]:

G1(r, θ) ≈ G2(r, θ + θ0) (2.15)

Therefore, by (2.15) the rotational shift of the two images can be determined by phase-

9
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(a) Log Transformation (b) Log Transformation with 45◦ Rotation

(c) Log Transformation with 5◦ Rotation (d) Log Transformation with 1◦ Rotation

Figure 2.4: Log Transformation Comparisons

correlation techniques [2]. However, an ambiguity of π results when using (2.15) [9].

This ambiguity can be solved by rotating f2(x, y) by θ0 and θ0 + π and choosing the

angle which minimizes the difference between the original images.

2.4 Alignment

After coarse angle alignment is done, the DFTs are discarded and the sample

image is rotated by the coarse image alignment value. Using the two images, vertical,

horizontal, and small rotational alignment is carried out. Figure 2.5 is a representation

of sample image pixels alignment with a reference image pixel. The shaded box is

a reference image pixel and the white boxes are four pixels from the sample image

that is being aligned. The reference image pixel will have intensity I
(Ref)
(i,j) while the

sample image pixels will have intensities of f [l,m]. Assuming that f [l,m] is evenly

distributed over the entire pixel and letting A
(
P ref

(i,j) ∩ P
sample
(l,m)

)
, represent the area

of the reference image in each pixel of the sample image, then the following relation

10
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Figure 2.5: Image Alignment

occurs when the alignment is approximately correct:

I
(Ref)
(i,j) ≈

∑
l,m

A
(
P ref

(i,j) ∩ P
sample
(l,m)

)
· f [l,m]. (2.16)

By minimizing the difference over all pixels between the sample and reference images

by

ε =

∣∣∣∣∣I(Ref)
(i,j) −

∑
l,m

A
(
P ref

(i,j) ∩ P
sample
(l,m)

)
· f [l,m]

∣∣∣∣∣ , (2.17)

where ε is the tolerance, then the sample and reference images are considered aligned.

2.4.1 Finding the Area

We will explicitly find the intersection between a reference image pixel and a

sample image pixel to find the area that they share in common. The reference image

pixel and sample image pixel can share some common area as seen in Figure 2.6(a)-

(b). When the two pixels share common area, it is possible for the polygon to have

up to eight sides.

The first step to solving the area of intersection is to determine the points of

intersection between the reference image pixel and the sample image pixel, it becomes

a matter of finding the intersection of two lines segments multiple times. The idea is

to work with parametric equations for the line segments. The parametric form for the

equation of a line passing through the points (xi, yj) and (xi+1, yj+1) is (2.18). If t is

on the interval [0, 1] after solving the parametric (2.18), then the point of intersection

11
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(a) 3-Sides w/ Common Area (b) 8-Sides w/ Common Area

(c) Vertical Offset (d) Horizontal Offset

Figure 2.6: Types of Pixel Intersections

is on the line segment verses being a point somewhere on the infinitely extended line.

x(t) = xi + (xi+1 − xi) t

y(t) = yj + (yj+1 − yj) t (2.18)

Finding all points of intersection between the boundaries of two pixels will deter-

mine if the reference image pixel and the sample image pixel share common area. If

the boundaries share a common segment as seen in Figure 2.6(c)-(d), then we will

only include points from the segment which are also the vertices. Next, if they two

pixels do not share a common segment, then we will need to find all vertices that are

interior to the other pixel. This will be accomplished by a point in polygon method.

The point in polygon method works by taking a ray and checking how many times

it crosses the edge of a polygon. As seen in Figure 2.7, if there is an even number

of crosses, then the point is outside the polygon while if there an odd number of

crossings then the point is inside the polygon [15]. If the corner has an even number

of crossings, then the corner is not a reference point to determine the area of inter-

section. However, if the corner has an odd number of crossings, then the corner is a

reference point to determine the area of intersection.

Now that all reference points that form the polygon between the reference and

12
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Figure 2.7: Point in Polygon

sample image pixels have been determined, it becomes a matter of finding the area

of a polygon. Using Green’s Theorem in a positive (counter-clockwise) rotation will

find the area of the polygon formed between the sample image pixel and the reference

image pixel. So it becomes necessary to label the reference points in some sort of

order. Using a ray from the centroid of the polygon to each point and sweeping it

around from 0 to 2π will locate and label the points of intersection between the pixels

in a positive orientation, since the region is necessarily convex. The area of a region,

R, in the xy-plane is given by A =
∫∫

R
dxdy. Lemma 2.1 is a direct result from

Green’s Theorem.

Lemma 2.1. If V0, V1, · · ·Vn is the sequence of adjacent vertices of a simple polygon

ordered in the positive direction with Vj = (xj, yj) and V0 = Vn, then area of the

polygon is given by

A =
1

2

n−1∑
j=0

(xj+1 + xj) (yj+1 − yj) (2.19)

Proof. Green’s Theorem states [20]:

Let R be a closed bounded region whose boundary C consists of finitely many smooth

curves. Let M and N be functions that are continuous and have continuous partial

derivatives ∂M
∂y

and ∂N
∂x

everywhere in some domain containing R. Then∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA =

∮
C

Mdx+Ndy.
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Since the area of R is A =
∫∫

R
dA, letting M = 0 and N = x we have

A =

∫∫
R

dA =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA =

∮
C

xdy =
n−1∑
j=0

∮
Cj

xdy,

where C is the boundary of the polygon formed by the two pixels and {Cj} is the

line segment formed between two consecutive points. Parameterize the line by

x(t) = xj + (xj+1 − xj) t ⇒ dx = (xj+1 − xj) dt,

y(t) = yj + (yj+1 − yj) t ⇒ dy = (yj+1 − yj) dt,

to find the line integral over {Cj}. Therefore,

A =
n−1∑
j=0

∮
Cj

xdy

=
n−1∑
j=0

∫ 1

0

[xj (yj+1 − yj) + (xj+1 − xj) t (yj+1 − yj)] dt

=
n−1∑
j=0

[
xj (yj+1 − yj) +

1

2
(xj+1 − xj) (yj+1 − yj)

]

=
n−1∑
j=0

[
xj (yj+1 − yj) +

1

2
xj+1 (yj+1 − yj)−

1

2
xj (yj+1 − yj)

]

=
n−1∑
j=0

[
1

2
xj (yj+1 − yj) +

1

2
xj+1 (yj+1 − yj)

]

=
1

2

n−1∑
j=0

(xj+1 + xj) (yj+1 − yj) .

2.4.2 Relative Offset

Having found a coarse angular alignment between the two images, we will more

precisely align them horizontally, vertically, and angularly by a method similar to

steepest descent. Figure 2.8 shows that there are twenty-seven different directions in

which the sample image can be moved using vertical, horizontal, and angular shifts.
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Figure 2.8: Rotation Alignment

The sample image can have a horizontal shift of 0, ∆x, or −∆x and/or it could also

have a vertical shift of 0, ∆y, or −∆y and/or at the same time have an angular shift of

0, ∆θ, or −∆θ as seen in Figure 2.8. Compute the distance between the sample image

and the reference image for each of the twenty-seven possible shifts and then choose

the direction which minimizes this distance. Choosing the minimum over all twenty-

seven directions will allow the images to be aligned because the distance between

the sample image and reference image is expected to achieve its global minimum

when the images are nearly perfectly aligned and after performing the coarse angle

alignment. After the translation, multiply ∆x, ∆y, and ∆θ by a constant value

between 1
2
≤ c < 1 and then repeat. Since the distance goes to 0 as the images are

aligned, a tolerance τ is used to determine when the two images are aligned. When

four successive applications do not yield an improvement of at least τ , then the images

are considered aligned.
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CHAPTER III

RECOMBINING THE IMAGES

3.1 Basis Functions

Our goal is to approximate the true image locally as a linear combination of

some orthogonal basis functions β1 · · · βn, defind on
[
−1

2
, 1

2

]2
. Specifically, we wish

to approximate the true image in the reference pixel (i, j) by a function f (i,j) of the

form

f (i,j)(x, y) =
n∑
k=1

c
(i,j)
k βk(x, y), (3.1)

where c
(i,j)
k ∈ R and (x, y) ∈

[
−1

2
, 1

2

]2
are coordinates local to pixel (i, j). For a fixed

positive integer r, where r is the resolution enhancement factor of the super-resolution

image, we define regions R1 · · ·Rr2 by

Ra+br+1 =

[
−1

2
+
a

r
,−1

2
+
a+ 1

r

]
×
[

1

2
− b+ 1

r
,
1

2
− b

r

]
, (3.2)

for 0 ≤ a < r, 0 ≤ b < r.

Figure 3.1: Super-Resolution Mesh

Figure 3.1 represents a single pixel S, the shaded region, from a sample image.
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This single pixel gives the equation

Intensity of S =
∑

0≤i<N
0≤j<M

∫∫
S∩P(i,j)

f (i,j)dA, (3.3)

where P(i,j) is the region associated with pixel (i, j) from the reference image. How-

ever, most of those intergals will be zero since S intersects only a few of the P(i,j). In

turn, each
∫∫

S∩P(i,j)
f (i,j)dA has an expansion into integrals of basis functions in each

P(i,j) given by ∫∫
S∩P(i,j)

f(x, y)dA =
n∑
k=1

c
(i,j)
k

∫∫
S∩P(i,j)

βk(x, y)dA. (3.4)

Since the basis functions are chosen in advance, the value of∫∫
Rk′

βk(x, y)dA =

∮
∂Rk′

Mkdx+Nkdy (3.5)

is determined by using Green’s Theorem and fixed anti-derivatives Mk and Nk are

chosen in advance. For example, if some βk = x, then using Green’s Theorem and

letting N = 1
2
x2 and M = 0 the following relation occurs:∫∫

Rk′

xdA =

∮
∂Rk′

1

2
x2dy =

n−1∑
j=0

∮
∂Rk′

j

1

2
x2dy

Since the region is a polygon, we may parameterize the equations by

x(t) = xj + (xj+1 − xj) t ⇒ dx = (xj+1 − xj) dt,

y(t) = yj + (yj+1 − yj) t ⇒ dy = (yj+1 − yj) dt,
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on the interval 0 ≤ t ≤ 1. Therefore,∫∫
Rk′

xdA =
1

2

n−1∑
j=0

∫ 1

0

(xj + (xj+1 − xj) t)2 (yj+1 − yj) dt

=
1

2

n−1∑
j=0

∫ 1

0

[
x2
j + 2xj (xj+1 − xj) t+ (xj+1 − xj)2 t2

]
(yj+1 − yj) dt

=
1

2

n−1∑
j=0

x2
j (yj+1 − yj) + xj (xj+1 − xj) (yj+1 − yj) +

1

3
(xj+1 − xj)2 (yj+1 − yj)

=
1

2

n−1∑
j=0

xjxj+1 (yj+1 − yj) +
1

3

[
x2
j − 2xjxj+1 + x2

j+1

]
(yj+1 − yj)

=
1

6

n−1∑
j=0

[
x2
j + xjxj+1 + x2

j+1

]
(yj+1 − yj) .

Now that the
∫∫

Rk′
βkdA can be numerically computed for all βk and is a constant

value. (3.4) becomes a single equation with up to 6k unknowns. Therefore, if there

are k basis functions then the process will require a minimum of k sample images.

The basis functions that will be used in the experiments of this project will be

step fuctions:

βk(x, y) =

1 (x, y) ∈ Rk,

0 otherwise,

(3.6)

for 0 ≤ k < r2. In turn, the result of the integrals of the basis functions is the area

of the polygon from Section 2.4.1. Therefore, (3.3) becomes the sum of all the over

lapping areas between reference image and the sample image pixels and is expressed

as

Intensity of S =
∑

0≤i<N
0≤j<M
0≤k<r2

c
(i,j)
k

∫∫
S∩P(i,j)

βkdA. (3.7)

3.2 Solving the System of Equations

Each of the sample images has some error in it. The noise associated with pixels,

the finiteness of the set of basis functions, and error in image alignment will cause
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error on both sides of the system of equations. Solving an over determined system of

linear equations Ax ≈ b, where both A and b have error in them, is done by the use

of Orthogonal Least Squares (OLS) or Total Least Squares (TLS). Solving by TLS

will reduce the error in the vertical and horizontal directions. The method of TLS

will minimize the perpendicular distance verses favoring the vertical distances [3] as

seen in Figure 3.2.

Figure 3.2: Total/Orthogonal Least Squares

The [·|·] will denote an augmented matrix. The Frobenius norm ‖A‖F of an m×n

matrix A is defined by

‖A‖F ≡

√√√√ m∑
i=1

n∑
j=1

|ai,j|2. (3.8)

The following definition of TLS is from [21].

Definition 3.2.1. (Total Least Squares) Given an over determined set of m linear

equations Ax ≈ b in n unknowns x. The TLS problem seeks to solve

min
[Â|b̂]∈Rm×(n+1)

∥∥∥[A|b]−
[
Â|b̂
]∥∥∥

F
, (3.9)

subject to b̂ ∈ colsp(Â). Once a minimizing
[
Â|b̂
]

is found, then any x∗ satisfying

Âx∗ = b̂ (3.10)
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is called a TLS solution.

The TLS models are the observed variables that satisfy one or more unknown but

exact linear relations of the form: [21]

α1x1 + · · ·+ αnxn = βn (3.11)

The m equations in A, b are related to the n unknown parameters of x [21] by:

A0x = b0, A = A0 + ∆A and b = b0 + ∆b, (3.12)

where ∆A, ∆b are the error in the measurements [21]. There is no assumed dis-

tribution of the errors on TLS. If the error in TLS is independent and identically

distributed (i.i.d.) with mean zero and covariance σ2
vI, then TLS method converges

to the true solution, x0, as m (the number of equations) goes to infinity [21]. Just as

LS has an analytical expression [8] of

x∗ = (ATA)−1AT b, (3.13)

so does TLS have an analytical expression [21] of

x∗ = (ATA− σ2
n+1I)−1AT b, (3.14)

where σ2
n+1 is the smallest singular value of [A|b]. While the TLS is more ill-

conditioned then the LS because small changes in the constant coefficients will result

in a large changes in the solutions, it does however asymptotically remove the bias

from the ATA matrix [21].

3.3 Point-Spread Function

After the super-resolution image is obtained, there will be blurring in the image

due to error in alignment and some due to miss-focus. The original images were

images were only in focus to a level detectable at the lower-resolution. To account

for this blurring, a Point-Spread Function (PSF) is used. The PSF, d̃(x, α, y, β),

conveys how much the output value at (α, β) is influenced by the input value at (x, y)

20



Texas Tech University, Steven Lawless, December 2007

[6]. Letting g(x, y) represent the blurred image, f(x, y) represent the true image,

and η(x, y) is noise in the system that is independent of position, then the following

Fredholm integral of the first kind is obtained [13]:

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(α, β)d̃(x, α, y, β)dαdβ + η(x, y). (3.15)

It is expected that η(x, y) is negligible since noise is averaged out by the super-

resolution method provided that we have enough sample images available.

The importance of (3.15) is that if the response of d̃(x, α, y, β) is known and η(x, y)

is sufficiently small, then f(α, β) can be calculated for all α and β using (3.15) [13]. It

is usually assumed that the blurring function of the camera lens is position invariant

[22], that is d̃(x, α, y, β) = d(x− α, y − β). In this case (3.15) becomes

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(α, β)d(x− α, y − β)dαdβ, (3.16)

a convolution integral. Therefore, (3.16) becomes:

g(x, y) = d(x, y) ∗ f(x, y), (3.17)

and taking the 2-Dimensional Fourier Transform of (3.17) the following expression is

obtained in the frequency domain [13]:

G(u, v) = D(u, v)F (u, v). (3.18)

Thus, if d(x, y) were known, we could easily recover f(x, y) by

f(x, y) =


0 F−1

[
G(u,v)
D(u,v)

]
< 0,

255 F−1
[
G(u,v)
D(u,v)

]
> 255,

F−1
[
G(u,v)
D(u,v)

]
otherwise.

(3.19)
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3.3.1 Estimating the True Image

A significant problem with recovering f(x, y) is the lack of information about the

blurring function d(x, y) [19]. A 3× 3 matrix

A =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 , (3.20)

with an initial guess can model the PSF of blurring function [7]. This matrix A

determines the PSF d(x, y) by
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 =


d[−1, 1] d[0, 1] d[1, 1]

d[−1, 0] d[0, 0] d[1, 0]

d[−1,−1] d[0,−1] d[1,−1]

 . (3.21)

After an initial guess, generally better coefficients of the matrix can be determined

using a well-known Maximum-Likelihood Blur Estimations (ML) technique developed

in [5, 19]. Using (3.22) and (3.23) where A(u, v) is the DFT of ai,j, σ
2
v is the variance

of the observation noise, and σ2
w is the variance of image noise. [7].

L(θ) = −
∑
u

∑
v

(
log (P (u, v)) +

|G(u, v)|2

P (u, v)

)
, (3.22)

where

P (u, v) = σ2
v

|D(u, v)|2

|1− A(u, v)|2
+ σ2

w. (3.23)

Both σ2
v and σ2

w are assumed to be Gaussian distributed for the ML.

Maximizing the log-likelihood function, L(θ), over the parameters

θ = {ai,j, σ2
v , d(x, y), σ2

w} (3.24)

is the goal [7]. In order to obtain a solution to this ML, some constraints must be

placed on the PSF. First, the Energy Conservation

N−1∑
x=0

M−1∑
y=0

d[x, y] = 1, d[x, y] ≥ 0, (3.25)
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must be met [19]. Second, the symmetry

d[−x,−y] = d[x, y]. (3.26)

of the PSF of (3.26) must be maintained [7]. Thus the relationship between (3.20)

and (3.25) - (3.26) is

3∑
i=1

3∑
j=1

ai,j = 1, ai,j ≥ 0, and



a1,1 = a3,3

a1,2 = a3,2

a1,3 = a3,1

a2,1 = a2,3

. (3.27)

So for example, letting

A =


0.056 0.159 0.042

0.136 0.214 0.136

0.042 0.159 0.056


would satisfy the properties (3.25) and (3.26) of the PSF.

With a good initial guess of θ, an expectation-minimization (EM) algorithm is a

general procedure for finding the ML [5, 7]. Figure 3.3 is a black-box diagram of the

Maximum-likelihood blur estimation by EM procedure [7].

Using the θ parameters, a Wiener restoration filter

H(u, v) =
D(u, v)

D(u, v)D(u, v) + Sw(u,v)
Sf (u,v)

(3.28)

estimates the new true image fE(x, y) [7], where Sf (u, v) is the power spectrum of

the ideal image and Sw(u, v) is the power spectrum of the noise [7]. An approach that

is used when the quantities of Sf (u, v) and Sw(u, v) are not known is to approximate

(3.28) by

H(u, v) ≈ D(u, v)

D(u, v)D(u, v) +K
, (3.29)

where K is a constant [13]. The constant K is usually chosen from a list of values

depending on the type of distribution of the noise [13]. Therefore, using a Wiener
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Figure 3.3: Maximum-Likelihood Blur Estimation

restoration filter estimates (3.19) by

fE(x, y) =


0 F−1 [G(u, v)H(u, v)] < 0,

255 F−1 [G(u, v)H(u, v)] > 255,

F−1 [G(u, v)H(u, v)] otherwise.

(3.30)

This is know as the expectation step. The coefficients of the PSF given by (3.20) can

be approximated from a discrete convolution

g(x, y) ≈ A ∗ fE(x, y), (3.31)

with the fE(x, y) estimating the new parameters of θ directly [4, 7]. This is known

as the maximization step. By doing this EM algorithm, the nonlinear parameters

of θ are approximated using the expectation step and the maximization step. By

alternating between these two steps, a local optimum of the ML is obtained [7].
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CHAPTER IV

EXPERIMENT RESULTS

4.1 CMOS Chip Set

The photos in Figure 4.1(a)-(d) are four typical images from the sample set of

forty-five that were taken of Dr. Monico’s bookshelf in his office using a stv680

CMOS chip. When we look at the photos, we notice that none of the names of the

books can be made out. All forty-five images were used in the super-resolution image

process that were combined for the super-resolution image seen in Figure 4.1(f).

Figure 4.1(e) is the super-resolution process before any blurring is removed. While

it is possible to make out more information then the low-resolution images, the image

is not as clear as the super-resolution image seen in Figure 4.1(f).

Figure 4.1(f) is the super-resolution image after implementing an EM algorithm

to remove any blurring in the image. Now it is possible to make out names on some

of the books and even on the books you cannot make out names more detail about

the books are noticeable.
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(a) Reference Image (b) Sample Image

(c) Sample Image (d) Sample Image

(e) Blurred SR Image (f) SR Image

Figure 4.1: CMOS Example
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4.2 MPEG-4 Set

The photos in Figure 4.2 are four typical images from the sample set of forty-seven

that were taken of Dr. Monico’s bookshelf in his office using a MPEG-4 compressed

video stream captured from an Aiptek DZO-V5T. When we look at the photos, we

notice that only one of the names of the books can be made out easily. All forty-seven

images were used in the super-resolution image process that were combined for the

super-resolution image seen in Figure 4.1(f).

Figure 4.2(e) is the super-resolution process before any blurring is removed. While

it is possible to make out even more information then from the MPEG-4 compressed

video stream low-resolution images, the image is not as clear as the super-resolution

image seen in Figure 4.2(f).

Figure 4.2 is the super-resolution image after removing any blurring from the

image by implementing an EM algorithm. Now it is possible to make out even more

names on some of the books and even on the books you cannot make out names more

detail about the books are noticeable.
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(a) Reference Image (b) Sample Image

(c) Sample Image (f) Sample Image

(e) Blurred SR Image (f) SR Image

Figure 4.2: MPEG-4 Video Example

28



Texas Tech University, Steven Lawless, December 2007

CHAPTER V

CONCLUSIONS, FUTURE WORK

5.1 Conclusions

Super-resolution is the process of taking a set of low-resolution images and com-

bining them into one or more higher-resolution that contains more information then

any of the low-resolution images contain. To do this super-resolution experiment

certain assumptions are made about the set of low-resolution images:

1. The set of low-resolution images are of the same scene with negligible differences

in the scenes.

2. Each of the low-resolution images are offset in either position and/or rotation.

3. The sample size of the low-resolution images are sufficiently large for the ex-

trapolation.

4. The SNR is sufficiently high, so that meaningful results at higher frequencies

can by extrapolated.

Since each of the low-resolution images can be offset in rotation, it will be necessary

to align the sample images to the reference image by a coarse angle alignment. To

implement this coarse angle alignment, a DFT is used which will break down the

sample image into magnitude and phase components. By using the magnitude of the

polar DFT and making use of the relation from (2.15), the rotational angle can be

determined by phase-correlation techniques [2].

After the sample image and the reference image are aligned using the coarse angle

alignment, a finer relative offset is determined. First, a point-in-polygon algorithm

is used to determine if the two image pixels have over-lapping area. Second, by

checking the distance between the reference image and sample image using (2.17),

then the sample image is moved in the direction that minimizes the distance over the

twenty-seven directions.
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When the weighting functions and alignment have been determined, the super-

resolution will still need to under-go a process to remove blurring. This process will

be done by determining and applying a point-spread function to the blurred super-

resolution image of well-known techniques. Several things must be known about the

blurring function:

1. The energy conservation principle must be meet by (3.25) and (3.26)

2. The symmetry of the point-spread function must be maintained

After all these things are done, a higher-resolution image is obtained from a set

of lower-resolution images. This super-resolution has many applications, including

astral-photography, facial recognition, and synthetic aperture radar.

5.2 Future Work

Interesting future work with alignment is to see if we can get a more accurate

alignment using an iterative procedure. This could be done by aligning the sample

image S1 to the reference image R. Then set R1 to be the stack of R and S1.

Next, align S2 to the stack R1. Then set R2 to be the stack of R1 and S2 done

from weighting R1. Continue this processes until all the sample images are stacked.

Another alignment issue is to see if we can perform this super-resolution image with

non-affine alignments, handling a moving camera relative to a fixed scene.

We would like to be able to use other basis functions such as trigonometric and

polynomial basis functions. Also, we would like to see if this super-resolution can

be performed directly in the frequency domain. We would like to develop better

techniques for solving large systems such as using a maximum likelihood method

approach for solving the coefficients. An analytic representation of the PSF dependent

on choice of basis functions.

Finally, we would like to compare our approach with other methods such as iter-

ated back-projection deblurring [17].
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APPENDIX

MATLAB CODE

The following MATLAB code was used to take a DFT of one of the low-resolution
images and output the magnitude, log transformation of the magnitude, and the
phase of the DFT. This code was used in Chapter II to produce the images of the
DFT.

% This function finds the Fourier magnitude of an image and displays

% the Fourier magnitude. It makes use of mrgb2gray function that

% converts the image to grayscale. The mrgb2gray function is courtesy

% of Kristian Sveen and can be found at

% http://www.mathworks.com/matlabcentral/fileexchange

clc

close all

clear all

[filename, pathname] = uigetfile(’*.*’, ’Anyfile’);

% Gets the image filename

% The image must be stored in the current directory

[img1, map1] = imread(filename);

% Stores the image

gray_img = mrgb2gray(img1,’mean’);

% Converts the image to grayscale

DFT_img = fft2(gray_img);

% Takes the 2-D DFT of the grayscale image

center = fftshift(DFT_img);

% Centers the 2-D DFT

center_mag = abs(center);

% Finds the magnitude of the 2-D DFT

R = 0;

% Sets the max magnitude equal to 0

[N M] = size(DFT_img);

% Finds the size of the image

for i = 1:N

for j = 1:M

R1 = abs(center_mag(i,j));

if R1 > R

% Checks the max magnitude

R = R1;

% Sets the new max magnitude
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end

end

end

% The preceding loop is to find the max magnitude of the DFT

c = 255/(log(1+R));

% Sets the constant for the log transformation

log_trans = c*log(center_mag+1);

% Log Transformation of the magnitude

% The addition of 1 insures that log(0) does not occur

imagesc(center_mag);

% Outputs the magnitude

colormap(gray);

% Makes the magnitude output grayscale

figure;

% Creates another figure to display the next image

imagesc(log_trans);

% Outputs the log transformation of the magnitude

imwrite(center,’Phase.jpg’,’jpeg’);

% Outputs the phase to a .jpg file

colormap(gray);

% Makes the log transformation output grayscale
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